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 A B S T R A C T

The major challenge faced by artificial intelligence (AI) models for medical image analysis is the class 
imbalance of training data and limited explainability. This study introduces a Confidence and Entropy-based 
Uncertainty Thresholding Algorithm (CEbUTAl), which is a novel post-processing method, designed to enhance 
both model performance and explainability. CEbUTAl modifies model predictions during inference, based on 
uncertainty and confidence measures, to improve classification in scenarios with class imbalance. CEbUTAl’s 
inference-time correction addresses explainability, while simultaneously improving performance, contrary 
to the prevailing notion that explainability necessitates a compromise in performance. The algorithm was 
evaluated across five medical imaging tasks: intracranial hemorrhage detection, optical coherence tomography 
analysis, breast cancer detection, carpal tunnel syndrome detection, and multi-class skin lesion classification. 
Results demonstrate that CEbUTAl improves accuracy by approximately 5% and increases sensitivity across 
multiple deep learning architectures, loss functions, and tasks. Comparative studies indicate that CEbUTAl 
outperforms state-of-the-art methods in addressing class imbalance and quantifying uncertainty. The model-
agnostic, task-agnostic and post-processing nature of CEbUTAl makes it appealing for enhancing both 
performance and trustworthiness in medical image analysis. This study provides a generalizable approach to 
mitigate biases arising from class imbalance, while improving the explainability of AI models, thus increasing 
their utility in clinical practice.
1. Introduction

Medical imaging techniques have revolutionized modern medicine, 
enabling the visualization of internal structures and functions. These 
techniques are instrumental in early disease detection and contribute 
to improved patient outcomes (Panayides et al., 2020; Kalemaki et al., 
2020). However, the medical image analysis (MIA) workflow relies 
heavily on human practitioners, who are constrained by subjectivity 
and fatigue (Alexander et al., 2022). While machine learning (ML) 
has aided decision making in MIA, it has a strong reliance on manual 
feature selection, which is a significant limitation (Jahangir et al., 
2024). Advancements in information and communication technologies 
have radically increased data availability and computational capac-
ity, paving the way for the adoption of deep learning (DL) mod-
els in MIA (Lee et al., 2017). Deep learning has shown promising 
results in several MIA applications (Leibig et al., 2017; Hamedani-
KarAzmoudehFar et al., 2023), with convolutional neural networks, 
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originally inspired by LeNet (LeCun et al., 1998) and AlexNet
(Krizhevsky et al., 2012) architectures, demonstrating remarkable per-
formance in the binary classification of breast cancer tumors (Bal-
asubramaniam et al., 2023; Titoriya and Sachdeva, 2019). Current 
DL models have also surpassed human accuracy (Kim et al., 2019; 
McKinney et al., 2020; Iqbal et al., 2021), fueling excitement regarding 
the potential of artificial intelligence (AI) in MIA. This is reflected 
in the exponential increase of AI-based MIA investigations (Tang, 
2019). Although DL models are mathematical frameworks (Higham and 
Higham, 2019), they are highly complex (Zhang et al., 2021) and lack 
decomposability (Lipton, 2018), operating as ‘‘black boxes’’ that lack 
insight into the underlying mechanisms (Muhammad and Bendechache, 
2024). This complexity, coupled with the scarcity of data in positive 
disease cases (Yu et al., 2022), highlights the need for further research 
and development.
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data mining, AI training, and similar technologies. 
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Fig. 1. Overview of deep learning (DL)-based approaches for medical image clas-
sification. (a) Conventional methods where a trained and validated DL model is 
employed to generate prediction. (b) The proposed approach, incorporating entropy-
based uncertainty and confidence into the framework.

As AI is integrated into several areas, including healthcare, MIA, and 
clinical decision-making processes, the ‘‘black box’’ effect of DL models, 
particularly in critical clinical settings has triggered increased interest 
in eXplainable AI (XAI) (Gerlings et al., 2021; Dwivedi et al., 2023). 
Visual tools such as class activation maps (CAM), Grad-CAM (Panwar 
et al., 2020), and Grad-CAM++ (Chattopadhay et al., 2018) have been 
used to improve the explainability of AI. However, the reliability of 
these maps was questionable, emphasizing the need for caution when 
using them (Zhang et al., 2022). Alternatively, ‘‘non-visual’’ methods 
such as uncertainty evaluation (Abdar et al., 2021; Araújo et al., 
2020; Dolezal et al., 2022; Angelopoulos et al., 2023; Huang et al., 
2024; Rufibach, 2010) and uncertainty quantification (UQ) (Leibig 
et al., 2017; Hamedani-KarAzmoudehFar et al., 2023; Huang et al., 
2024; Kurz et al., 2022; Lambert et al., 2024; Ayhan et al., 2020; 
Asgharnezhad et al., 2022; Gal and Ghahramani, 2016; Zou et al., 2023; 
Lakshminarayanan et al., 2017; Kimura, 2021) have been investigated 
to act as tools for explainability. While uncertainty evaluation estimates 
the uncertainty of model predictions (Abdar et al., 2021; Araújo et al., 
2020; Dolezal et al., 2022; Angelopoulos et al., 2023; Huang et al., 
2024; Rufibach, 2010), it offers only explainability without improving 
performance (Kendall and Gal, 2017). Conversely, UQ methods pos-
sess inherent characteristics that can enhance model confidence in its 
prediction. Existing UQ methods are contingent on the trained model 
architecture, producing an immutable framework that is not generaliz-
able (Lahoti et al., 2023, 2021). Moreover, attempts to improve model 
explainability have resulted in a decline in performance (Wanner et al., 
2021).

This work proposes ‘‘CEbUTAl’’ (Confidence- and Entropy-based Un-
certainty Thresholding Algorithm), a post-hoc correction mechanism, 
that adaptively refines model predictions at inference time, based on 
UQ. CEbUTAl is specifically designed to address challenges posed by 
severe class imbalance, a prevalent issue in medical imaging datasets, 
which can lead to biased learning and suboptimal generalization. A 
high-level comparison of existing DL-based approaches with CEbU-
TAl is illustrated in Fig.  1. This study has two primary goals: (i) to 
enhance the model’s explainability, and (ii) to maintain or improve 
the performance of the current model. The efficacy of CEbUTAl was 
evaluated across five medical image classification tasks: (i) intracra-
nial hemorrhage (ICH) detection, (ii) optical coherence tomography 
(OCT) analysis, (iii) breast cancer detection (BCD), (iv) carpal tunnel 
syndrome (CTS) detection, and (v) multi-class skin lesion classification 
(SLC). Subsequently, to demonstrate its independence from model ar-
chitectures and loss functions, CEbUTAl was evaluated by testing it 
across multiple models and loss functions. The key contributions of this 
study are as follows.

• Elaboration of the proposed CEbUTAl for correcting model predic-
tions during post-processing, when the model has been trained on 
imbalanced data.

• Evaluation of the proposed CEbUTAl’s model-agnostic charac-
teristics across multiple DL models, including SqueezeNet 1.0, 
ResNet34, MobileNetV2, DenseNet201, InceptionV3, and
ConvNeXt-small.
2 
• Investigation into the proposed CEbUTAl’s loss-agnostic behavior 
in classification tasks, comparing it with cross-entropy loss and 
focal loss.

• Analysis of the proposed CEbUTAl’s task-agnostic performance, 
applying it to tasks with ICH, OCT, BCD, CTS, and multi-class SLC 
datasets.

• Comparison with common strategies for addressing class imbal-
ance, such as (i) data augmentation and (ii) focal loss.

• Contrast of the proposed CEbUTAl with state-of-the-art (SOTA) 
methods for enhancing explainability, including (i) ensemble 
models, (ii) Monte Carlo Dropout (MCDO), and (iii) ensemble 
MCDO.

CEbUTAl addresses the key challenge of class imbalance in DL 
and proposes a methodology based on uncertainty measures to iden-
tify and adjust less reliable predictions, thereby improving DL model 
performance. By correcting outputs using interpretable metrics, such 
as confidence and entropy, CEbUTAl enhances model explainability 
and trustworthiness. As a post-processing correction, CEbUTAl im-
proves accuracy without retraining, which is particularly beneficial for 
imbalanced datasets. Model-agnostic, loss-function-agnostic and task-
agnostic correction methods, such as the proposed CEbUTAl, offer 
broader applicability across various DL architectures and tasks. In 
medical imaging, correcting model outputs to account for uncertainty 
is essential for responsible clinical decision-making and AI tool adop-
tion. Output correction also helps address biases in the original model 
predictions, especially when these models are trained on imbalanced 
data, ensuring more equitable and reliable results.

2. Related work

This section reviews recent approaches proposed to address class 
imbalance and uncertainty in model predictions. It is divided into three 
subsections: Section 2.1 class imbalance, Section 2.2 explainable AI, 
and Section 2.3 uncertainty quantification.

2.1. Class imbalance

Class imbalance, in which the abnormal or malignant class is signif-
icantly underrepresented compared with the normal class, is a perva-
sive challenge in medical imaging datasets. This imbalance adversely 
impacts the performance of AI algorithms, often manifesting as an 
increased rate of false negatives during classification. To mitigate these 
challenges, several methodological approaches have been proposed. 
Data augmentation techniques (Iqbal et al., 2021, 2025) are commonly 
employed to synthetically oversample minority classes, thereby improv-
ing their representation in a training set. Additionally, loss function 
modifications, such as focal loss (Ross and Dollár, 2017; Tran et al., 
2019) have been introduced to dynamically adjust the contribution of 
hard-to-classify examples, effectively reweighting the loss to emphasize 
minority class instances, and improving model sensitivity.

2.2. Explainable AI

Explainability in MIA has traditionally centered around visual ex-
planations, with saliency maps emerging as a popular tool (Itti et al., 
2002). These maps highlight the regions of an image that influence 
the model’s decision-making process, offering valuable insights into 
the areas of interest for a given prediction (Lundberg and Lee, 2017; 
Yosinski et al., 2015). However, saliency maps are vulnerable to per-
turbations (Tomsett et al., 2020) and adversarial attacks (Ghorbani 
et al., 2019), which distort their interpretations. Furthermore, previous 
studies (Adebayo et al., 2018) have shown that saliency maps are 
independent of the training data and trained model, thus making them 
unreliable.
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These limitations have spurred interest in ‘‘non-visual’’ methods for 
XAI, which offer a more robust, although less intuitive, approach to 
explainability (Borys et al., 2023). A popular non-visual method to 
address explainability is the SHapley Additive exPlanations (SHAP), 
which generates scores for each feature, indicating its impact on 
the output. SHAP also ensures feature consistency and model stabil-
ity (Meng et al., 2020). However, it is computationally complex and not 
applicable to all models (Van den Broeck et al., 2022). Furthermore, 
although perturbations to the input and approximate explanations 
contribute to explainability in SHAP, this approach is inconsistent and 
does not fully capture the behavior of the model’s predictions (Slack 
et al., 2020).

Uncertainty evaluation is a key nonvisual XAI technique for know-
ing the model’s confidence level, which is essential for assessing trust-
worthiness. A recent review (Huang et al., 2024) of uncertainty eval-
uation techniques highlighted the following widely used methods: (i) 
calibration metrics, (ii) Brier score, (iii) predictive entropy, and (iv) 
predictive variance. Calibration metrics (Huang et al., 2024; Kim et al., 
2016) quantify the alignment between a model’s predictions and true 
outcomes by assessing how closely the predicted probabilities cor-
respond to the actual results (Wang et al., 2021). Conversely, the 
Brier score (Brier, 1950) is a comprehensive measure that evaluates 
both the calibration and accuracy of the probabilistic predictions. 
However, these methods require access to the ground truth, which 
is only available during testing and not in real-world deployment 
scenarios (Niculescu-Mizil and Caruana, 2005; Jewson, 2004; Assel 
et al., 2017). Predictive entropy (Malinin and Gales, 2018; Namdari 
and Li, 2019) measures the uncertainty linked to class probabilities, 
whereas predictive variance (Cawley et al., 2007) indicates the spread 
of the predictions. These tools that quantify uncertainty are not used to 
facilitate prediction correction, even though there are limited studies 
that have used this for test time adaptation (Ravishankar et al., 2025). 
Despite their potential, these methods have limited clinical adoption, as 
DL models rarely integrate uncertainty estimates (Gawlikowski et al., 
2023).

2.3. Uncertainty quantification (UQ)

Uncertainty in DL models reflects a lack of confidence in their 
predictions stemming from various sources. Uncertainty is typically cat-
egorized into aleatoric and epistemic uncertainty. Aleatoric uncertainty 
arises from the noise and variability inherent in the data, whereas epis-
temic uncertainty results from the model’s limitations and insufficient 
knowledge (Faghani et al., 2023). Among the numerous UQ methods, 
Monte Carlo Dropout (MCDO) and deep ensembles are popular for 
correcting uncertainty (Kurz et al., 2022; Lambert et al., 2024). These 
methods improve predictions by either introducing stochasticity during 
inference, or leveraging model diversity (Leibig et al., 2017; Hamedani-
KarAzmoudehFar et al., 2023; Huang et al., 2024; Asgharnezhad et al., 
2022; Gal and Ghahramani, 2016; Zou et al., 2023; Lakshminarayanan 
et al., 2017; Kimura, 2021).

2.3.1. Monte Carlo dropout
Monte Carlo dropout (MCDO) is an effective implementation of 

dropout during both training and inference. During inference, multiple 
forward passes are performed for a single batch, thereby quantifying 
the uncertainty (Gal and Ghahramani, 2016). MCDO is widely used for 
UQ in medical images, with applications in segmentation (Zou et al., 
2023) and classification, particularly in diabetic retinopathy from fun-
dus images (Leibig et al., 2017) and BCD (Hamedani-KarAzmoudehFar 
et al., 2023). However, MCDO is an approximation of Bayesian in-
ference in which prior knowledge affects the performance of the 
model (Lakshminarayanan et al., 2017). Moreover, dropout is an in-
herent part of the model; therefore, MCDO cannot be model-agnostic 
and does not operate in a post hoc manner, limiting its generalizability.
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Fig. 2. Examples of ICH, OCT, BCD, and CTS images: (a), (c), (e), and (g) represent 
the positive/abnormal cases with arrows and masks highlighting regions of interest, 
while images (b), (d), (f), and (h) depict the normal class.

Fig. 3. Examples of dermatoscopic images used in the multi-class SLC task, as part of 
the DermaMNIST dataset (Yang et al., 2023). While (a) and (b) represent the cancerous 
lesions and melanocytic nevi, (c) and (d) represent benign and vascular lesions.

2.3.2. Deep ensembles
Deep ensembles leverage the weights of multiple DL models to 

improve their explainability (Lakshminarayanan et al., 2017). Aggre-
gating predictions from different models improves the reliability of 
the model predictions. Deep ensembles have demonstrated significant 
performance in medical image classification tasks such as COVID19 de-
tection (Müller et al., 2022) and Alzheimer’s disease (Sreelakshmi et al., 
2023). However, training multiple models is both time-consuming 
and computationally expensive (Ayhan et al., 2020). Additionally, 
determining the optimal hyperparameters is a heuristic and iterative 
task (Mohammed and Kora, 2023). Deep ensembles, similar to MCDO, 
are also not model agnostic and are not applied a posteriori, limiting 
their applicability.

3. Methodology

This section describes proposed CEbUTAl development in two sub-
sections: Section 3.1 - the ‘‘Baseline Model Learning’’, outlining the 
steps pursued for model training; and Section 3.2 - the ‘‘Proposed 
CEbUTAl approach’’, detailing the algorithm’s ability to enhance the 
model’s performance.

3.1. Baseline model learning

The baseline model learning phase centers around training different 
neural network (NN) architectures to generate probabilities for each 
class.

3.1.1. Datasets
The evaluation of CEbUTAl’s task-agnostic capabilities utilized four 

open-source and one locally curated (CTS) dataset. Figs.  2 and 3 
illustrate the visually distinctive features across the classification tasks 
considered in this study.
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Fig. 4. Data flow for the classification of frames (images) into CTS positive or normal 
from ultrasound videos of the median nerve at the wrist region, based on cross-sectional 
area analysis.

Intra-cranial hemorrhage (ICH). Non-contrast computed tomography 
(CT) images of the brain were obtained from the Radiological Society 
of North America’s (RSNA) ICH detection challenge held in 2019 (Flan-
ders et al., 2020). The dataset consists of six classes: normal and five 
hemorrhage subtypes - epidural, intraparenchymal, intraventricular, 
subarachnoid, and subdural. In this study, all five hemorrhage subtypes 
were considered as ICH positive class. The dataset comprised of ∼
4, 500, 000 images from ∼ 25, 000 patients, with ∼ 4, 260, 600 images in 
the normal class. As part of preprocessing, images were converted to 
the portable network graphics (PNG) format and uniformly resized to 
512 × 512
Optical coherence tomography (OCT). The UCSD dataset
(Kermany et al., 2018) contains retinal cross-section images catego-
rized as: choroidal neovascularization (CNV), diabetic macular edema 
(DME), drusen, and normal. For binary classification, the CNV and DME 
were considered as severe class and drusen and normal as mild class. 
This resulted in a data distribution of ∼ 48, 000 severe cases to ∼ 59, 000
mild cases. Images used were in PNG format and resized to 512 × 512
Breast cancer detection (BCD). The mammograms for BCD were 
sourced from the RSNA Challenge 2023 (Carr et al., 2022). Since 
most patients have images from both the mediolateral oblique and 
craniocaudal views, the dataset was split at the patient level, resulting 
in a severe class imbalance with ∼ 53, 000 normal cases and ∼ 1200
malignant cases. The mammograms were standardized by converting 
to PNG and resizing them to 512 × 512 dimension.
Carpal tunnel syndrome (CTS). To assess model generalizability to 
real-world clinical data, we used a proprietary (locally curated) CTS 
dataset (Gujarati et al., 2023) consisting of ultrasound (US) images col-
lected at Aster-CMI Hospital, Bangalore, India, under ethical approval 
(Approval No. Aster/IEC/049/2020-21, Dated June 27, 2020). Written 
informed consent was obtained from all participants. The detailed 
description of the data is provided in Gujarati et al. (2023). US video 
sweeps of the upper limb (from wrist to elbow) were acquired using 
a Philips CX50 US machine. Frames from the wrist region were used 
to classify CTS, where patients were labeled CTS-positive if both their 
average cross-sectional area (CSA) and per-frame CSA of the Median 
Nerve (MN) exceeded 12 mm2 and normal if both were below 12 mm2

(as shown in Fig.  4). The dataset considered for this task, comprised 
13 CTS positive patients, contributing to 500 frames, and 73 normal 
patients, accounting for 2803 frames.
Multi-class skin lesion classification (SLC). For multi-class classifi-
cation, dermatoscopic images were obtained from the DermaMNIST 
dataset (Yang et al., 2023), a subset of the MedMNIST2D collection 
of medical images. The dataset comprises seven distinct skin lesion 
classes, which can be broadly grouped into four major diagnostic 
categories: (i) cancerous lesions - actinic keratoses and intraepithelial 
carcinoma (akiec), basal cell carcinoma (bcc), and melanoma (mel), (ii) 
melanocytic nevi (nv), (iii) benign lesions - dermatofibroma (df) and 
benign keratosis-like lesions (bkl), and (iv) vascular lesions (vasc). Class 
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Table 1
Number of images considered for training, validation, and testing (split at patient level) 
for the tasks (ICH, OCT, BCD, CTS, and multi-class SLC).

Task Training Validation Testing 
 ICH ICH+ 2500 500 800  
 NORMAL 47500 500 800  
 OCT SEVERE 10000 1000 2000  
 MILD 40000 1000 500  
 BCD MALIGNANT 881 76 200  
 NORMAL 40473 3369 25  
 CTS CTS+ 260 120 120  
 NORMAL 2563 120 120  
 
Multi-class
SLC

CANCEROUS 400 250 300  
 NEVI 400 250 300  
 BENIGN 400 250 300  
 VASCULAR 6000 250 300  

imbalance was prominent with 983 images for cancerous lesions, 1113 
for nv, 1214 for benign lesions, and 6705 for vascular lesions.

To ensure robust generalization, datasets were split patient-wise 
into training, validation, and test subsets, thereby preventing data 
leakage. Since the ICH, OCT, BCD, and CTS datasets were grayscale, the 
first convolutional layer of the model was adapted accordingly; no such 
change was needed for the multi-class SLC dataset, which contained 
RGB images. Each training dataset retained its natural class imbalance 
to reflect real-world conditions. In contrast to the training datasets, 
the validation datasets were curated to be perfectly balanced to ensure 
the selection of the best-performing model across all classes. The data 
distribution used for the training (𝐷𝑡𝑟𝑎𝑖𝑛), validation (𝐷𝑣𝑎𝑙), and testing 
(𝐷𝑡𝑒𝑠𝑡) datasets for each task has been listed in Table  1.

As is common in real-world medical datasets, the healthy or normal 
class constitutes the majority and is represented by 𝐶𝑚𝑎𝑗 , whereas the 
abnormal or severe cases, often rarer and clinically significant, are 
grouped under 𝐶𝑚𝑖𝑛. The symbols 𝑥, 𝑦, and 𝑛 denote images, labels, 
and the number of classes, respectively.

3.1.2. Experimentation
The training set of images was subjected to random transformations 

i.e. rotation, flipping, zooming, and the addition of Gaussian noise to 
result in a robust trained model. A consistent batch size of eight, with 
two workers, was used throughout the process. The model was trained 
using cross-entropy loss with the ‘‘Adam’’ optimizer with a learning rate 
of 1e-4 for 100 epochs. The experiments were conducted on a system 
with an NVIDIA RTX A5000 GPU (Compute Capability 8.6, 8192 CUDA 
cores, 24 GB GDDR6 VRAM). Validation on 𝐷𝑣𝑎𝑙 is performed after each 
epoch, and the model with the best validation loss is saved. The saved 
model (𝑀) is applied to 𝐷𝑡𝑒𝑠𝑡, and the softmax function is performed 
to obtain the probabilities of each class, providing the predictions. For 
each image 𝑥 and 𝑖 ∈ [0, 𝑛], the softmax score (𝑝𝑖) for the 𝑖th class 
is obtained from the predicted raw scores (𝑧𝑖 = 𝑀(𝑥) ∶ 𝑖 ∈ [0, 𝑛]) as 
follows: 
𝑝𝑖 =

𝑒𝑧𝑖
∑𝑛

𝑖=1 𝑒
𝑧𝑖

(1)

3.2. Proposed CEbUTAl approach

The baseline model 𝑀 , is typically biased towards 𝐶𝑚𝑎𝑗 in instances 
of class imbalance, resulting in inaccurate classifications. Furthermore, 
model bias produces a higher number of false negatives, which is a 
major challenge in medical diagnoses (Petticrew et al., 2001). Prior 
studies have utilized the entropy of softmax probabilities to evaluate 
uncertainty (Hamedani-KarAzmoudehFar et al., 2023; Asgharnezhad 
et al., 2022). Similarly, this study computes entropy to measure the un-
certainty in the predictions. Once entropy is computed, the uncertainty 
estimates are obtained from the predicted entropy. Subsequently, the 
confidence score was computed from the probabilities. Finally, CEbU-
TAl utilizes the computed confidence scores and uncertainty estimates 
to refine the model’s predictions during inference time.
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Fig. 5. Design of proposed CEbUTAl. (a) Uncertainty estimate and confidence score computation from softmax output. (b) Computation of threshold from 𝐷𝑣𝑎𝑙 . (c) Correction by 
CEbUTAl during inference (testing).
3.2.1. Predictive entropy
The level of uncertainty in each image’s prediction by the model is 

quantified by the predictive entropy, denoted as 𝐻 (Namdari and Li, 
2019; Ovadia et al., 2019), and is computed as follows: 

𝐻 = −
𝑛
∑

𝑖=1
(𝑝𝑖 × 𝑙𝑜𝑔(𝑝𝑖)) (2)

In Eq. (2) 𝑙𝑜𝑔 denotes logarithm to the base 2.

3.2.2. Uncertainty estimation
A higher 𝐻 indicates greater uncertainty, whereas a lower 𝐻 indi-

cates 𝑀 is confident about its prediction (Malinin and Gales, 2018). 
For binary classification, maximum 𝐻 occurs when the classes are 
equiprobable (𝑝𝑖 = 0.5), and minimum 𝐻 when the model is absolutely 
sure of its prediction (𝑝0 = 0 𝑎𝑛𝑑 𝑝1 = 1 or vice-versa). A min–max 
normalization on 𝐻 was performed using the maximum and minimum 
entropy to deduce the uncertainty measure (𝑈) for each image, as 
illustrated below: 

𝑈 =
𝐻 −𝐻𝑚𝑖𝑛

𝐻𝑚𝑎𝑥 −𝐻𝑚𝑖𝑛
≡

∑𝑛
𝑖=1(𝑝𝑖 ⋅ 𝑙𝑜𝑔(𝑝𝑖))
𝑙𝑜𝑔(0.5)

(3)

3.2.3. Confidence score
The confidence score (𝐶𝑆) for each sample is a measure of the 

certainty of the model in its prediction, which can be given by 

𝐶𝑆 = max
1≤𝑖≤𝑛

𝑝𝑖 (4)

Algorithm 1 Major steps of proposed CEbUTAl
Require: trained model(𝑀), datasets 𝐷𝑣𝑎𝑙 , 𝐷𝑡𝑒𝑠𝑡 ∶ 𝑁𝑣𝑎𝑙 , 𝑁𝑡𝑒𝑠𝑡 lengths, 𝑛 classes ∶ majority 

class (𝐶𝑚𝑎𝑗 ), minority class (𝐶𝑚𝑖𝑛)
1: 𝜎𝑢𝑛𝑐 = 0, 𝜎𝑐𝑜𝑛 = 0, 𝑥𝑐𝑜𝑢𝑛𝑡 = 0
2: for 𝑗 = 1 𝑡𝑜 𝑁𝑣𝑎𝑙 do
3: if 𝑀(𝑥𝑗 ) = 𝐶𝑚𝑎𝑗 do
4: 𝐻𝑗 = −

∑𝑛
𝑖=1(𝑀(𝑗)𝑖 ⋅ 𝑙𝑛(𝑀(𝑗)𝑖))

5: 𝑈𝑗 = 𝐻𝑗 × 100
6: 𝜎𝑢𝑛𝑐+ = 𝑈𝑗
7: 𝐶𝑗 = argmax𝑀(𝑗)
8: 𝜎𝑐𝑜𝑛+ = 𝐶𝑗
9: 𝑥𝑐𝑜𝑢𝑛𝑡+ = 1
10: end if
11: end for
12: 𝜏𝑢𝑛𝑐 = 𝜎𝑢𝑛𝑐

𝑥𝑐𝑜𝑢𝑛𝑡
, 𝜏𝑐𝑜𝑛 = 𝜎𝑐𝑜𝑛

𝑥𝑐𝑜𝑢𝑛𝑡
13: for 𝑘 = 1 𝑡𝑜 𝑁𝑇 do
14: 𝐻𝑘 = −

∑𝑛
𝑖=1(𝑀(𝑘)𝑖 ⋅ 𝑙𝑛(𝑀(𝑘)𝑖))

15: 𝑈𝑘 = 𝐻𝑘 × 100
16: 𝐶𝑘 = argmax𝑀(𝑘)
17: if 𝑈𝑘 > 𝜏𝑢𝑛𝑐 , 𝐶𝑘 < 𝜏𝑐𝑜𝑛 𝑎𝑛𝑑 𝑀(𝑘) = 𝐶𝑚𝑎𝑥 do
18: 𝑀(𝑘) = 𝐶𝑚𝑖𝑛
19: end if
20: end for
5 
3.2.4. Thresholding
In this study, 𝐷𝑣𝑎𝑙 did not have a class imbalance, and the computed 

uncertainty and confidence metrics were used to establish the thresh-
olds. For each 𝑥𝑗 ∈ 𝐷𝑣𝑎𝑙 ∶ 𝑗 ∈ [0, 𝑁] where 𝑁 is the number of samples 
in 𝐷𝑣𝑎𝑙 and 𝑦̂𝑗 denotes the prediction of 𝑀(𝑥𝑗 ), the average uncertainty 
𝜇𝑢𝑛𝑐 and average confidence 𝜇𝑐𝑜𝑛 was computed as follows: 

𝜇𝑐𝑜𝑛 =
1
𝑁

∑

𝑥𝑗∈𝐷𝑣𝑎𝑙

𝐶𝑆𝑗 (5)

𝜇𝑢𝑛𝑐 =
1
𝑁

∑

𝑥𝑗∈𝐷𝑣𝑎𝑙

𝑈𝑗 (6)

When 𝑁 ≡ 𝑁𝑉 , where 𝑁𝑉  represents the number of samples with 
𝑦̂𝑗 = 𝐶𝑚𝑎𝑗 , the uncertainty threshold (𝜏𝑢𝑛𝑐) and confidence thresh-
old (𝜏𝑐𝑜𝑛) are equal to average uncertainty 𝜇𝑢𝑛𝑐 and confidence 𝜇𝑐𝑜𝑛
respectively. The average uncertainty and confidence measures from 
the validation dataset, 𝜇𝑢𝑛𝑐 and 𝜇𝑐𝑜𝑛, establish concrete independence 
of the test data thus eliminating the necessity of heuristics and data 
leakage (Dolezal et al., 2022; Syrykh et al., 2020; Senousy et al., 
2021). Finally, predictions with high uncertainty and low confidence 
were converted into 𝐶𝑚𝑖𝑛. A schematic representation of CEbUTAl was 
presented in Fig.  5. Subsequently, the steps of CEbUTAl are described in 
Algorithm 1. In the multi-class classification setting, decision thresholds 
were derived using the validation set following same procedure as 
binary classification task. Specifically, the threshold for uncertainty-
based correction was computed across all correctly classified validation 
samples that did not belong to 𝐶𝑚𝑎𝑗 . During inference, if the model 
prediction is majority class (𝐶𝑚𝑎𝑗) then these predictions with high 
uncertainty and low confidence were changed to the class with the 
second-highest predicted probability.

3.2.5. Evaluation metrics
The performance of models was evaluated using the following met-

rics: precision (𝑃 ), sensitivity (𝑆𝑒) or true positive rate, specificity 
(𝑆𝑝) or true negative rate, F1-score (𝐹1), and accuracy (𝛶 ) in binary 
classification based on the counts of true positives (𝑇𝑃 ), false positives 
(𝐹𝑃 ), false negatives (𝐹𝑁), and true negatives (𝑇𝑁). Fig.  6 picto-
rially represents CEbUTAl’s ability to correct the model’s predictions 
during inference time. CEbUTAl decreases 𝐹𝑁 by converting it to 
𝑇𝑃 . However, because of the bias in the dataset, a higher 𝐹𝑃  was 
observed, which requires additional effort from the clinician to correct 
it manually.

4. Results

4.1. Evaluating agnostics of CEbUTAl

4.1.1. Model agnostic evaluation
The evaluation metrics were computed for six trained models: (i) 

SqueezeNet 1.0, (ii) ResNet34, (iii) DenseNet201, (iv) MobileNetV2, 
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Fig. 6. (a) Confusion matrix obtained from the InceptionV3 model for the ICH classification task (Section 3.1). (b) Confusion matrix obtained after implementing CEbUTAl 
(Section 3.2).
Table 2
Comparison of deep learning (DL) models utilized in this study in terms of parameters 
and model size.
 Model Parameters (in million) Model size (in MB) 
 SqueezeNet 1.0 0.73 2.79  
 ResNet34 21.28 81.31  
 DenseNet201 18.09 70.34  
 MobileNetV2 2.23 8.74  
 InceptionV3 21.79 83.45  
 ConvNeXt-small 49.45 188.77  

Fig. 7. 𝛶 , 𝑆𝑒, and 𝑆𝑝 for models using baseline and after CEbUTAl. Note that the 
loss function used in this experiment is focal loss, and the task performed is ICH 
classification.

(v) InceptionV3, and (vi) ConvNeXt-small on 𝐷𝑡𝑒𝑠𝑡. The architectural 
details, including the number of parameters and storage requirements 
for each model, are summarized in Table  2. ConvNeXt (Liu et al., 2022) 
was utilized in this study to showcase CEbUTAl’s compatibility with 
hybrid models, in addition to CNN-based models. All trained models 
were processed with CEbUTAl during the inference time for evaluation. 
The computed 𝑃 , 𝑆𝑒, 𝑆𝑝, 𝐹1, and 𝛶  for the baseline approach and 
the CEbUTAl approach have been presented in Table  3. The baseline 
performance is poor in ConvNeXt, due to a higher number of parame-
ters, optimization dynamics, and loss minimization favoring 𝐶𝑚𝑎𝑗 . This 
observation aligns with recent studies suggesting that transformer mod-
els may overfit to frequency-based priors in class imbalance (Kunstner 
et al., 2024; Xu et al., 2023; Li et al., 2023). A detailed comparison 
of model predictions using the baseline approach and after applying 
CEbUTAl for the ICH task has been presented in Table  4, highlighting 
shifts in classification accuracy, estimated miss rate, and overcall rate 
across ICH and normal cases. For the loss- and task-agnostic studies 
(BCD and OCT), SqueezeNet 1.0 and InceptionV3 models were em-
ployed, while ResNet34 was utilized for the CTS and multi-class SLC 
tasks.

4.1.2. Loss agnostic evaluation
Cross entropy and focal loss (Ross and Dollár, 2017) are common 

loss functions for classification tasks (Tran et al., 2019). The parameters 
6 
Fig. 8. Accuracy of models SqueezeNet 1.0 (A), InceptionV3 (B), and ResNet34 (C) 
for OCT analysis, BCD, and CTS detection using baseline and after applying CEbUTAl. 
Note that Tables  3 and 5 provide the results for ICH classification and multi-class SLC.

𝛼, 𝛾, and 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 for focal loss are set to default values of 0.25, 2, and 
‘‘𝑚𝑒𝑎𝑛’’, respectively. The evaluation metrics computed using baseline 
and after CEbUTAl for all models trained with cross-entropy loss and 
focal loss were tabulated in Table  3 and Fig.  7 respectively.

4.1.3. Task agnostic evaluation
In addition to ICH, the proposed approach was evaluated on binary 

classification tasks—including BCD, OCT, and CTS as well as on multi-
class classification using dermatoscopic images from the multi-class SLC 
dataset. Notably, CTS is a clinical and proprietary dataset, included to 
demonstrate CEbUTAl’s performance on real-world clinical data. While 
Fig.  8 plots the accuracy of the model using the baseline approach 
and after the application of CEbUTAl for OCT analysis, BCD, and CTS 
detection, Table  5 illustrates the improvement in multi-class SLC.

4.2. Comparison with SOTA data imbalance mitigation

State-of-the-art (SOTA) methods for class imbalance mitigation in-
clude data augmentation (Yang et al., 2022) and focal loss (Lin et al., 
2017). The data augmentation strategy involves implementing rota-
tions, flipping, brightness adjustments, contrast enhancements, hue 
and saturation modifications, Gaussian blur, and affine transforma-
tions. CEbUTAl achieved SOTA performance in comparison with mod-
els trained with data augmentation and focal loss, and the results have 
been presented in Fig.  9.

4.3. Comparison with SOTA UQ methods

CEbUTAl was evaluated against several state-of-the-art (SOTA)
methods, including MCDO, deep ensembles of trained models, and 
ensemble MCDO. As shown in Fig.  10, the proposed approach demon-
strates superior performance compared to these methods in terms of 
UQ and correction. CEbUTAl consistently demonstrated superior results 
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Table 3
Model agnostic evaluation metrics for the ICH task using baseline and after application of CEbUTAl. Dataset details are provided in Table  1. 
While the ConvNeXt model was trained on the same training set, the validation set was also imbalanced with ICH positive containing 100 and 
normal containing 900 sample images, to showcase CEbUTAl’s generalizability. The metric precision presented here is an average of both ICH 
positive and normal classes.
 Model Baseline CEbUTAl

 Precision Sensitivity Specificity F1-Score Accuracy Precision Sensitivity Specificity F1-Score Accuracy  
 SqueezeNet 1.0 0.8586 0.6388 0.9900 0.7748 0.8144 0.8658 0.8762 0.8550 0.8670 0.8656 (5.1%)  
 ResNet34 0.8608 0.6500 0.9888 0.7825 0.8194 0.8756 0.8800 0.8712 0.8762 0.8756 (5.6%)  
 DenseNet201 0.8605 0.6887 0.9738 0.8032 0.8313 0.8662 0.8862 0.8450 0.8683 0.8656 (3.4%)  
 MobileNetV2 0.8748 0.6875 0.9925 0.8112 0.8400 0.8872 0.9000 0.8738 0.8883 0.8869 (4.7%)  
 InceptionV3 0.8658 0.6675 0.9888 0.7952 0.8281 0.8820 0.8725 0.8912 0.8808 0.8819 (5.4%)  
 ConvNeXt-small 0.2500 0.0000 1.0000 0.0000 0.5000 0.6962 0.4787 0.8575 0.5906 0.6681 (16.8%) 
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able 4
uantitative comparison of ResNet34 predictions using baseline approach and after 
pplying CEbUTAl for the ICH task, highlighting significant reductions in miss rate 
nd improvements in correct ICH classification.
 Criteria  Baseline  CEbUTAl  
 Correctly classified as ICH  520 of 800 (65%)  704 of 800 (88%)  
 Both (Baseline and CEbUTAl)  520 of 520 (100%)  520 of 704 (73.9%) 
 Exclusively (Baseline and CEbUTAl)  0 of 520  184 of 704 (26.1%) 
 Correctly classified as NORMAL  791 of 800 (98.9%)  697 of 800 (87.1%) 
 Both (Baseline and CEbUTAl)  697 of 791 (88.2%)  697 of 697 (100%)  
 Exclusively (Baseline and CEbUTAl)  94 of 791 (11.8%)  0 of 697  
 Estimated miss rate  280 of 800 (35%)  96 of 800 (12%)  
 Estimated overcall rate  9 of 800 (1.1%)  103 of 800 (12.8%) 

ig. 9. 𝛶 , 𝑆𝑒, and 𝑆𝑝 for SqueezeNet 1.0 and InceptionV3 models using data 
ugmentation (DA) using baseline and after applying CEbUTAl for the task of ICH 
lassification.

ig. 10. 𝛶 , 𝑆𝑒, and 𝑆𝑝 using UQ methods Deep Ensembles (left) and Ensembled MCDO 
right). Deep Ensembles utilized the five models discussed in this work (listed also in 
able  3). Ensembled MCDO was computed using the ResNet34 model. Note that the 
ask here was ICH classification.
m

7 
gainst several iterations of MCDO, implemented with dropout rates 
f 0.01, 0.05, 0.1, 0.2, and 0.3. The ensembled MCDO method aver-
ged the predictions from these models, whereas the deep ensembles 
nvolved five models that were trained a priori.

.4. Comparison with balanced datasets

CEbUTAl was also evaluated with an InceptionV3 model trained for 
 balanced subset of the ICH dataset, containing 25,000 images per 
lass. The validation and test splits remained the same as illustrated 
n Table  1. The results of this experiment were tabulated in Table  6.

.5. Time complexity analysis

While CEbUTAl addresses explainability and improves classification 
erformance, it is also important to highlight its time efficiency and 
inimal computational overhead. Table  7 provides the run time taken 
or testing and the additional time introduced by each step in CEbUTAl 
or the CTS detection task.

. Discussion

Class imbalance in datasets biases the model predictions and fa-
ors the majority class, thereby reducing trustworthiness. Additionally, 
eep learning (DL) models are highly complex, and associated with a 
‘black-box’’ analogy. Prior approaches have used explainability to un-
erstand a model’s decision-making. This study proposed ‘‘CEbUTAl’’: 
 Confidence and Entropy-based Uncertainty Thresholding Algorithm, 
mplemented at inference time, addressing the issue of class imbal-
nce and improves explainability. Detailed evaluation including the 
eneralizability of CEbUTAl with state-of-the-art (SOTA) methods was 
onducted in this study for class imbalance mitigation and uncertainty 
uantification (UQ). This study included investigations of the generaliz-
bility by observing CEbUTAl’s performance across (i) different models: 
queezeNet 1.0, ResNet34, DenseNet201, MobileNetV2, InceptionV3, 
nd ConvNeXt-small; (ii) different loss functions: Cross-Entropy and 
ocal loss; and (iii) different tasks: intracranial hemorrhage (ICH) 
etection, breast cancer detection (BCD), optical coherence tomogra-
hy (OCT) analysis, carpal tunnel syndrome (CTS), and skin lesion 
lassification (SLC). From Table  3, one can observe that when tested 
ith six different DL models for classification, CEbUTAl improves the 
verall accuracy as high as ∼ 16% and increases the sensitivity and 
1-score. Fig.  7 presents the results using an alternate loss function, 
emonstrating similar improvements in accuracy and sensitivity. Fur-
hermore, the evaluation of CEbUTAl’s performance across different 
asks improved accuracy, as illustrated in Fig.  8 and Table  5. Overall, 
he accuracies achieved using CEbUTAl for ICH detection, OCT analysis, 
CD, CTS detection, and multi-class SLC increased to 84%, 94%, 73%, 
1%, and 63% respectively. The results indicate that the developed 
pproach is agnostic to the model, loss function, and task and is 
herefore generalizable to a wide range of classification tasks.
Subsequently, the CEbUTAl performance was compared with SOTA 
ethods for class imbalance mitigation such as focal loss and data 
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Table 5
Evaluation metrics for the multi-class SLC task using ResNet34 baseline and after applying CEbUTAl.
 Class Baseline CEbUTAl

 Sensitivity Specificity F1-Score Accuracy Sensitivity Specificity F1-Score Accuracy  
 Cancerous Lesions 0.5833 0.9455 0.6679 0.8550 0.6967 0.9122 0.7109 0.8583 (0.3%)  
 Melanocytic nevi 0.1633 0.9644 0.2572 0.7642 0.5433 0.8889 0.5778 0.8017 (3.8%)  
 Benign Lesions 0.3767 0.8678 0.4248 0.7450 0.6167 0.7767 0.5395 0.7367  
 Vascular Lesions 0.9467 0.5789 0.5898 0.6708 0.6533 0.9267 0.6978 0.8583 (18.8%) 
Table 6
Evaluation metrics for InceptionV3 trained on a balanced ICH dataset with and without 
application of proposed CEbUTAl.
 Model Sensitivity Specificity F1-Score Accuracy 
 InceptionV3 Baseline 0.9537 0.9212 0.9385 0.9375  
 InceptionV3 with CEbUTAl 0.9975 0.7650 0.8936 0.8813  

Table 7
Runtime analysis for each step of proposed CEbUTAl applied for the ResNet34 model 
in CTS detection.
 Task Time  
 Testing (including test-data loading and
classification report generation)

6.38 s  

 Testing on validation set (for obtaining
predictions for thresholds)

2.77 s  

 Entropy computation for test and validation
set (the right predictions from validation)

8.56 ms 

 Uncertainty computation 4.85 ms 
 Confidence computation 2.32 ms 
 Computing threshold 1.65 ms 
 Changing model prediction based on
threshold

2.72 ms 

augmentation. The results of the comparative study are shown in Fig. 
9, illustrating that CEbUTAl outperforms other techniques for any 
model. This plot reveals that CEbUTAl outperforms focal loss by ∼ 5%. 
While the model showed improvements with data augmentation, it was 
limited by data variability, which is challenging to address in class-
imbalance scenarios. This study included an investigation of comparing 
CEbUTAl with the widely used UQ methods: Monte Carlo Dropout 
(MCDO), deep ensembles, and ensembled MCDO. The results of the 
comparative study of the accuracy, sensitivity, and specificity are pre-
sented in the bar chart in Fig.  10. The results demonstrate that CEbUTAl 
provides increased accuracy (∼ 25% compared with ensemble MCDO) 
and sensitivity compared with all other UQ approaches. Although these 
methods improve robustness and uncertainty estimation, they do not 
inherently correct the model bias, leading to suboptimal performance 
in cases of class imbalance. By contrast, CEbUTAl specifically addresses 
and corrects these biases, enabling it to achieve accurate predictions 
and explainability. In the absence of a class imbalance, an InceptionV3 
model trained on 50,000 images produced an accuracy of 94%. The ap-
plication of CEbUTAl minimally reduces the accuracy to 88%. However, 
a notable observation is the steep decline in false negatives, which is 
emphasized by the increase in sensitivity tabulated in Table  6. More 
importantly, the detailed analysis presented in Table  4 for the ICH 
task highlights that the miss rate for ICH detection was improved by 
23% compared to the baseline. Minimizing miss rates in AI models is 
essential for advancing their reliability and clinical utility. Lower miss 
rates enhance patient outcomes by enabling earlier and more reliable 
detection of diseases. Reducing miss rates also supports healthcare 
efficiency by decreasing the need for repeat tests and accelerating 
clinical decision-making. Although the proposed approach results in an 
11.8% increase in overcall rate, this cautious strategy is appropriate in 
clinical settings where AI serves as an assistive and recommendatory 
tool, ensuring fewer true positive cases are overlooked. Such a balance 
between sensitivity and specificity aligns with current clinical AI imple-
mentations that prioritize patient safety by reducing missed diagnoses 
while managing acceptable false positive rates (Krupinski, 2000).
8 
This study included experiments to evaluate CEbUTAl’s perfor-
mance when the validation set was imbalanced. While the train and 
test split remained as described in Table  1, the validation set contained 
900 images for the normal class and 100 ICH positive images, reflecting 
real world imbalance. While the baseline ResNet34 model gave an 
accuracy of 79.31%, application of CEbUTAl increased it to 87.56% 
(balanced validation dataset results are presented in Table  3), signifying 
that CEbUTAl performs well in scenarios of imbalanced validation set. 
Note that ConvNeXt model result with imbalanced validation dataset 
was presented in the last row of Table  3. Studies were also conducted 
comparing CEbUTAl to other ways of obtaining thresholds such as 
the usage of isotonic regression, followed by thresholding from the 
precision–recall curve. However, this approach did not yield desirable 
results, leading to a decline in accuracy. Additionally, the runtime 
analysis of CEbUTAl, as outlined in Table  7, demonstrates minimal 
overhead—adding approximately 5 ms per image compared to the 
baseline.

Uncertainty-based corrections such as the proposed method are 
valuable for increasing the utility of DL models in medical image 
classification. CEbUTAl was demonstrated to address class imbalance, 
improve sensitivity, enhance explainability, and handle data variabil-
ity. The proposed method adapts to less represented class, balances 
precision and recall, and improves the overall accuracy, especially 
in imbalanced datasets. Its model-agnostic nature allows for versa-
tile applications across different architectures, complementing other 
techniques and has the capability of accounting for both aleatoric 
and epistemic uncertainty. Note that the proposed CEbUTAl is a post-
processing method, and approaches such as active learning that can 
perform uncertainty-based corrections can also provide a comprehen-
sive approach for improving model performance and reliability in 
medical imaging applications. In addition, the formulation of entropy-
based uncertainty as a loss function embedded in the training process 
helps in the development of uncertainty-aware frameworks that are 
more trustworthy and reliable in the clinical setting.

6. Conclusion

This study has introduced ‘‘CEbUTAl’’: a Confidence and Entropy-
based Uncertainty Thresholding Algorithm designed to adapt the model 
predictions by incorporating uncertainty and confidence. This algo-
rithm provides a robust method for correcting model predictions at 
inference time, simplifying implementation, and minimizing reliance 
on complex loss functions and hyperparameters. Experiments on clini-
cal problems and results demonstrate (i) the generalizability of CEbU-
TAl, (ii) performance improvements, and (iii) the explainability of AI 
systems, thereby increasing the trustworthiness of model predictions. 
Integration of entropy-based uncertainty with confidence contributes 
to reducing false negatives and improves the overall accuracy of model 
predictions. Furthermore, compared to state-of-the-art (SOTA) meth-
ods used for explainability and class imbalance mitigation, CEbUTAl 
demonstrated superior performance. The model, loss function, and 
task-agnostic nature make CEbUTAl versatile and easily adaptable, 
making it a valuable tool for a wide range of AI applications, including 
image classification, segmentation, natural language processing, and 
reinforcement learning. The code utilized to generate the results in 
this study has been provided here: https://github.com/Joel-Jeffrey/
CEbUTAl.

https://github.com/Joel-Jeffrey/CEbUTAl
https://github.com/Joel-Jeffrey/CEbUTAl
https://github.com/Joel-Jeffrey/CEbUTAl
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