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ABSTRACT

The major challenge faced by artificial intelligence (AI) models for medical image analysis is the class
imbalance of training data and limited explainability. This study introduces a Confidence and Entropy-based
Uncertainty Thresholding Algorithm (CEbUTAL), which is a novel post-processing method, designed to enhance
both model performance and explainability. CEbUTAI modifies model predictions during inference, based on
uncertainty and confidence measures, to improve classification in scenarios with class imbalance. CEbUTAI’s
inference-time correction addresses explainability, while simultaneously improving performance, contrary
to the prevailing notion that explainability necessitates a compromise in performance. The algorithm was
evaluated across five medical imaging tasks: intracranial hemorrhage detection, optical coherence tomography
analysis, breast cancer detection, carpal tunnel syndrome detection, and multi-class skin lesion classification.
Results demonstrate that CEbUTAI improves accuracy by approximately 5% and increases sensitivity across
multiple deep learning architectures, loss functions, and tasks. Comparative studies indicate that CEbUTAL
outperforms state-of-the-art methods in addressing class imbalance and quantifying uncertainty. The model-
agnostic, task-agnostic and post-processing nature of CEbUTAl makes it appealing for enhancing both
performance and trustworthiness in medical image analysis. This study provides a generalizable approach to
mitigate biases arising from class imbalance, while improving the explainability of AI models, thus increasing
their utility in clinical practice.

1. Introduction

Medical imaging techniques have revolutionized modern medicine,
enabling the visualization of internal structures and functions. These
techniques are instrumental in early disease detection and contribute
to improved patient outcomes (Panayides et al., 2020; Kalemaki et al.,
2020). However, the medical image analysis (MIA) workflow relies
heavily on human practitioners, who are constrained by subjectivity
and fatigue (Alexander et al., 2022). While machine learning (ML)
has aided decision making in MIA, it has a strong reliance on manual
feature selection, which is a significant limitation (Jahangir et al.,
2024). Advancements in information and communication technologies
have radically increased data availability and computational capac-
ity, paving the way for the adoption of deep learning (DL) mod-
els in MIA (Lee et al., 2017). Deep learning has shown promising
results in several MIA applications (Leibig et al., 2017; Hamedani-
KarAzmoudehFar et al., 2023), with convolutional neural networks,
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originally inspired by LeNet (LeCun et al., 1998) and AlexNet
(Krizhevsky et al., 2012) architectures, demonstrating remarkable per-
formance in the binary classification of breast cancer tumors (Bal-
asubramaniam et al., 2023; Titoriya and Sachdeva, 2019). Current
DL models have also surpassed human accuracy (Kim et al., 2019;
McKinney et al., 2020; Igbal et al., 2021), fueling excitement regarding
the potential of artificial intelligence (AI) in MIA. This is reflected
in the exponential increase of Al-based MIA investigations (Tang,
2019). Although DL models are mathematical frameworks (Higham and
Higham, 2019), they are highly complex (Zhang et al., 2021) and lack
decomposability (Lipton, 2018), operating as “black boxes” that lack
insight into the underlying mechanisms (Muhammad and Bendechache,
2024). This complexity, coupled with the scarcity of data in positive
disease cases (Yu et al., 2022), highlights the need for further research
and development.
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TRAINED DEEP UNCERTAINTY &
(b) > LEARNING - PREDICTION > CONFIDENCE BASED
MODEL CORRECTION

Fig. 1. Overview of deep learning (DL)-based approaches for medical image clas-
sification. (a) Conventional methods where a trained and validated DL model is
employed to generate prediction. (b) The proposed approach, incorporating entropy-
based uncertainty and confidence into the framework.

As Al is integrated into several areas, including healthcare, MIA, and
clinical decision-making processes, the “black box” effect of DL models,
particularly in critical clinical settings has triggered increased interest
in eXplainable AI (XAI) (Gerlings et al., 2021; Dwivedi et al., 2023).
Visual tools such as class activation maps (CAM), Grad-CAM (Panwar
et al., 2020), and Grad-CAM++ (Chattopadhay et al., 2018) have been
used to improve the explainability of Al. However, the reliability of
these maps was questionable, emphasizing the need for caution when
using them (Zhang et al., 2022). Alternatively, “non-visual” methods
such as uncertainty evaluation (Abdar et al.,, 2021; Aratjo et al.,
2020; Dolezal et al., 2022; Angelopoulos et al., 2023; Huang et al.,
2024; Rufibach, 2010) and uncertainty quantification (UQ) (Leibig
et al.,, 2017; Hamedani-KarAzmoudehFar et al., 2023; Huang et al.,
2024; Kurz et al., 2022; Lambert et al., 2024; Ayhan et al., 2020;
Asgharnezhad et al., 2022; Gal and Ghahramani, 2016; Zou et al., 2023;
Lakshminarayanan et al., 2017; Kimura, 2021) have been investigated
to act as tools for explainability. While uncertainty evaluation estimates
the uncertainty of model predictions (Abdar et al., 2021; Aratjo et al.,
2020; Dolezal et al., 2022; Angelopoulos et al., 2023; Huang et al.,
2024; Rufibach, 2010), it offers only explainability without improving
performance (Kendall and Gal, 2017). Conversely, UQ methods pos-
sess inherent characteristics that can enhance model confidence in its
prediction. Existing UQ methods are contingent on the trained model
architecture, producing an immutable framework that is not generaliz-
able (Lahoti et al., 2023, 2021). Moreover, attempts to improve model
explainability have resulted in a decline in performance (Wanner et al.,
2021).

This work proposes “CEbUTAI” (Confidence- and Entropy-based Un-
certainty Thresholding Algorithm), a post-hoc correction mechanism,
that adaptively refines model predictions at inference time, based on
UQ. CEbUTAL is specifically designed to address challenges posed by
severe class imbalance, a prevalent issue in medical imaging datasets,
which can lead to biased learning and suboptimal generalization. A
high-level comparison of existing DL-based approaches with CEbU-
TAl is illustrated in Fig. 1. This study has two primary goals: (i) to
enhance the model’s explainability, and (ii) to maintain or improve
the performance of the current model. The efficacy of CEbUTAI was
evaluated across five medical image classification tasks: (i) intracra-
nial hemorrhage (ICH) detection, (ii) optical coherence tomography
(OCT) analysis, (iii) breast cancer detection (BCD), (iv) carpal tunnel
syndrome (CTS) detection, and (v) multi-class skin lesion classification
(SLC). Subsequently, to demonstrate its independence from model ar-
chitectures and loss functions, CEbUTAI was evaluated by testing it
across multiple models and loss functions. The key contributions of this
study are as follows.

» Elaboration of the proposed CEbUTAL for correcting model predic-
tions during post-processing, when the model has been trained on
imbalanced data.

+ Evaluation of the proposed CEbUTAIl’s model-agnostic charac-
teristics across multiple DL models, including SqueezeNet 1.0,
ResNet34, MobileNetV2, DenseNet201, InceptionV3, and
ConvNeXt-small.
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Investigation into the proposed CEbUTAI’s loss-agnostic behavior
in classification tasks, comparing it with cross-entropy loss and
focal loss.

Analysis of the proposed CEbUTALI’s task-agnostic performance,
applying it to tasks with ICH, OCT, BCD, CTS, and multi-class SLC
datasets.

Comparison with common strategies for addressing class imbal-
ance, such as (i) data augmentation and (ii) focal loss.

Contrast of the proposed CEbUTAI with state-of-the-art (SOTA)
methods for enhancing explainability, including (i) ensemble
models, (ii) Monte Carlo Dropout (MCDO), and (iii) ensemble
MCDO.

CEbUTAI addresses the key challenge of class imbalance in DL
and proposes a methodology based on uncertainty measures to iden-
tify and adjust less reliable predictions, thereby improving DL model
performance. By correcting outputs using interpretable metrics, such
as confidence and entropy, CEbUTAI enhances model explainability
and trustworthiness. As a post-processing correction, CEbUTAI im-
proves accuracy without retraining, which is particularly beneficial for
imbalanced datasets. Model-agnostic, loss-function-agnostic and task-
agnostic correction methods, such as the proposed CEbUTAI, offer
broader applicability across various DL architectures and tasks. In
medical imaging, correcting model outputs to account for uncertainty
is essential for responsible clinical decision-making and Al tool adop-
tion. Output correction also helps address biases in the original model
predictions, especially when these models are trained on imbalanced
data, ensuring more equitable and reliable results.

2. Related work

This section reviews recent approaches proposed to address class
imbalance and uncertainty in model predictions. It is divided into three
subsections: Section 2.1 class imbalance, Section 2.2 explainable Al,
and Section 2.3 uncertainty quantification.

2.1. Class imbalance

Class imbalance, in which the abnormal or malignant class is signif-
icantly underrepresented compared with the normal class, is a perva-
sive challenge in medical imaging datasets. This imbalance adversely
impacts the performance of Al algorithms, often manifesting as an
increased rate of false negatives during classification. To mitigate these
challenges, several methodological approaches have been proposed.
Data augmentation techniques (Igbal et al., 2021, 2025) are commonly
employed to synthetically oversample minority classes, thereby improv-
ing their representation in a training set. Additionally, loss function
modifications, such as focal loss (Ross and Dollar, 2017; Tran et al.,
2019) have been introduced to dynamically adjust the contribution of
hard-to-classify examples, effectively reweighting the loss to emphasize
minority class instances, and improving model sensitivity.

2.2. Explainable AT

Explainability in MIA has traditionally centered around visual ex-
planations, with saliency maps emerging as a popular tool (Itti et al.,
2002). These maps highlight the regions of an image that influence
the model’s decision-making process, offering valuable insights into
the areas of interest for a given prediction (Lundberg and Lee, 2017;
Yosinski et al., 2015). However, saliency maps are vulnerable to per-
turbations (Tomsett et al., 2020) and adversarial attacks (Ghorbani
et al., 2019), which distort their interpretations. Furthermore, previous
studies (Adebayo et al., 2018) have shown that saliency maps are
independent of the training data and trained model, thus making them
unreliable.
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These limitations have spurred interest in “non-visual” methods for
XAI, which offer a more robust, although less intuitive, approach to
explainability (Borys et al.,, 2023). A popular non-visual method to
address explainability is the SHapley Additive exPlanations (SHAP),
which generates scores for each feature, indicating its impact on
the output. SHAP also ensures feature consistency and model stabil-
ity (Meng et al., 2020). However, it is computationally complex and not
applicable to all models (Van den Broeck et al., 2022). Furthermore,
although perturbations to the input and approximate explanations
contribute to explainability in SHAP, this approach is inconsistent and
does not fully capture the behavior of the model’s predictions (Slack
et al., 2020).

Uncertainty evaluation is a key nonvisual XAI technique for know-
ing the model’s confidence level, which is essential for assessing trust-
worthiness. A recent review (Huang et al., 2024) of uncertainty eval-
uation techniques highlighted the following widely used methods: (i)
calibration metrics, (ii) Brier score, (iii) predictive entropy, and (iv)
predictive variance. Calibration metrics (Huang et al., 2024; Kim et al.,
2016) quantify the alignment between a model’s predictions and true
outcomes by assessing how closely the predicted probabilities cor-
respond to the actual results (Wang et al.,, 2021). Conversely, the
Brier score (Brier, 1950) is a comprehensive measure that evaluates
both the calibration and accuracy of the probabilistic predictions.
However, these methods require access to the ground truth, which
is only available during testing and not in real-world deployment
scenarios (Niculescu-Mizil and Caruana, 2005; Jewson, 2004; Assel
et al., 2017). Predictive entropy (Malinin and Gales, 2018; Namdari
and Li, 2019) measures the uncertainty linked to class probabilities,
whereas predictive variance (Cawley et al., 2007) indicates the spread
of the predictions. These tools that quantify uncertainty are not used to
facilitate prediction correction, even though there are limited studies
that have used this for test time adaptation (Ravishankar et al., 2025).
Despite their potential, these methods have limited clinical adoption, as
DL models rarely integrate uncertainty estimates (Gawlikowski et al.,
2023).

2.3. Uncertainty quantification (UQ)

Uncertainty in DL models reflects a lack of confidence in their
predictions stemming from various sources. Uncertainty is typically cat-
egorized into aleatoric and epistemic uncertainty. Aleatoric uncertainty
arises from the noise and variability inherent in the data, whereas epis-
temic uncertainty results from the model’s limitations and insufficient
knowledge (Faghani et al., 2023). Among the numerous UQ methods,
Monte Carlo Dropout (MCDO) and deep ensembles are popular for
correcting uncertainty (Kurz et al., 2022; Lambert et al., 2024). These
methods improve predictions by either introducing stochasticity during
inference, or leveraging model diversity (Leibig et al., 2017; Hamedani-
KarAzmoudehFar et al., 2023; Huang et al., 2024; Asgharnezhad et al.,
2022; Gal and Ghahramani, 2016; Zou et al., 2023; Lakshminarayanan
et al., 2017; Kimura, 2021).

2.3.1. Monte Carlo dropout

Monte Carlo dropout (MCDO) is an effective implementation of
dropout during both training and inference. During inference, multiple
forward passes are performed for a single batch, thereby quantifying
the uncertainty (Gal and Ghahramani, 2016). MCDO is widely used for
UQ in medical images, with applications in segmentation (Zou et al.,
2023) and classification, particularly in diabetic retinopathy from fun-
dus images (Leibig et al., 2017) and BCD (Hamedani-KarAzmoudehFar
et al.,, 2023). However, MCDO is an approximation of Bayesian in-
ference in which prior knowledge affects the performance of the
model (Lakshminarayanan et al.,, 2017). Moreover, dropout is an in-
herent part of the model; therefore, MCDO cannot be model-agnostic
and does not operate in a post hoc manner, limiting its generalizability.
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(®)

Fig. 2. Examples of ICH, OCT, BCD, and CTS images: (a), (c), (e), and (g) represent
the positive/abnormal cases with arrows and masks highlighting regions of interest,
while images (b), (d), (f), and (h) depict the normal class.

(d)

Fig. 3. Examples of dermatoscopic images used in the multi-class SLC task, as part of
the DermaMNIST dataset (Yang et al., 2023). While (a) and (b) represent the cancerous
lesions and melanocytic nevi, (¢) and (d) represent benign and vascular lesions.

2.3.2. Deep ensembles

Deep ensembles leverage the weights of multiple DL models to
improve their explainability (Lakshminarayanan et al., 2017). Aggre-
gating predictions from different models improves the reliability of
the model predictions. Deep ensembles have demonstrated significant
performance in medical image classification tasks such as COVID19 de-
tection (Miiller et al., 2022) and Alzheimer’s disease (Sreelakshmi et al.,
2023). However, training multiple models is both time-consuming
and computationally expensive (Ayhan et al.,, 2020). Additionally,
determining the optimal hyperparameters is a heuristic and iterative
task (Mohammed and Kora, 2023). Deep ensembles, similar to MCDO,
are also not model agnostic and are not applied a posteriori, limiting
their applicability.

3. Methodology

This section describes proposed CEbUTAI development in two sub-
sections: Section 3.1 - the “Baseline Model Learning”, outlining the
steps pursued for model training; and Section 3.2 - the “Proposed
CEbUTAI approach”, detailing the algorithm’s ability to enhance the
model’s performance.

3.1. Baseline model learning

The baseline model learning phase centers around training different
neural network (NN) architectures to generate probabilities for each
class.

3.1.1. Datasets

The evaluation of CEbUTAI’s task-agnostic capabilities utilized four
open-source and one locally curated (CTS) dataset. Figs. 2 and 3
illustrate the visually distinctive features across the classification tasks
considered in this study.
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Fig. 4. Data flow for the classification of frames (images) into CTS positive or normal
from ultrasound videos of the median nerve at the wrist region, based on cross-sectional
area analysis.

Intra-cranial hemorrhage (ICH). Non-contrast computed tomography
(CT) images of the brain were obtained from the Radiological Society
of North America’s (RSNA) ICH detection challenge held in 2019 (Flan-
ders et al., 2020). The dataset consists of six classes: normal and five
hemorrhage subtypes - epidural, intraparenchymal, intraventricular,
subarachnoid, and subdural. In this study, all five hemorrhage subtypes
were considered as ICH positive class. The dataset comprised of ~
4,500,000 images from ~ 25,000 patients, with ~ 4,260,600 images in
the normal class. As part of preprocessing, images were converted to
the portable network graphics (PNG) format and uniformly resized to
512 x 512

Optical ~ coherence  tomography  (OCT). The UCSD  dataset
(Kermany et al., 2018) contains retinal cross-section images catego-
rized as: choroidal neovascularization (CNV), diabetic macular edema
(DME), drusen, and normal. For binary classification, the CNV and DME
were considered as severe class and drusen and normal as mild class.
This resulted in a data distribution of ~ 48,000 severe cases to ~ 59,000
mild cases. Images used were in PNG format and resized to 512 x 512

Breast cancer detection (BCD). The mammograms for BCD were
sourced from the RSNA Challenge 2023 (Carr et al., 2022). Since
most patients have images from both the mediolateral oblique and
craniocaudal views, the dataset was split at the patient level, resulting
in a severe class imbalance with ~ 53,000 normal cases and ~ 1200
malignant cases. The mammograms were standardized by converting
to PNG and resizing them to 512 x 512 dimension.

Carpal tunnel syndrome (CTS). To assess model generalizability to
real-world clinical data, we used a proprietary (locally curated) CTS
dataset (Gujarati et al., 2023) consisting of ultrasound (US) images col-
lected at Aster-CMI Hospital, Bangalore, India, under ethical approval
(Approval No. Aster/IEC/049/2020-21, Dated June 27, 2020). Written
informed consent was obtained from all participants. The detailed
description of the data is provided in Gujarati et al. (2023). US video
sweeps of the upper limb (from wrist to elbow) were acquired using
a Philips CX50 US machine. Frames from the wrist region were used
to classify CTS, where patients were labeled CTS-positive if both their
average cross-sectional area (CSA) and per-frame CSA of the Median
Nerve (MN) exceeded 12 mm? and normal if both were below 12 mm?
(as shown in Fig. 4). The dataset considered for this task, comprised
13 CTS positive patients, contributing to 500 frames, and 73 normal
patients, accounting for 2803 frames.

Multi-class skin lesion classification (SLC). For multi-class classifi-
cation, dermatoscopic images were obtained from the DermaMNIST
dataset (Yang et al., 2023), a subset of the MedMNIST2D collection
of medical images. The dataset comprises seven distinct skin lesion
classes, which can be broadly grouped into four major diagnostic
categories: (i) cancerous lesions - actinic keratoses and intraepithelial
carcinoma (akiec), basal cell carcinoma (bcc), and melanoma (mel), (ii)
melanocytic nevi (nv), (iii) benign lesions - dermatofibroma (df) and
benign keratosis-like lesions (bkl), and (iv) vascular lesions (vasc). Class
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Table 1
Number of images considered for training, validation, and testing (split at patient level)
for the tasks (ICH, OCT, BCD, CTS, and multi-class SLC).

Task Training Validation Testing
ICH ICH+ 2500 500 800
NORMAL 47500 500 800
oCT SEVERE 10000 1000 2000
MILD 40000 1000 500
BCD MALIGNANT 881 76 200
NORMAL 40473 3369 25
TS CTS+ 260 120 120
NORMAL 2563 120 120
CANCEROUS 400 250 300
Multi-class NEVI 400 250 300
SLC BENIGN 400 250 300
VASCULAR 6000 250 300

imbalance was prominent with 983 images for cancerous lesions, 1113
for nv, 1214 for benign lesions, and 6705 for vascular lesions.

To ensure robust generalization, datasets were split patient-wise
into training, validation, and test subsets, thereby preventing data
leakage. Since the ICH, OCT, BCD, and CTS datasets were grayscale, the
first convolutional layer of the model was adapted accordingly; no such
change was needed for the multi-class SLC dataset, which contained
RGB images. Each training dataset retained its natural class imbalance
to reflect real-world conditions. In contrast to the training datasets,
the validation datasets were curated to be perfectly balanced to ensure
the selection of the best-performing model across all classes. The data
distribution used for the training (D,,,;,), validation (D,,), and testing
(D,.;) datasets for each task has been listed in Table 1.

As is common in real-world medical datasets, the healthy or normal
class constitutes the majority and is represented by C,,,;, whereas the
abnormal or severe cases, often rarer and clinically significant, are
grouped under C,;,. The symbols x, y, and » denote images, labels,
and the number of classes, respectively.

3.1.2. Experimentation
The training set of images was subjected to random transformations
i.e. rotation, flipping, zooming, and the addition of Gaussian noise to
result in a robust trained model. A consistent batch size of eight, with
two workers, was used throughout the process. The model was trained
using cross-entropy loss with the “Adam” optimizer with a learning rate
of 1e-4 for 100 epochs. The experiments were conducted on a system
with an NVIDIA RTX A5000 GPU (Compute Capability 8.6, 8192 CUDA
cores, 24 GB GDDR6 VRAM). Validation on D, is performed after each
epoch, and the model with the best validation loss is saved. The saved
model (M) is applied to D,,;, and the softmax function is performed
to obtain the probabilities of each class, providing the predictions. For
each image x and i € [0,n], the softmax score (p;) for the ith class
is obtained from the predicted raw scores (z; = M(x) : i € [0,n]) as

follows:
e

Y€
3.2. Proposed CEbUTAL approach

b= (€D)]

The baseline model M, is typically biased towards C,,,; in instances
of class imbalance, resulting in inaccurate classifications. Furthermore,
model bias produces a higher number of false negatives, which is a
major challenge in medical diagnoses (Petticrew et al., 2001). Prior
studies have utilized the entropy of softmax probabilities to evaluate
uncertainty (Hamedani-KarAzmoudehFar et al.,, 2023; Asgharnezhad
et al., 2022). Similarly, this study computes entropy to measure the un-
certainty in the predictions. Once entropy is computed, the uncertainty
estimates are obtained from the predicted entropy. Subsequently, the
confidence score was computed from the probabilities. Finally, CEbU-
TAl utilizes the computed confidence scores and uncertainty estimates
to refine the model’s predictions during inference time.
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Fig. 5. Design of proposed CEbUTAL (a) Uncertainty estimate and confidence score computation from softmax output. (b) Computation of threshold from D,,. (c) Correction by

CEbUTAI during inference (testing).

3.2.1. Predictive entropy
The level of uncertainty in each image’s prediction by the model is
quantified by the predictive entropy, denoted as H (Namdari and Li,
2019; Ovadia et al., 2019), and is computed as follows:
n
H =- ) (p; x1log(p;) )

i=1

In Eq. (2) log denotes logarithm to the base 2.

3.2.2. Uncertainty estimation

A higher H indicates greater uncertainty, whereas a lower H indi-
cates M is confident about its prediction (Malinin and Gales, 2018).
For binary classification, maximum H occurs when the classes are
equiprobable (p; = 0.5), and minimum H when the model is absolutely
sure of its prediction (p, = 0 and p; = 1 or vice-versa). A min-max
normalization on H was performed using the maximum and minimum
entropy to deduce the uncertainty measure (U) for each image, as
illustrated below:

H-H,, 2 (p; - log(p))

U= = 3
H,. — Hpin 1og(0.5) 3)

max

3.2.3. Confidence score
The confidence score (C.S) for each sample is a measure of the
certainty of the model in its prediction, which can be given by

CS = max p; ()]

1<i<n

Algorithm 1 Major steps of proposed CEbUTAL

Require: trained model(M), datasets D, Dy :
class (C,,;), minority class (C,;,)

1: Sune = 0,0con =0, Xcoun =0

2: for j=1to N,y do

Nyars Nyoss lengths, n classes : majority

3 if M(xj) = Cpq; do
4 Hy=—- 3L (M(); - In(M();)
5: U; = H; x 100
6: Ounet+=U;
7: Cj:argmaxM(j)
8 Oeont =C;
9: Xeount+ =1
10:  end if
11: end for
. — _Sunc — _%con
12: Fune = m’%"“ = Xcount

13: for k=1 to Ny do

14: Hy ==X (M(k); - In(M(k);))

15: U = Hy x 100

16: C) = argmax M (k)

17: if Up > 1y » Cp <Tepp and M(k) = Cpyy do

18: M(k) = Cpip
19:  end if
20: end for

3.2.4. Thresholding

In this study, D,,, did not have a class imbalance, and the computed
uncertainty and confidence metrics were used to establish the thresh-
olds. For each x; € D,,, : j € [0, N] where N is the number of samples
in D, and y; denotes the prediction of M(x;), the average uncertainty
M and average confidence u,,, was computed as follows:

1
Heon = N 2 CSj (5)
X;€Dyq
1
Hune = N Z Uj ©)
ijDual

When N = N, where N represents the number of samples with
9; = C,,j, the uncertainty threshold (z,,.) and confidence thresh-
old (z,,,) are equal to average uncertainty u,, and confidence u,,,
respectively. The average uncertainty and confidence measures from
the validation dataset, y,,. and ju,,,, establish concrete independence
of the test data thus eliminating the necessity of heuristics and data
leakage (Dolezal et al., 2022; Syrykh et al., 2020; Senousy et al.,
2021). Finally, predictions with high uncertainty and low confidence
were converted into C,,;,. A schematic representation of CEbUTAI was
presented in Fig. 5. Subsequently, the steps of CEbUTALI are described in
Algorithm 1. In the multi-class classification setting, decision thresholds
were derived using the validation set following same procedure as
binary classification task. Specifically, the threshold for uncertainty-
based correction was computed across all correctly classified validation
samples that did not belong to C,,;. During inference, if the model
prediction is majority class (C,,;) then these predictions with high
uncertainty and low confidence were changed to the class with the
second-highest predicted probability.

3.2.5. Evaluation metrics

The performance of models was evaluated using the following met-
rics: precision (P), sensitivity (S,) or true positive rate, specificity
(S,) or true negative rate, Fl-score (F,), and accuracy (Y) in binary
classification based on the counts of true positives (7" P), false positives
(FP), false negatives (FN), and true negatives (T'N). Fig. 6 picto-
rially represents CEbUTAL’s ability to correct the model’s predictions
during inference time. CEbUTAI decreases FN by converting it to
T P. However, because of the bias in the dataset, a higher FP was
observed, which requires additional effort from the clinician to correct
it manually.

4. Results
4.1. Evaluating agnostics of CEbUTAL
4.1.1. Model agnostic evaluation

The evaluation metrics were computed for six trained models: (i)
SqueezeNet 1.0, (ii) ResNet34, (iii) DenseNet201, (iv) MobileNetV2,
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Fig. 6. (a) Confusion matrix obtained from the InceptionV3 model for the ICH classification task (Section 3.1). (b) Confusion matrix obtained after implementing CEbUTAI

(Section 3.2).

Table 2
Comparison of deep learning (DL) models utilized in this study in terms of parameters
and model size.

Model Parameters (in million) Model size (in MB)
SqueezeNet 1.0 0.73 2.79

ResNet34 21.28 81.31
DenseNet201 18.09 70.34
MobileNetV2 2.23 8.74

InceptionV3 21.79 83.45
ConvNeXt-small 49.45 188.77

08

04

0z

* SqueezeNet ResNet34 DenseNet201 MobileNetV2 InceptionV3

Model
Bl Increase in Sensitivity
[ Final Specificity
Bl Decrease in Specificity

[ Accuracy
[ Increase in Accuracy
[ Sensitivity

Fig. 7. Y, S,, and S, for models using baseline and after CEbUTAL Note that the
loss function used in this experiment is focal loss, and the task performed is ICH
classification.

(v) InceptionV3, and (vi) ConvNeXt-small on D,,,. The architectural
details, including the number of parameters and storage requirements
for each model, are summarized in Table 2. ConvNeXt (Liu et al., 2022)
was utilized in this study to showcase CEbUTAIl’s compatibility with
hybrid models, in addition to CNN-based models. All trained models
were processed with CEbUTAI during the inference time for evaluation.
The computed P, S,, S,, F;, and Y for the baseline approach and
the CEbUTALI approach have been presented in Table 3. The baseline
performance is poor in ConvNeXt, due to a higher number of parame-
ters, optimization dynamics, and loss minimization favoring C,,,;. This
observation aligns with recent studies suggesting that transformer mod-
els may overfit to frequency-based priors in class imbalance (Kunstner
et al., 2024; Xu et al., 2023; Li et al., 2023). A detailed comparison
of model predictions using the baseline approach and after applying
CEbUTAI for the ICH task has been presented in Table 4, highlighting
shifts in classification accuracy, estimated miss rate, and overcall rate
across ICH and normal cases. For the loss- and task-agnostic studies
(BCD and OCT), SqueezeNet 1.0 and InceptionV3 models were em-
ployed, while ResNet34 was utilized for the CTS and multi-class SLC
tasks.

4.1.2. Loss agnostic evaluation
Cross entropy and focal loss (Ross and Dollar, 2017) are common
loss functions for classification tasks (Tran et al., 2019). The parameters
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Fig. 8. Accuracy of models SqueezeNet 1.0 (A), InceptionV3 (B), and ResNet34 (C)
for OCT analysis, BCD, and CTS detection using baseline and after applying CEbUTAL
Note that Tables 3 and 5 provide the results for ICH classification and multi-class SLC.

a, v, and reduction for focal loss are set to default values of 0.25, 2, and
“mean”, respectively. The evaluation metrics computed using baseline
and after CEbUTAL for all models trained with cross-entropy loss and
focal loss were tabulated in Table 3 and Fig. 7 respectively.

4.1.3. Task agnostic evaluation

In addition to ICH, the proposed approach was evaluated on binary
classification tasks—including BCD, OCT, and CTS as well as on multi-
class classification using dermatoscopic images from the multi-class SLC
dataset. Notably, CTS is a clinical and proprietary dataset, included to
demonstrate CEbUTAL’s performance on real-world clinical data. While
Fig. 8 plots the accuracy of the model using the baseline approach
and after the application of CEbUTAI for OCT analysis, BCD, and CTS
detection, Table 5 illustrates the improvement in multi-class SLC.

4.2. Comparison with SOTA data imbalance mitigation

State-of-the-art (SOTA) methods for class imbalance mitigation in-
clude data augmentation (Yang et al., 2022) and focal loss (Lin et al.,
2017). The data augmentation strategy involves implementing rota-
tions, flipping, brightness adjustments, contrast enhancements, hue
and saturation modifications, Gaussian blur, and affine transforma-
tions. CEbUTAI achieved SOTA performance in comparison with mod-
els trained with data augmentation and focal loss, and the results have
been presented in Fig. 9.

4.3. Comparison with SOTA UQ methods

CEbUTAIl was evaluated against several state-of-the-art (SOTA)
methods, including MCDO, deep ensembles of trained models, and
ensemble MCDO. As shown in Fig. 10, the proposed approach demon-
strates superior performance compared to these methods in terms of
UQ and correction. CEbUTAI consistently demonstrated superior results
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Table 3
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Model agnostic evaluation metrics for the ICH task using baseline and after application of CEbUTAI. Dataset details are provided in Table 1.
While the ConvNeXt model was trained on the same training set, the validation set was also imbalanced with ICH positive containing 100 and
normal containing 900 sample images, to showcase CEbUTAl’s generalizability. The metric precision presented here is an average of both ICH

positive and normal classes.

Model Baseline CEbUTAI
Precision Sensitivity Specificity F1-Score Accuracy Precision Sensitivity Specificity F1-Score Accuracy

SqueezeNet 1.0 0.8586 0.6388 0.9900 0.7748  0.8144 0.8658 0.8762 0.8550 0.8670  0.8656 (5.1%)
ResNet34 0.8608 0.6500 0.9888 0.7825  0.8194 0.8756 0.8800 0.8712 0.8762  0.8756 (5.6%)
DenseNet201 0.8605 0.6887 0.9738 0.8032 0.8313 0.8662 0.8862 0.8450 0.8683 0.8656 (3.4%)
MobileNetV2 0.8748 0.6875 0.9925 0.8112  0.8400 0.8872 0.9000 0.8738 0.8883  0.8869 (4.7%)
InceptionV3 0.8658 0.6675 0.9888 0.7952  0.8281 0.8820 0.8725 0.8912 0.8808  0.8819 (5.4%)
ConvNeXt-small 0.2500 0.0000 1.0000 0.0000 0.5000 0.6962 0.4787 0.8575 0.5906 0.6681 (16.8%)

Table 4

Quantitative comparison of ResNet34 predictions using baseline approach and after
applying CEbUTAI for the ICH task, highlighting significant reductions in miss rate
and improvements in correct ICH classification.

CEbUTAI

704 of 800 (88%)
520 of 704 (73.9%)
184 of 704 (26.1%)

697 of 800 (87.1%)
697 of 697 (100%)
0 of 697

96 of 800 (12%)
103 of 800 (12.8%)

Baseline

520 of 800 (65%)
520 of 520 (100%)
0 of 520

791 of 800 (98.9%)
697 of 791 (88.2%)
94 of 791 (11.8%)

280 of 800 (35%)
9 of 800 (1.1%)

Criteria

Correctly classified as ICH
Both (Baseline and CEbUTAI)
Exclusively (Baseline and CEbUTAI)

Correctly classified as NORMAL
Both (Baseline and CEbUTAI)
Exclusively (Baseline and CEbUTAI)

Estimated miss rate
Estimated overcall rate

DA - SqueezeNet DA - InceptionV3

Model
Bl Increase in Sensitivity
[ Final Specificity
B Decrease in Specificity

1 Accuracy
[ Increase in Accuracy
[ Sensitivity

Fig. 9. Y, S,, and S, for SqueezeNet 1.0 and InceptionV3 models using data
augmentation (DA) using baseline and after applying CEbUTAI for the task of ICH
classification.

Deep Ensembles Ensembled MCDO

Model

1 Accuracy [ Sensitivity [ Specificity

Fig. 10. Y, S,, and S, using UQ methods Deep Ensembles (left) and Ensembled MCDO
(right). Deep Ensembles utilized the five models discussed in this work (listed also in
Table 3). Ensembled MCDO was computed using the ResNet34 model. Note that the

task here was ICH classification.

against several iterations of MCDO, implemented with dropout rates
of 0.01, 0.05, 0.1, 0.2, and 0.3. The ensembled MCDO method aver-
aged the predictions from these models, whereas the deep ensembles
involved five models that were trained a priori.

4.4. Comparison with balanced datasets

CEbUTAI was also evaluated with an InceptionV3 model trained for
a balanced subset of the ICH dataset, containing 25,000 images per
class. The validation and test splits remained the same as illustrated
in Table 1. The results of this experiment were tabulated in Table 6.

4.5. Time complexity analysis

While CEbUTALI addresses explainability and improves classification
performance, it is also important to highlight its time efficiency and
minimal computational overhead. Table 7 provides the run time taken
for testing and the additional time introduced by each step in CEbUTAI
for the CTS detection task.

5. Discussion

Class imbalance in datasets biases the model predictions and fa-
vors the majority class, thereby reducing trustworthiness. Additionally,
deep learning (DL) models are highly complex, and associated with a
“black-box” analogy. Prior approaches have used explainability to un-
derstand a model’s decision-making. This study proposed “CEbUTAI”:
a Confidence and Entropy-based Uncertainty Thresholding Algorithm,
implemented at inference time, addressing the issue of class imbal-
ance and improves explainability. Detailed evaluation including the
generalizability of CEbUTAI with state-of-the-art (SOTA) methods was
conducted in this study for class imbalance mitigation and uncertainty
quantification (UQ). This study included investigations of the generaliz-
ability by observing CEbUTAL’s performance across (i) different models:
SqueezeNet 1.0, ResNet34, DenseNet201, MobileNetV2, InceptionV3,
and ConvNeXt-small; (ii) different loss functions: Cross-Entropy and
Focal loss; and (iii) different tasks: intracranial hemorrhage (ICH)
detection, breast cancer detection (BCD), optical coherence tomogra-
phy (OCT) analysis, carpal tunnel syndrome (CTS), and skin lesion
classification (SLC). From Table 3, one can observe that when tested
with six different DL models for classification, CEbUTAI improves the
overall accuracy as high as ~ 16% and increases the sensitivity and
Fl-score. Fig. 7 presents the results using an alternate loss function,
demonstrating similar improvements in accuracy and sensitivity. Fur-
thermore, the evaluation of CEbUTAl’s performance across different
tasks improved accuracy, as illustrated in Fig. 8 and Table 5. Overall,
the accuracies achieved using CEbUTAI for ICH detection, OCT analysis,
BCD, CTS detection, and multi-class SLC increased to 84%, 94%, 73%,
91%, and 63% respectively. The results indicate that the developed
approach is agnostic to the model, loss function, and task and is
therefore generalizable to a wide range of classification tasks.

Subsequently, the CEbUTALI performance was compared with SOTA
methods for class imbalance mitigation such as focal loss and data
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Table 5

Evaluation metrics for the multi-class SLC task using ResNet34 baseline and after applying CEbUTAL
Class Baseline CEbUTAI

Sensitivity Specificity F1-Score Accuracy Sensitivity Specificity F1-Score Accuracy

Cancerous Lesions 0.5833 0.9455 0.6679 0.8550 0.6967 0.9122 0.7109 0.8583 (0.3%)
Melanocytic nevi 0.1633 0.9644 0.2572 0.7642 0.5433 0.8889 0.5778 0.8017 (3.8%)
Benign Lesions 0.3767 0.8678 0.4248 0.7450 0.6167 0.7767 0.5395 0.7367
Vascular Lesions 0.9467 0.5789 0.5898 0.6708 0.6533 0.9267 0.6978 0.8583 (18.8%)

Table 6
Evaluation metrics for InceptionV3 trained on a balanced ICH dataset with and without
application of proposed CEbUTAL.

Model Sensitivity Specificity F1-Score Accuracy
InceptionV3 Baseline 0.9537 0.9212 0.9385 0.9375
InceptionV3 with CEbUTAI 0.9975 0.7650 0.8936 0.8813

Table 7
Runtime analysis for each step of proposed CEbUTAI applied for the ResNet34 model
in CTS detection.

Task Time
Testing (including test-data loading and 6.38 s
classification report generation)

Testing on validation set (for obtaining 2.77 s
predictions for thresholds)

Entropy computation for test and validation 8.56 ms
set (the right predictions from validation)

Uncertainty computation 4.85 ms
Confidence computation 2.32 ms
Computing threshold 1.65 ms
Changing model prediction based on 2.72 ms

threshold

augmentation. The results of the comparative study are shown in Fig.
9, illustrating that CEbUTAI outperforms other techniques for any
model. This plot reveals that CEbUTAI outperforms focal loss by ~ 5%.
While the model showed improvements with data augmentation, it was
limited by data variability, which is challenging to address in class-
imbalance scenarios. This study included an investigation of comparing
CEbUTAI with the widely used UQ methods: Monte Carlo Dropout
(MCDO), deep ensembles, and ensembled MCDO. The results of the
comparative study of the accuracy, sensitivity, and specificity are pre-
sented in the bar chart in Fig. 10. The results demonstrate that CEbUTAI
provides increased accuracy (~ 25% compared with ensemble MCDO)
and sensitivity compared with all other UQ approaches. Although these
methods improve robustness and uncertainty estimation, they do not
inherently correct the model bias, leading to suboptimal performance
in cases of class imbalance. By contrast, CEbUTAI specifically addresses
and corrects these biases, enabling it to achieve accurate predictions
and explainability. In the absence of a class imbalance, an InceptionV3
model trained on 50,000 images produced an accuracy of 94%. The ap-
plication of CEbUTAI minimally reduces the accuracy to 88%. However,
a notable observation is the steep decline in false negatives, which is
emphasized by the increase in sensitivity tabulated in Table 6. More
importantly, the detailed analysis presented in Table 4 for the ICH
task highlights that the miss rate for ICH detection was improved by
23% compared to the baseline. Minimizing miss rates in Al models is
essential for advancing their reliability and clinical utility. Lower miss
rates enhance patient outcomes by enabling earlier and more reliable
detection of diseases. Reducing miss rates also supports healthcare
efficiency by decreasing the need for repeat tests and accelerating
clinical decision-making. Although the proposed approach results in an
11.8% increase in overcall rate, this cautious strategy is appropriate in
clinical settings where Al serves as an assistive and recommendatory
tool, ensuring fewer true positive cases are overlooked. Such a balance
between sensitivity and specificity aligns with current clinical Al imple-
mentations that prioritize patient safety by reducing missed diagnoses
while managing acceptable false positive rates (Krupinski, 2000).

This study included experiments to evaluate CEbUTAIl’s perfor-
mance when the validation set was imbalanced. While the train and
test split remained as described in Table 1, the validation set contained
900 images for the normal class and 100 ICH positive images, reflecting
real world imbalance. While the baseline ResNet34 model gave an
accuracy of 79.31%, application of CEbUTAI increased it to 87.56%
(balanced validation dataset results are presented in Table 3), signifying
that CEbUTAI performs well in scenarios of imbalanced validation set.
Note that ConvNeXt model result with imbalanced validation dataset
was presented in the last row of Table 3. Studies were also conducted
comparing CEbUTAI to other ways of obtaining thresholds such as
the usage of isotonic regression, followed by thresholding from the
precision-recall curve. However, this approach did not yield desirable
results, leading to a decline in accuracy. Additionally, the runtime
analysis of CEbUTAI, as outlined in Table 7, demonstrates minimal
overhead—adding approximately 5 ms per image compared to the
baseline.

Uncertainty-based corrections such as the proposed method are
valuable for increasing the utility of DL models in medical image
classification. CEbUTAI was demonstrated to address class imbalance,
improve sensitivity, enhance explainability, and handle data variabil-
ity. The proposed method adapts to less represented class, balances
precision and recall, and improves the overall accuracy, especially
in imbalanced datasets. Its model-agnostic nature allows for versa-
tile applications across different architectures, complementing other
techniques and has the capability of accounting for both aleatoric
and epistemic uncertainty. Note that the proposed CEbUTAL is a post-
processing method, and approaches such as active learning that can
perform uncertainty-based corrections can also provide a comprehen-
sive approach for improving model performance and reliability in
medical imaging applications. In addition, the formulation of entropy-
based uncertainty as a loss function embedded in the training process
helps in the development of uncertainty-aware frameworks that are
more trustworthy and reliable in the clinical setting.

6. Conclusion

This study has introduced “CEbUTAI”: a Confidence and Entropy-
based Uncertainty Thresholding Algorithm designed to adapt the model
predictions by incorporating uncertainty and confidence. This algo-
rithm provides a robust method for correcting model predictions at
inference time, simplifying implementation, and minimizing reliance
on complex loss functions and hyperparameters. Experiments on clini-
cal problems and results demonstrate (i) the generalizability of CEbU-
TAl, (ii) performance improvements, and (iii) the explainability of Al
systems, thereby increasing the trustworthiness of model predictions.
Integration of entropy-based uncertainty with confidence contributes
to reducing false negatives and improves the overall accuracy of model
predictions. Furthermore, compared to state-of-the-art (SOTA) meth-
ods used for explainability and class imbalance mitigation, CEbUTAL
demonstrated superior performance. The model, loss function, and
task-agnostic nature make CEbUTAI versatile and easily adaptable,
making it a valuable tool for a wide range of Al applications, including
image classification, segmentation, natural language processing, and
reinforcement learning. The code utilized to generate the results in
this study has been provided here: https://github.com/Joel-Jeffrey/
CEbUTAL
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