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Abstract— Optical coherence tomography (OCT) is a
standard diagnostic imaging method for assessment of
ophthalmic diseases. The speckle noise present in the
high-speed OCT images hampers its clinical utility, espe-
cially in Spectral-Domain Optical Coherence Tomography
(SDOCT). In this work, a new deep generative model,
called as SiameseGAN, for denoising Low signal-to-noise
ratio (LSNR) B-scans of SDOCT has been developed. Siame-
seGAN is a Generative Adversarial Network (GAN) equipped
with a siamese twin network. The siamese network module
of the proposed SiameseGAN model helps the generator
to generate denoised images that are closer to groundtruth
images in the feature space, while the discriminator helps in
making sure they are realistic images. This approach, unlike
baseline dictionary learning technique (MSBTD), does not
require an apriori high-quality image from the target imaging
subject for denoising and takes less time for denoising.
Moreover, various deep learning models that have been
shown to be effective in performing denoising task in the
SDOCT imaging were also deployed in this work. A qual-
itative and quantitative comparison on the performance of
proposedmethod with these state-of-the-artdenoisingalgo-
rithms has been performed. The experimental results show
that the speckle noise can be effectively mitigated using the
proposed SiameseGAN along with faster denoising unlike
existing approaches.

Index Terms— SDOCT denoising, deep learning, Siame-
seGAN, deep generative model.

I. INTRODUCTION

SPECTRAL domain optical coherence tomogra-
phy (SDOCT) is a non-invasive, cross-sectional imaging
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modality that has been widely used in ophthalmology [1], [2].
For clinical analysis, ophthalmologists require high signal-to-
noise ratio (SNR) in the SDOCT images. However, speckle
noise [3], [4] arising out of the low coherence interferometry
degrades the quality of the OCT images. This noise poses
a significant challenge to the process of interpretation,
in particular, accurate diagnosis of vision-related diseases.

One approach to denoise SDOCT images is to capture a
sequence of repeated B-scans from a unique position and
then performing registering and averaging to create a less
noisy image [5]. The main limitation of this approach is
that it drastically increases the image acquisition time. The
second approach is model-based SDOCT denoising, where
a single B-scan image is denoised using digital filters that
depend on statistics and model of signal and noise [6]–[14]
or using deep/dictionary learning techniques [15]–[18]. The
resulted denoised images using this approach tend to show
over-smoothening or missing features.

Further, most model based approaches minimize the mean
square error (MSE) between the ground truth image and the
denoised image. While MSE based methods improve the peak
signal-to-noise ratio (PSNR), they tend to compromise the
important structural details. Another drawback of these meth-
ods is that they require large computational time to denoise
the SDOCT images. In particular, the dictionary learning tech-
niques can require as high as 31 minutes for denoising a single
image [17], making them less practical in the clinical setting.

In this work, we propose a new deep generative model
called SiameseGAN for denoising the SDOCT images. The
proposed model is a Generative Adversarial Network (GAN)
equipped with a siamese twin network and hence we refer
to it as SiameseGAN. The siamese network in our proposed
model forces the GAN to generate denoised images that are
closer to the ground-truth images. This module additionally
helps the discriminator to fool the generator to produce a
denoised image by extracting the discriminative features from
the groundtruth high signal-to-noise ratio (HSNR) patch and
the denoised patch by passing them through a twin network.
Further, this classifies the pair of HSNR patch and denoised
patch as a non-matching pair and loss is incurred, if they
are classified as matching pair by siamese network. The
loss ensures that along with the denoised and groundtruth
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patches being perceptually similar, their extracted features
are also identical. The speckle noise in the SDOCT images
poses great difficulty in differentiating this from the true OCT
image formation signals. The statistical correlations that are
performed for the feature vectors in the siamese network
will be able to provide this differentiation, in turn enabling
effective denoising. Also in the proposed model SiameseGAN,
the combined restoration loss (perceptual loss and multiscale
structural similarity index metric (MS-SSIM) loss) along with
siamese loss is minimized to provide improved approximation
to ground-truth images.

Here, the variant GAN that we use is Wasserstein GAN (or
WGAN) [19] to encourage the denoised SDOCT images to
share the same distribution as that of averaged and registered
HSNR images. In sequel, by GAN we are referring Wasser-
stein GAN. These denoised patches along with HSNR patches
are then fed to the discriminator module, siamese module and
Image restoration loss calculator. The losses computed from
all three modules are then combined.

In this work, the proposed SiameseGAN model has been
trained end-to-end, that is the combined output loss from the
three modules is then back-propagated to learn the weights
of generator, discriminator and siamese network. Once the
parameters of these three networks has been trained, generator
network was utilized to denoise test images. While testing,
instead of patches, a whole low signal-to-noise ratio (LSNR)
test image was given as input to the generator to obtain the
output as the denoised version of the image.

In short, the main contributions of this work is as follows.

• A new generative model called as SiameseGAN was
designed/developed specially for denoising of SDOCT
images.

• We propose to combine restoration loss with siamese loss
and show that this will result in denoised SDOCT images
that are closer to ground truth images.

• A systematic comparison with the existing deep learning
networks used for denoising, in particular GAN based
methods, was performed to show the efficacy of the
proposed network model.

• Bench marking of proposed SiameseGAN model with
the state-of-the-art deep/dictionary learning models that
exist in the literature for performing the denoising task
in SDOCT.

It is important to note that main job of discriminator in the
traditional GANs is to classify the denoised (generated) image
as real of fake. In the proposed SiameseGAN, the twin network
performs the task of similarity between the input pairs, thus
forcing the generator to produce semantic features close to
the expected ground truth. This aspect of SiameseGAN is
beneficial for the OCT image denoising task, where the aim
is to provide a close estimate of HSNR image from the LSNR
version. Also to reiterate, other than deep-learning models for
denoising, the standard approach is dictionary-based denois-
ing, which requires HSNR OCT image to build the dictionary.
The proposed network is a purely a data-driven network, which
overcomes the requirement of having HSNR image and works
with only LSNR images for producing the denoised result.

Further, the deep learning models, including the proposed one,
requires HSNR images only in the training phase, which is
performed off-line.

The remainder of the paper is organized as follows:
Section II gives the background information on SDOCT
denoising. Section III gives the proposed methods and the
objective and Section IV describes the network architecture.
In Section V, the experiments and results have been described.
Section VI mentions the related work and finally conclusion
and future work are given in Section VII.

II. BACKGROUND

The methods that are proposed for removing speckle noise
in SDOCT images can be categorized into two groups:
(i) model-based single-frame, and (ii) multi-frame averaging
techniques. The first group of methods assume an apriori para-
metric or non-parametric model for the signal and noise. Local
statistics-based filtering methods [6]–[8] belong to this cate-
gory, which are time efficient, but are limited in preservation of
the details. Though diffusion-based methods [9]–[12] achieve
good results for mitigating the noise, they largely produce
over-smooth images. The wavelet-based methods [13], [14]
too can give good results, but they are known to introduce
some artifacts.

In the multi-frame averaging techniques, a sequence of
repeated B-scans are captured from a unique position and
then image registration and averaging is performed [5].
While SDOCT imaging systems with built-in image stabi-
lization and averaging systems can produce HSNR images
directly, registration and averaging can also be performed
after the images are captured. In both these cases, the image
acquisition time dramatically increases to produce HSNR
images.

The dictionary learning technique has been based on sparse
representation using local image patches and is a hybrid of
the above two techniques [15]–[17]. The patches are obtained
from a averaged and registered less noisy image and a
dictionary is created using these patches. This dictionary is
then utilized to denoise a nearby noisy image [15]. Some
techniques use a dictionary trained on images obtained from
few subjects and denoise/improve the noisy scans obtained
from other subjects [16]. This follows customized scanning
pattern in which B-scans are captured at nominal SNR from
adjacent positions. Here, the adjacent positions are closer
in terms of azimuthal distance. These azimuthally repeated
scans are then averaged and registered to obtain a denoised
image.

The rationale for this approach is that neighboring B-scans,
in common SDOCT volumes, are expected to have similar
texture and noise pattern. In the proposed approach, we use
the averaged and registered image with high signal-to-noise
ratio (HSNR image) as ground-truth image in the training
phase and one B-scan from the same subject as noisy, Low
signal-to-noise ratio (LSNR) input image while training. A less
noisy/HSNR image is not required to denoise a test image
from a particular subject while testing. The HSNR image is a
requirement for the dictionary-based learning methods while
performing denoising [15]–[17].
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Fig. 1. SiameseGAN architecture. A pictorial depiction of generator G, discriminator D and siamese network S. The details of siamese network S
has been provided in Fig. 2 and the data-flow in the training is given in Algorithm-1.

III. THE PROPOSED MODEL: SIAMESEGAN

The proposed method is based on Wasserstein GAN that
uses the Wasserstein distance instead of the Jensen-Shannon
(JS) divergence to compare data distributions. The proposed
model consists of three networks, Generator G, Discriminator
D and a Siamese Network S (Fig. 1). Generator learns a
mapping G : x �→ ŷ, where x is the raw, low SNR (LSNR)
image and ŷ is the denoised image generated by G. The
discriminator’s objective is to differentiate the fake image pair
ŷ from the real, averaged high SNR image (HSNR) y.

A. GAN Objective

In the Wasserstein GAN (WGAN), the Earth-Mover (EM)
distance or Wasserstein metric between the generated image
samples and real data gets minimized. The reason for choos-
ing this metric is that it is continuous and differentiable
almost everywhere under some mild assumptions, while
Kullback–Leibler (KL) and Jensen-Shannon divergence do not
satisfy these conditions. The training of G against D forms
the adversarial part of the objective, and can be expressed as

min
G

max
D

LG AN (D, G) = −Ey[D(y))] + Ex [D(ŷ)]
+λEx̂ [(��x̂ (Dx̂ )�2 − 1)2] , (1)

where the first two terms perform a Wasserstein distance
estimation; the last term is the gradient penalty term for
network regularization; x̂ is uniformly sampled along straight
lines connecting pairs of generated and real samples; and λ is
a constant weighting parameter. The networks D and G are
trained alternatively by fixing one and updating the other.

B. Combined Image Restoration Loss

We incorporate two losses in our model: (i) perceptual
loss [20] obtained by extracting features from VGG net-
work [21], and (ii) MS-SSIM loss [22].

1) Perceptual Loss: While generator in the GAN transforms
the data distribution from high noise to a low noise version,
we incorporate perceptaul loss instead of per pixel loss to
retain image information content. The use of the perceptual
loss for WGAN facilitate producing sharper details with
significant reduction in noise.

The pretrained VGG network [21] extracts the features from
the denoised image patch and the HSNR patch. The patches
have been duplicated to make RGB channels before they are
fed to the VGG network. The rational behind this is the
pretrained VGG network takes color images as input while
our SDOCT images are in grayscale. The VGG-19 network
contains 16 convolutional layers followed by 3 fully-connected
layers. The output of the 16th convolutional layer is the feature
extracted by the VGG network and used in the computation
of perceptual loss function. The perceptual loss is defined as,

LVGG(G) = E(x,y)

[
1

whd

∥∥VGG(ŷ) − VGG(y)
∥∥2

F

]

where w, h and d are width, height and depth of the feature
space, respectively.

2) MS-SSIM Loss: MS-SSIM metric is a multiscale exten-
sion of the structural-similarity metric (SSIM). This metric’s
pixel wise gradient has a simple analytical form and is compu-
tationally inexpensive. The SSIM family of metrics compares
corresponding pixels and their neighborhoods in two patches,
denoted y and ŷ, with three comparison function: luminance
(I ), contrast (C), and structure (S) defined as

I (y, ŷ) = 2μyμŷ + C1

μ2
y + μ2

ŷ + C1
, C(y, ŷ) = 2σyσŷ + C2

σ 2
y + σ 2

ŷ + C2
and

S(y, ŷ) = σy ŷ + C3

σyσŷ + C3
,

where μy, μŷ denote the mean pixel intensities, and σy, σŷ
denote the standard deviations of pixel intensity in a local
image patch centered at either y or ŷ. The variable σy ŷ denotes
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the sample correlation coefficient between corresponding pix-
els in the patches centered at y and ŷ. The constants C1, C2
and C3 are small values added for numerical stability. The
three comparison functions are combined to form the SSIM
score as

SSIM(y, ŷ) = I (y, ŷ)αC(y, ŷ)β S(y, ŷ)γ . (2)

The SSIM score is a single scale measure. The input patches
are iteratively down sampled by a factor of two with a low-pass
filter, with scale j denoting the original images down sampled
by a factor of 2 j−1. This multiscale SSIM variant is given as

M S − SSI M(y, ŷ) = IM (y, ŷ)αM
M∏

j=1

C j (y, ŷ)β j S j (y, ŷ)γ j

The objective is to minimize the loss related to the MS-SSIM
score of the patches and is given as follows:

LMS−SSIM(G) = −E(x,y)[MS − SSIM(ŷ, y)],
where x is the noisy (LSNR) input patch, y is the
groundtruth (HSNR) patch and ŷ is the denoised patch
generated as output by the generator. The combined image
restoration objective is

LCIR(G) = LVGG(G) + LMS−SSIM(G). (3)

C. Siamese Network Loss

The siamese network takes generated and groundtruth image
pair (ŷ, y) and classifies it as non-matching class and takes
groundtruth image (y, y) and classifies it as a matching pair.
Now the generator is not only has to fool the discriminator,
but also this siamese network. Hence generator is forced to
generate output that always gets classified into matching pair.
The training of generator also forms the adversarial part of the
objective that can be expressed as

min
G

max
S

LSiamese(S, G) = Ey[log(1 − S(y, y))]
+Ex [log(S(ŷ, y))] (4)

where, these two terms in the above equation perform Wasser-
stein distance estimation.

D. Overall Objective Function

By combining above (1), (3) and (4), the final objective
function can be written as

min
G

max
D,S

LG AN (D, G) + αLSiamese(S, G) + βLCIR

where α and β are scaling factors for the siamese network
loss and combined restoration loss respectively.

The steps/data-flow involved in training of SiameseGAN
has been listed in Algorithm-1.

IV. DETAILS OF NETWORK ARCHITECTURE

A. Generator

Generator in a GAN can be implemented with various
neural network architectures for image-to-image translation
tasks. We have performed experiments with U-Net [23] and
residual net [24].

Algorithm 1 Major Steps in SiameseGAN Training

1 epochs=max_epoch, batches=number of batches
2 G:Generator(), D:Discriminator(), S:Siamese

Network()
3 Cri ticU pdates=5, BatchSi ze=1
4 Final Model=Final Model(G, D, S)
// final model as shown in Fig. 1

5 for epoch = 1 to epochs do
6 for batch = 1 to batches do
7 x := raw noisy image from the batch

// raw noisy image
8 y := corresponding averaged HSNR image

// HSNR image
9 z := G.predict (x)

// generated denoised image
10 for cri tic update to Cri ticU pdates do

// discriminator training on real
image

11 D.train(y)
// discriminator training on fake

image
12 D.train(z)

// siamese training on matching
images

13 S.train(y, y)
// siamese training on

non-matching images
14 S.train(y, z)

15 D.trainable:= False
16 S.trainable:= False

// here the generator is trained
// using losses obtained from
// other modules keeping them

non-trainable
17 Final Model.train(x, y)
18 D.trainable = True
19 S.Trainable = True

1) Residual Network Architecture: Using a very deep neural
network can improve the performance, however these networks
are very difficult to train and one can observe degradation
of generated images. To overcome this we employ residual
neural networks [24]. The residual neural network consists of a
series of stacked residual units and each residual unit consisted
multiple combination of convolutional, batch-normalization
and activation layers.

The layer combination of residual unit utilized in this work
consists of two 3 × 3 convolutional layers, each followed by
batch-normalization layer with a rectified linear unit (ReLU)
activation layer in the middle. The network consists of two
3 × 3 convolutional layer with stride 2 and filter size 64 and
128, respectively followed by residual units. The number of
residual units is considered as hyperparameter in all experi-
ments and it has been tuned accordingly. Residual blocks are
followed by two 3 ×3 deconvolutional layer with stride 2 and
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Fig. 2. Siamese network (S) architecture that was utilized as part of the proposed denoising network. This forms one block of proposed SiameseGAN
model as shown in Fig. 1.

filter size 128 and 64, respectively. The ResNet forms the
generator part (G) of the proposed SiameseGAN network
model given in Fig. 1.

2) Deep Residual U-Net Architecture: The U-Net architec-
ture [25] also uses skip connection to facilitate the training of
the network. The architecture consists of an encoder consisting
of convolutional layers and the decoder consisting of deconvo-
lutional layers which uses skip connections by concatenating
the output of the deconvolution layers with the feature maps
from the encoder at the same level.

Instead of the plain convolutional blocks, residual units have
been used in U-Net architecture [25]. The advantage is that
the skip connections within a residual unit and between low
levels and high levels of the network will facilitate information
propagation without degradation. All residual units consist of
two convolutional block and each convolutional block has a
batch-normalization layer, a ReLU activation layer and a 3×3
convolutional layer with stride 2.

B. Combined Image Restoration Loss Calculator

As mentioned earlier, in the proposed approach, instead of
per-pixel loss, a combined loss was minimized in the proposed
model. A denoised output image (ŷ) from the generator G and
the ground truth (HSNR) image (y) are fed to the pre-trained
VGG network for feature extraction. Then, the perceptual loss
was computed using the extracted features from a specified
layer. This perceptual loss was combined with a differential
MS-SSIM loss function. The computed reconstruction error
was then back-propagated to update the weights of G only,
while keeping the VGG parameters intact.

C. Siamese Network

The siamese twin network [26] S takes two image patches as
inputs. It consists of a sequence of convolutional layers, each
of which utilizes a single channel with filters of varying size
and a fixed stride of 1. The kernel sizes of the convolutional
layers are 10 × 10, 7 × 7 and 4 × 4 respectively. The number

of convolutional filters was specified as a multiple of 16 to
optimize performance. The network applies a ReLU activation
function to the output feature maps, followed by max-pooling
with a filter size 2 and stride 2. The twin network joins
immediately after the 4096 unit fully-connected layer, where
the L1 component-wise distance between vectors is computed.
The siamese network architecture has been depicted in Fig. 2.

D. Discriminator

The discriminator (D) in the proposed model consists of a
sequence of convolution layers, each of which is followed by
batch normalization (BN) and leaky ReLU (LReLU) nonlin-
earity, except for the first and last layers. For the first layer,
there is no batch normalization layer between the convolution
layer and its activation. For the last layer, only the convolution
layer exists. All convolutional layers have kernel size of 4×4.
There are convolutional blocks consisting of a convolutional
layer followed by batch normalization layer and leaky ReLU
layer between the first and last convolutional layer. The
number of these convolutional blocks (n) was considered as
a hyper-parameter and was tuned accordingly. The number
of filter in each convolutional layer was fixed to 64 for all
experiments performed in this work.

V. EXPERIMENTS

A. Data

Dataset-1: The first SDOCT dataset that was consid-
ered in this work is part of the study presented in [15].
These SDOCT images were acquired at 840-nm wavelength
Bioptigen, Inc. imaging system. Total of 28 patients, where
images from 28 eyes, with and without non-neovascular age-
related macular degeneration (AMD) have participated in
this study with an axial resolution of ∼ 45μm per pixel
(450 × 900 (height × width)) in tissue. Two scans per subject
were acquired, first one was a volumetric scan of retinal
fovea with 1000 A-scans per B-scan and 100 B-scans. The
second scan was also 1000 A-scans per B-scan, but with
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40 azimuthally repeated B-Scans centered at the fovea. Test
images were chosen to be central foveal B-scan within the
first volume. StackReg image registration plug-in [27] for
ImageJ (software; National Institutes of Health, Bethesda, MD,
USA) was utilized to register azimuthally repeated B-scans to
form noiseless HSNR (ground truth) averaged image. More
concretely, in each image pair, there was a noisy SDOCT
image captured by a Biopitgen SD-OCT imaging system, and
a clear OCT image which was acquired by registering and
averaging several B-scans obtained at the same position. Since
a large number of SD-OCT image pairs were required to
train GAN based deep learning models, data augmentation
techniques such as flip and rotation were utilized to create
more data points. Out of 28 image pairs available, 10 image
pairs were selected and rectangular patches with window size
100 × 200 and stride of 10 were created. After preprocessing
these patches of images were used to train all deep learning
models.

Dataset-2: To validate the robustness of the proposed model
SiameseGAN, a second dataset has been employed in our
experiments that was previously utilized in [16]. One of the
Bioptigen SDOCT imagers used in the Dataset-1 collection
with axial resolution of ∼ 45μm per pixel in tissue and directly
acquired full and subsampled volumes from 13 human subjects
with regularly sampled pattern in clinic were utilized. That is,
for each subject a square volume centered at the retinal fovea
with 500 A-scans per B-scan and 100 B-scans per volume were
scanned. For reconstruction comparisons involving real exper-
imental datasets of human subjects, from each dataset, the
central foveal B-scan as well as two additional B-scans located
approximately 1.5 mm above and below the fovea, have been
used. Therefore, 39 raw images were available in this Dataset-
2 without their corresponding ground truth (HSNR) images.
Since the reference images were not available and all 39 raw
images were considered as test cases and these has not been
utilized in the training of the proposed model.

For training, a workstation with Dual Intel(R) Xeon(R)
CPU E5 − 2630 with 2.40 GHz clock speed along with two
NVIDIA GeForce GTX1080 12GB GPUs having 64GB RAM
was utilized. The typical training time for each of the deep
learning model, including the proposed SiameseGAN, was
approximately two hours.

B. Evaluation Metrics

For a comparative evaluation of the the denoising perfor-
mance of proposed model Siamese GAN, we have utilized
the following figures of merit.

1) Peak Signal-to-Noise Ratio (PSNR): The PSNR is a figure
of merit that provides the measure of fidelity in the processed
image with respect to the reference image. This is defined as

PSNR = 20 · log10

(
M AX R√

1
H

∑H
h=1(Rh − R̂h)2

)
,

where Rh is the intensity of the hth pixel in the reference
HSNR image R, R̂h represents the same hth pixel of the
recovered denoised image R̂, H is the total number of pixels,
and M AX R is the maximum intensity value of image R.

2) Structural Similarity Index (SSIM): When comparing
images, the mean squared error (MSE) is not highly indicative
of perceived similarity. Structural similarity aims to address
this shortcoming by taking texture into account. It is a per-
ceptual metric that quantifies image quality degradation caused
by processing. It is a full reference metric that requires two
images from the same image capture: a reference image and a
processed or noisy version of the image. Unlike PSNR, SSIM
is based on visible structures in the image. SSIM score can
be defined as

SSIM(x, y) = I (x, y)αC(x, y)β S(x, y)γ ,

where x and y are the two image centers, α, β and γ are the
constants and set to 1 (throughout this work) similar to the
work presented on [28]. Here, I , C and S refers to luminance,
contrast and structure as defined in Eq. 2.

3) Mean Signal to Noise Ratio (MSR) and Contrast to Noise
Ratio (CNR): Reference image is not required to compute MSR
and CNR of a particular image since they are region based
metrics. The metrics MSR and CNR are defined as

MSR = μ f

σ f
, and CNR = |μ f − μb|√

0.5 ∗ (σ 2
f + σ 2

b )
,

where μb and σb denote the mean and the standard deviation
of the background region; μ f and σ f denote the mean and
the standard deviation of the foreground regions. To compute
MSR or CNR of a single image, mean of MSR or CNR
was computed for all foreground region of interests selected
in the image. The background and foreground regions were
illustrated as blue and red boxes respectively as shown in
Figs. 3, 4 and 5.

4) Texture Preservation (TP) Index and Edge Preserva-
tion (EP) Index: Similar to MSR and CNR, Texture Preser-
vation (TP) index and Edge Preservation (EP) index do not
require reference image for calculation as they are region based
metrices. TP can be computed as

TPm = σ 2
m

( �σm)2

√
μden

μin
,

where, m represents the m-th region of interest (ROI), ( �σm)2

stands for the standard deviation of respective region of the raw
image. μden and μin denote the mean value of the denoised
and noisy image respectively. The TP value considered is
the average over all the ROIs. If denoised image features
are severely flattened then TP value appears close to 0.
We compute EP as

EP = �(�I �
m − �I �

m ,�Im − �Im

�(�I �
m −�I �

m,�I �
m −�I �

m)�(�Im −�Im,�Im −�Im)
,

where m represents the m-th ROI region. Im , I �
m represents the

matrices of the corresponding region of the denoised and input
noisy image respectively. I represents the empirical mean
of I. � is a Laplacian operator and �I is obtained with a
standard 3 × 3 approximation of the Laplacian operator. �
shows correlation between two ROIs as

�(I1, I2) =
∑

i, j∈RO I

I1(i, j)I2(i, j).
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Fig. 3. SDOCT foveal images corresponding to Patient-6 of dataset-1. A: averaged (HSNR) image, B: noisy image, C: MSBTD result, D: MIFCN result,
E: SE result, F: WGAN-UNET result, G: WGAN-Resnet result, H: proposed SiameseGAN result. The top most blue box in each image corresponds
to the background patch that was utilized in computing figures of merit. The zoomed versions of patches covered by red boxes (foreground) are
shown at the bottom of corresponding image to clearly show the improvement obtained in image quality. The PSNR values for these images were
given in Table-II.

We average the EP value over the ROIs and its value lies
between 0 and 1. When EP value is closer to 0, it means
that the edges in the ROI are blurred. The mean of EP and
TP was computed over all the foreground regions for an
image.

C. Experimental Results

To evaluate the performance of the proposed model Siame-
seGAN, quantitative and qualitative comparison has been

made with state-of-art SDOCT denoising methods, multiscale
sparsity based tomographic denoising (MSBTD) [15] and
state-of-the-art deep learning based image denoising methods
that include multi-input fully-convolutional network (MIFCN)
[18], shared encoder (SE) architecture with multiple decoders
[29] and Wasserstein GAN with perceptual loss based training
(WGAN-ResNet) [30]. Experiments have also been performed
by training a Deep Residual UNET architecture as the gener-
ator (WGAN-Unet) and combining the perceptual loss with

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 31,2020 at 01:05:05 UTC from IEEE Xplore.  Restrictions apply. 



KANDE et al.: SiameseGAN: A GENERATIVE MODEL FOR DENOISING OF SDOCT IMAGES 187

TABLE I
AVERAGE OF THE PSNR (DB), SSIM, MSR, CNR, TP AND EP FOR

EIGHTEEN SDOCT FOVEAL IMAGES FROM DATASET-1 OBTAINED

FROM THE MSBTD, MIFCN, SHARED ENCODER (SE),
WGAN-UNET, WGAN-RESNET, AND PROPOSED SIAMESEGAN.

THE BEST RESULTS ARE SHOWN IN BOLD. * INDICATES THAT

RESPECTIVE METRIC DOES NOT REQUIRE

GROUND TRUTH

MS-SSIM loss for training. The networks that have been
trained for the comparison are:

• MIFCN: Multi-input fully-convolutional network [18],
• SE: Shared encoder architecture with multiple

decoders [29],
• WGAN-Unet: Wasserstein GAN with UNET network as

Generator with only Perceptual Loss [30],
• WGAN-ResNet: Wasserstein GAN with 16 layer Resid-

ual Net network as Generator and perceptual Loss com-
bined with MS-SSIM, and

• SiameseGAN (Proposed): The Proposed Model (network
architecture was shown in Fig. 1) with MS-SSIM loss
function

Note that for all these deep learning models, same data
(10 patients data from dataset-1) was utilized in the training
phase. The quantitative analysis of MIFCN provided in [18]
shows that it performs better than K-SVD denoising algorithm
[31], block matching and 3-D filtering (BM3D), spatially adap-
tive iterative singular-value thresholding (SAIST), patch group
based Gaussian mixture model (PG-GMM), block matching
and 4-D filtering (BM4D), and segmentation based sparse
reconstruction (SSR). The shared encoder (SE) based model
was also proven to be more effective compared to sparsity
based simultaneous denoising and interpolation (SBSDI) [16]
as well as Complex Wavelet- based Dictionary Learning
(CWDL) [32]. For this reason, MIFCN and SE were com-
pared to the proposed SiameseGAN as they provide better
performance than standard methods as discussed above.

1) Quantitative Analysis: Table-I shows the quantitative
results for the discussed methods on 18 SDOCT test images
corresponding to Dataset-1. These results include the mean of
PSNR metric, SSIM index, MSR, CNR, EP index and TP
index for the 18 SDOCT test images from Dataset-1. The
results indicate that the proposed SiameseGAN out performs
others clearly on the all figures-of-merit except for the TP
index. The MIFCN preserves the texture better than the all
other methods. The MIFCN utilizes the weighted averag-
ing through a multi-branch network, performing similar to
non-local means method, enabling texture preservation from
the neighbors [18].

TABLE II
PSNR (IN DB) CORRESPONDING TO THE METHODS DISCUSSED HERE

FOR EIGHTEEN INDIVIDUAL SDOCT FOVEAL IMAGES OF DATASET-1
THAT WERE USED AS TEST CASES. REPRESENTATIVE IMAGES

FOR PATIENTS-6 AND 8 ARE AVAILABLE IN

FIGS. 3 AND 4 RESPECTIVELY

One can observe that adding siamese network module and
incorporating MS-SSIM loss to WGAN network has improved
the performance compared to the baseline model. The Siame-
seGAN improved the mean PSNR by 1.17 dB and mean SSIM
index by 0.27 thus achieving better performance than other
methods. The proposed model has also improved the CNR
index as well as MSR index proving that it was able to capture
low-level finer details as well as high level semantic features.
Our model also has better EP than other models showing it
preserves edges without making them blurry. Table-IV show-
ing the computational time (for the denoising step) indicates
that the deep learning based denoising methods works faster
than dictionary based denoising methods. Table II shows the
PSNR metric for 18 individual SDOCT test images for the
discussed method for knowing performance at the individual
image level.

2) Qualitative Analysis: For qualitative and visual analysis,
Fig. 3 and 4 illustrate the results obtained for two test
images from the Dataset-1. In Fig. 3 and 4, the image
A, B are the reference image (ground truth), raw (noisy)
image respectively. Images C, D, E, F, G and H are resul-
tant denoised image obtained from MSBTD method, MIFCN
method, Shared Encoder (SE) method, WGAN-UNET method,
WGAN-ResNet method and proposed SiameseGAN respec-
tively. One background region and three foreground region
have been selected from each of the above images for better
visual analysis. These same regions have been utilized in
computing MSR, CNR, TP and EP for quantitative com-
parison and averaged results of the same were provided
in Table I.

As dataset-2 did not have HSNR (ground trutn) images,
MSBTD method could not applied to these images. Even
in terms of evaluation metrics, PSNR and SSIM can not
be computed without the HSNR images, so the quantita-
tive comparison included only MSR, CNR, TP, and EP
metrics. In terms of qualitative comparison, two patients
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Fig. 4. Same effort as Fig. 3 corresponding to Patient-8 of dataset-1. A: averaged (HSNR) image, B: noisy image, C: MSBTD result, D: MIFCN
result, E: SE result, F: WGAN-UNET result, G: WGAN-Resnet result, H: proposed SiameseGAN. The PSNR values for these images were given in
Table-II.

results were presented in Fig. 5. Images A and G are two
raw (LSNR) images out of thirty nine from the dataset-2
(where reference/ground truth images were absent) of patient-
1 and patient-2 respectively. Images B, C, D, E and F are
the resultant denoised images for patient-1 obtained using
MIFCN, SE, WGAN-UNET, WGAN-ResNet and proposed
SiameseGAN respectively. Images H, I, J, K and L are the
resultant denoised images for patient-2 obtained using MIFCN,
SE, WGAN-UNET, WGAN-ResNet and SiameseGAN respec-
tively. One background and three foreground regions were
selected for all these images for computation of MSR, CNR,

TP and EP as in previous images. The region of interests in
each image have been zoomed and shown below for better
comparison. These suggest that the structural integrity was
better preserved using proposed SiameseGAN, while other
methods result in blurring of edges and missing other finer
details in denoised images. Note that even though only two
example cases were presented here, the results obtained for
other cases followed the same trend as observed in these
example cases shown in Fig. 5. The averaged MSR, CNR,
TP and EP values obtained using our model for the SDOCT
foveal images obtained from dataset-2 have been provided in
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Fig. 5. Example SDOCT foveal images from dataset-2. Images A, B, C, D, E, F belong to patient-1 and images G, H, I, J, K, L belong to patient-2.
Row wise (top to bottom) these correspond to the noisy image, MIFCN result, SE result, WGAN-UNET result, WGAN-Resnet result, proposed
SiameseGAN result respectively. The top most blue box in each image corresponds to the background patch that was utilized in computing figures
of merit. The zoomed versions of patches covered by red boxes (foreground) are shown at the bottom of corresponding image to clearly show the
improvement obtained in image quality. The averaged figures-of-merit (MSR, CNR, TP and EP) were presented in Table-III.
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TABLE III
AVERAGE OF THE MSR, CNR, TP, ENL, EP FOR SDOCT FOVEAL

IMAGES FROM DATASET-2 (39 SDOCT IMAGES) OBTAINED

FROM THE MIFCN, SHARED ENCODER, WGAN-UNET,
WGAN-RESIDUALNET, PROPOSED SIAMESEGAN. THE BEST

RESULTS ARE SHOWN IN BOLD. ALL THESE METRICS DO NOT

REQUIRE GROUNDTRUTH. EXAMPLE (FOR PATIENTS-1
AND 2) RAW AND DENOISED IMAGES WERE

PRESENTED IN FIG. 5

TABLE IV
COMPARISON OF THE COMPUTATIONAL TIME (IN SECONDS) FOR

DENOISING USING THE DISCUSSED METHODS FOR THE ENTIRE

TEST DATA: DATASET-1 (18 IMAGES OF SIZE 450 × 900)
AND DATASET-2 (39 IMAGES OF SIZE 450 × 450)

Table-III. These results (from datasets-1 and 2) indicate that
the performance of the proposed SiameseGAN was superior
compared to the standard MSBTD as well as other deep learn-
ing models. The proposed model was able to generalize across
the two available datasets and provided improved performance.

3) Ablation Study With Respect to Loss Functions: To under-
stand the contribution of each loss that was utilized in the net-
work, we performed an ablation study [33] utilizing eighteen
SDOCT foveal images from dataset-1 as the test data. Table V
provides the results from this ablation study. It contains figures
of merit, same as presented in Table I, and the first column
gives the loss function that was not utilized while training
the proposed model. The last row of Table V corresponds
to results from proposed SiameseGAN (same as results in
Table I) when trained with all loss functions being included.
From Table V, it is clear that, inclusion of MS-SSIM loss
and Siamese loss significantly improves the edge preservation
index of denoised images, preserving structural integrity and
also capturing the finer details. Inclusion of all loss functions
significantly improved the figures of merit. The MSR is high
when Siamese loss was not utilized, as this metric provides
signal to noise ratio of the foreground only and does not
account noise present for the background region.

TABLE V
RESULTS OF THE ABLATION STUDY WHEN MODEL WAS TRAINED

WITHOUT RESPECTIVE LOSSES WITH TEST DATA BEING EIGHTEEN

SDOCT FOVEAL IMAGES FROM DATASET-1. THE BOTTOM ROW

RESULTS ARE FOR THE PROPOSED MODEL TRAINED WITH

ALL LOSS FUNCTIONS INCLUDED. THE BEST RESULTS

ARE SHOWN IN BOLD

VI. DISCUSSION

Though there are several classical denoising methods, like
BM3D [34], MSBTD [15], SBSDI [16], curvelet transform
based dictionary learning technique [17] have been proposed
for denoising spectral domain OCT data, none of these
approaches make use of deep neural networks which are
powerful function approximators. On the otherhand, a few
deep learning based methods have been used in denoising
to despeckle OCT images of Optic Nerve Head [35], deblurr
retinal images [36]. Edge-sensitive conditional GAN has also
been proposed to denoise 3D OCT volumetric data [37].

Deep convolutional neural network [38] and WGAN using
perceptual loss [30] based methods have been proposed for
low-dose CT image denoising [39]. Above deep learning
based methods do not consider denoising of the multiplicative,
speckle noise that heavily corrupts SDOCT images. Also,
this is the first work in the denoising of SDOCT images
that has not only proposed a network that was specifically
designed for the job at hand and provided a comparison
with popular deep learning models to show the efficacy the
proposed SiameseGAN.

The proposed SiameseGAN model has the distinctive
advantage of combining restoration loss (perceptual loss and
MS-SSIM loss) with siamese loss which forces the denoised
image to be close to the expected image. It provides better
fidelity as not only the generated denoised image has to go
through the discriminator, but also siamese twin network to
provide a matching pair. This adds to the robustness of the
proposed SiameseGAN to provide improved denoised SDOCT
images. The same has been reasserted through ablation study
performed in this work (Table- V).

It is important to note that once the model has been trained,
the requirement of having HSNR image, unlike MSBTD
method, does not arise at all. Even though the model was
trained using ten images of Dataset-1, it was able to generalize
and provide improved denoised results for Dataset-2 images
(Fig. 5 and Table III).

The output of the denoised methods, including proposed
SiameseGAN, utilizing a single B-scan noisy image will never
be equal to the averaged (HSNR) image. The averaging and
registering to form the HSNR image involves several B-scan
images with number of such images being in the order of
hundred. The denoising methods will only be capable of
providing a close estimate to this HSNR image and thus
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comparison of the quality of HSNR image with denoised
method output should be performed within the context of
figures of merit, which provides an objective way of knowing
the image quality. The results presented in this work shows
that among the presented denoised methods, the proposed
SiameseGAN provides the best performance for the task at
hand.

Typical analysis of SDOCT images especially for
Age-Related Macular Degeneration (AMD) involves the study
of drusen layer [40]. The druse entity will be considered as
pigment epithelial elevation larger than 25 μm in diameter
in these SDOCT images. The typical analysis will involve
morphological characteristics of the druse in terms of shape
of the epithelial elevation, the reflectivity and homogenity,
and the presence or absence of hyperreflective foci above the
druse [40]. Even though the detailed analysis is not performed
in this work, the results indicate that in all these metrics,
the output of proposed SiameseGAN will be able to provide
accurate analysis of the morphological characteristics on par
with the HSNR image, especially with automated methods.
The detailed study including different complex pathologies
(different stages of AMD) will be taken up as future work.

The image denoising with Wasserstein distance and per-
ceptual Loss with a GAN has been applied in low-dose CT
case [30]. The WGAN UNET and WGAN RESNET utilized
in this work are similar to the model utilized for denoising
of low-dose CT images [30]. The proposed SiameseGAN
also utilizes the Wasserstein Distance and Perceptual Loss in
addition to having MS-SSIM loss within the GAN (details
are there in Sec. III.B). On top of it, the siamese network
loss was also added to final objective function in the proposed
SiameseGAN. The preceptual loss provides improved visual
perception in the denoised image as can be seen from the
presented results. SiameseGAN, with utilization of additional
MS-SSIM and siamese loss, provides more robustness to the
learning for improved visual perception as well as structure
preservation/integrity in the denoised image.

The proposed SiameseGAN can perform on the fly denois-
ing of SDOCT images as shown in Table-IV, average time of
0.7 second per image, making them available to the clinician
in real-time, in addition to performing the denoising without
the need for repetitive/averaging of SDOCT images. Methods
of this type will improve the clinical adoptability of SDOCT
images making them universally appealing.

Recently, a similar model called SiGAN [41] has been
proposed in the context of generative model for human faces.
This model is significantly different in terms of functionality
from the proposed SiameseGAN model. The SiGAN takes
two distinct images as input and pass them through a twin
generator network, while in our case one generator network
gives output which is fed to Siamese twin network to act as a
better discriminator. On the same note, a siamese type network
for providing domain adaptation for performing aerial vehicle
image categorization was proposed [42]. This was proven to
be effective to learn invariant high-level features, when the
input data can vary in terms spatial and temporal resolution.
This network only enabled domain adaptation (transfer of
labels available in one domain to another domain) and it was

termed as Siamese network as the encoder-decoder networks
to provide feature representations on the labeled and unlabeled
images were similar. The shared encoder (SE) that was dis-
cussed in this work provides the feature representation similar
to siamese type network discussed in [42]. The performance of
SE in terms of CNR was better/comparable to other deep learn-
ing models, but in all other metrics, it provided sub-optimal
results. In short, the Siamese twin network considered in
Ref. [42] was part of generator and another network was acting
as a discriminator [42]. The discriminators utility, even in
SiGAN, was limited to performing matching operation. In the
proposed SiameseGAN, the siamese network will provide the
similarity and was treated as part of discriminator, forcing
the generator to have structures similar to ground truth. The
SiGAN [41] is a pairwise learning scheme for providing
super-resolution where as domain adaptation based Siamese
GAN [42] performs aerial image categorization, these are not
aimed at the denoising task at hand.

VII. CONCLUSION

In this work, we proposed a new deep generative model
based on GAN for SDOCT denoising, which is equipped with
an additional siamese network module. We have also exper-
imented with state-of-the-art CNN architectures for bench
marking the proposed SiameseGAN. The experimental results
prove that the proposed approach can be effectively used
for fast denoising of SDOCT images and provides improved
performance than the traditional dictionary learning as well as
other deep learning based techniques. The methods proposed
here are universally appealing for mitigating the speckle noise
that corrupt images. The developed models along with source
code is available as open source [43] for interested users.
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