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Diffuse optical tomographic imaging is known to be an ill-posed problem, and a penalty/regularization term is
used in image reconstruction (inverse problem) to overcome this limitation. Two schemes that are prevalent are
spatially varying (exponential) and constant (standard) regularizations/penalties. A scheme that is also spatially
varying but uses the model information is introduced based on the model-resolution matrix. This scheme, along
with exponential and standard regularization schemes, is evaluated objectively based on model-resolution and
data-resolution matrices. This objective analysis showed that resolution characteristics are better for spatially
varying penalties compared to standard regularization; and among spatially varying regularization schemes,
the model-resolution based regularization fares well in providing improved data-resolution and model-resolution
characteristics. The verification of the same is achieved by performing numerical experiments in recon-

structing 1% noisy data involving simple two- and three-dimensional imaging domains. © 2012 Optical Society

of America

OCIS codes:  170.0170, 170.0110, 170.3010, 170.6960, 100.3190.

1. INTRODUCTION

Functional imaging using diffuse optics has become attractive
for soft-tissue imaging due to the non-ionizing nature of prob-
ing near infrared (NIR) light [1-4]. The NIR light having the
wavelength range of 600-1000 nm is typically delivered using
fiber optic bundles, which are placed on the surface (or
boundary) of the tissue under investigation [2]. The diffuse
light is collected also by the fiber bundles at the boundary,
and the measured light intensities are used to obtain the op-
tical absorption distribution [3]. When measurements from
multiple wavelengths are available, these can lead to func-
tional properties of the tissue, such as oxy-hemoglobin,
deoxy-hemoglobin, and water concentrations [4].

The most important and critical step in diffuse optical to-
mography is estimating the internal distribution of absorption
coefficient using the intensity-based boundary measurements,
also known as the inverse problem [5-6]. The main aim of sol-
ving the inverse problem is to obtain estimates of optical ab-
sorption coefficient distribution by iteratively matching the
experimentally measured data with the data obtained using
a model (typically diffusion-based) [5]. This problem is non-
linear, ill-posed, and underdetermined, mainly due to domi-
nance of scattering in NIR light propagation in tissue [6].
To overcome the ill-posedness of the inverse problem, i.e,.
to obtain a unique solution for the inverse problem, a regular-
ization is applied to the inverse problem [4-5]. The regulariza-
tion (also known as penalty term) stabilizes the solution and
primarily acts as a damping to overblown solution, either due
to noise or instability of the inverse problem [5].

Several regularization schemes have been proposed in the
literature that can effectively reconstruct the unknown ab-
sorption properties [7-14]. These could be broadly classified
into two categories. The first one is based on the available
prior information of the inverse problem. This prior informa-
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tion could be noise characteristics of the data or structural
information obtained from other imaging modalities [7,14].
The more prior information one can use in the inverse pro-
blem, the better is the outcome of the reconstruction proce-
dure and/or robustness to the noise in the data [7]. The second
category is based on the physics of the problem. This could be
as simple as using a spatially variant regularization or wave-
length/chromophore specific regularization [10,15-16]. The
simplicity associated with the physics based regularizations
make them highly desirable for solving the inverse problem,
especially in cases where the prior information is not
available. Depending on the problem at hand and desired
characteristics of optical image along with available prior in-
formation, the regularization is chosen to improve the quality
and/or quantification of the reconstructed image. The spatially
variant regularization captures the nonlinear variation of re-
solution characteristics of the problem and is also proven
to improve the spatial resolution of the reconstructed optical
image [10]. The penalty term in the spatially variant regular-
ization comprises an exponential term, with higher value
near the boundary and lesser penalty at the center of the
imaging domain to counteract the hypersensitivity/bias close
to the boundary, arising from detectors located on the
boundary [10].

Here, the attempt will be to capture the non-uniformity in
the resolution of the imaging domain using the model-
resolution matrix and use the same as a penalty/regularization
term to improve the spatial resolution in diffuse optical ima-
ging. The model here refers to both sensitivity (Jacobian)
and regularization term used to reconstruct the optical
parameters. Usage of spatially invariant (or constant) regular-
ization along with the sensitivity matrix leads to the model-
resolution matrix, in turn giving the proposed regularization.
Also, the use of model- and data-resolution characteristics for
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the regularization/penalty schemes provided an objective way
of assessing the performance of penalty terms. Using numer-
ical experiments, it will be shown that the regularization
based on the model-resolution matrix improves the spatial re-
solution and quantitative nature of the reconstructed optical
images. As the emphasis of this work is on introducing and
evaluating the new penalty term, the discussion is limited
to a continuous-wave (CW) case, where the experimental
measurement is the amplitude and the unknown optical
parameter is the absorption coefficient.

2. MATERIALS AND METHODS

A. Continuous-Wave Diffuse Optical Imaging:
Forward/Inverse Problem

The CW diffuse optical imaging of thick tissues, such as breast
and brain, involves solving the steady-state diffusion equation
(DE) given by [7,17]

=Vik@)VO(r) + o (r) (1) = Q, (7). ey

where @, (r) is the isotropic CW source term located at posi-
tion 7 and ®(r) is the photon density (real-value). The absorp-
tion coefficient is represented by p,(r) and the diffusion
coefficient by «(7), defined as
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with u;(r) representing the reduced scattering coefficient. A
Robin (type-III) boundary condition is employed to take care
of the refractive-index mismatch at the tissue boundary [18]. A
finite element based method is used to solve Eq. 1, which can
handle irregular shaped imaging domains and provide stable
solutions. The finite element framework is reviewed in [7,17].
The ®(r) is sampled at the detector locations to give the am-
plitude data (A) and under the Rytov approximation the mea-
sured data are the natural logarithm of the amplitude (In(A)).

The inverse problem of diffuse optical imaging can be
posed as a least-squares problem, where the aim is to itera-
tively match the experimentally measured boundary data with
the modeled data. Because of the ill-posed nature of the in-
verse problem, a penalty term is always added to stabilize
the solution [5]. The objective function with penalty term
can be written as

Q= ly - Gu)llI” + Pua). €)

where y is the experimental data, i.e., y = In (4)™easwred apq
G(u,) is the modeled data. The penalty term is represented
by P(u,), which stabilizes the solution and removes the
high-frequency components. The objective function (Eq. 3)
is minimized with respect to y,. Choice of P(u,) inadvertently
affects the image quality, and there are many choices that
have been proposed in the literature [7-14]. Here, the iterative
procedure of minimizing Q is stopped when |y — G(u,)||? is
not reduced by more than 2% between successive iterations,
which ensures that experimental data match with modeled
data within a small neighborhood. Two popular choices for
the penalty term, based on the physics of the problem, are dis-
cussed in the following subsections.
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B. Standard Penalty/Regularization Term

The standard penalty term here represents the Tikohnov type
of regularization that is discussed in [13] with identity matrix
as the regularization matrix, i.e.,

P(ﬂa) :/‘L”/‘all27 @

where 1 is the regularization parameter that is constant and
typically empirically chosen to stabilize the solution. The mini-
mization scheme with this penalty term along with lineariza-
tion leads to the updated equation (Gauss—Newton update
equation) [13,19]

VT + Aug = I (Y - Gua)). ®)

where J is the Jacobian (= %), which gives the rate of
change of modeled data with respect to u,, dimension
NM x NN, where NM is the number of measurements and
NN is the number of nodes (or imaging parameters) in the gi-
ven mesh, and I represents the identity matrix. The transpose
operation is indicated by 7. The A here is chosen as constant
and plays an important role in terms of the resolution charac-
teristics of the reconstructed image [7]. It will also be shown
that the resolution provided by this penalty term tends to be
more biased toward the detector location compared to other
regularizations discussed in this work.

G
9,

C. Exponential Penalty/Regularization Term
The exponentially varying regularization is similar to the ear-
lier case, except that here it is spatially varying. That is,

P(pq) = 20 lall?, ©)

where A(r) is the spatially varying regularization parameter
with 7 representing the spatial position. The spatial variation
is achieved by exponential function that has the form (as dis-
cussed in [10])

401 = o exo( ) + e ™

where R is the radius of the imaging domain, with 1. and 4,
representing the regularization parameters that represents
the center and edge location. These are chosen empirically
as discussed in [10]. Similar to Eq. 5, the update equation here
becomes

VT + 20D = I (y = Glug))- ®

This form of the regularization captures the diagonal of the
Hessian matrix (J7J) and has been shown to perturb the solu-
tion less than the constant penalty term [10]. This physics
based regularization will also be shown to provide better re-
solution characteristics compared to the standard regulariza-
tion term.

D. Model-Resolution Based Penalty/Regularization Term
The model-resolution matrix derivation involves the lineariza-
tion of the problem. As the main aim of the optimization is to
match experimental data with the model data, i.e., assuming
y = G(y,), we can expand the G(u,) using Taylor series
around p, giving
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y= G(.ua) = G(.“aO) + G/(/‘a)(/‘a _/"aO)
+ (ﬂa - ﬂaO)TGHWa)(/'{a _ﬂaO) + .. (9)

where G'(u,) =J and G"(y,) is the Hessian. Linearizing the
above equation (ignoring all higher order terms) leads to

Y = G(uqp) + J (ta — Hao) (10)

using y — G(uq9) = & (also known as data-model misfit) and
Apy = pg — pao- Representing the true update in p, gives

5 =JAu,. (11)

Substituting Eq. 11 in Eq. 5 (assuming y — G(u,) = J) results in
Apy = 7T + ATYJITT Ay, (12)

The Ay, here represents the estimate of Ay,. It could be
noted that in the case of 1 = 0, the estimated updated optical
properties is equal to the true update, i.e., Ay, = Ay,. Be-
cause of the ill-posed nature of the problem, A > 0, which also
means Ay, # Au,. This leads to the definition of the model-
resolution matrix, which is given by

M = [JTJ + AT, (13)

which has the dimension of NN x NN and depends purely on
the numerical characteristics of J7J and the regularization
used (here it is Al). The estimated imaging parameters
(Ap,) are the weighted averages of the true imaging para-
meters (Ap,), where rows of M provide the weights [20].
In the case M = I, the imaging parameters are exactly deter-
mined [20]. Also, the model-resolution matrix does not depend
on the data (or the noise in the data). It is purely based on the
forward problem and the regularization used. Note that the M
is different for the standard and exponential penalty/
regularization terms. In the case of exponential penalty, the
model-resolution matrix is given by

M, = JTJ + AT, (14)

where the suffix  for M denotes the spatially varying nature
of the regularization used. The diagonal entries of the model-
resolution matrix capture the nonlinear nature of the model,
and the closer it is to unity, the better is the achieved resolu-
tion. This leads us to the definition of regularization based on
model resolution, which is also spatially varying (similar to
Eq. 6) and is defined as

M;; )
, =—— fori=1,2,...,NN, 15
"= max(;) 12
where M; is the diagonal entries of M (Eq. 13) and /; indicates
the i™ entry of the spatially varying regularization. The max
here represents the operation of finding the maximum value.
The penalty term for this scheme will be

Pug) = cilluall*. (16)

where c is a constant that provides a weight for the penalty
term (typically chosen as less than 1). This penalty leads to
the updated equation
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VT + cillAug = J" (y - G(ua))- an

The normalization operation in Eq. 15 make sure that the ef-
fect of A is minimal in getting the values of 4; (also shown la-
ter). Note that the model-resolution matrix for this penalty
term becomes

M, = [JTJ + cAd I (18)

The aim is to show that M; structure is more close to identity
matrix, implying the resolution characteristics are better. Also
note thatas 4 > 0in Eq. 13, the maximum value /; can take is 1
and minimum value is 0 [20].

E. Data-Resolution Matrix

The model-resolution matrix provides an estimate of the im-
age characteristics. It is also important to study the effect of
penalty on the data-resolution. The data-resolution matrix
arises from studying how well the estimated Ay, fits with
the observed data (here it is §) by rewriting Eq. 11 as

5, = T Au. (19)

where §, is the predicted data-model misfit and Ay, is the es-
timate update in p,. Substituting for the estimated Ay, using
Egs. (5), (8), and (17) will result in the data-resolution matrix.
It has the form [20]

D =JJ"J 4+ g7, (20)

where 1 represents the regularization schemes that were
employed in this work, namely, standard, exponential, and
model-resolution based penalty terms: 4, 4,, and c4;, respec-
tively. The data-resolution matrix has the dimension of
NMXNM and is similar to M. The closer it is to the identity
matrix, the lower the data prediction errors are. The range
of values for the entries of D is [0,1]. The diagonal values
of D also give the importance of the corresponding data point,
as it indicates the weight associated with its own prediction
[20]. The higher the magnitude of the diagonal entry of D, the
more important is the data point [20]. As is also evident from
Eq. (20), the data-resolution matrix is not a function of data
but depends on the model (J and the penalty term), similar to
model-resolution matrix.

F. Numerical Experiments

For objectively assessing the effect of using a model-resolu-
tion based penalty, circular (2D) and cylindrical (3D) imaging
domains are considered. These imaging domain background
optical properties were set to y, = 0.0l mm™, 4, = 1 mm™!
with uniform refractive index of 1.33. The circular imaging do-
main with a diameter of 86 mm is discretized by 20160 linear
triangular elements corresponding to 10249 number of nodes
(NN). A cylindrical domain with the same diameter and hav-
ing a height of 100 mm is discretized by using 63810 linear
tetrahedral elements corresponding to 12695 nodes (NN).
In both 2D and 3D cases, 16 fibers were spaced equally and
arranged in a circular fashion, where at a time one fiber acts as
a source and the rest act as detectors, leading to 240 (16 x 15)
measurements and implying NM = 240. The source is mod-
eled as a Gaussian source with a full-width-half-maximum
of 3 mm to mimic the experimental case [21] and placed at
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one scattering distance inside the imaging domain. Both 2D
and 3D finite element meshes were centered at origin and
the ring of fibers are placed at the center of Z-coordinate
(Z = 0) for the 3D case.

The absorption targets that were considered in this work
are circular and cylindrical in shape for 2D and 3D imaging
domains, respectively, and had optical properties u, =
0.02 mm!, 4, = 1 mm™. As mentioned earlier, as only ampli-
tude data were used in the reconstruction, the y; is assumed to
be known. A pixel-basis having 2500 elements (50 x 50) is
used as a reconstruction basis for 2D case and 30 x 30 x 30
grid for the 3D case. As the emphasis was on proving im-
proved resolution characteristics using the model-based pen-
alty term, resolving two targets that are separated by a small
distance is considered as the test object. The data noise level
was kept at 1% to mimic the experimental case [21]. This noisy
data (numerically generated), along with the initial guess of
the background optical values, are used in the reconstruction
procedure. In all cases here, the values A = 0.2 for standard
regularization, 1, = 0.04 and 4, = 0.1 for exponential regular-
ization, and ¢ = 0.2 for the model-resolution regularization
were used in reconstructing absorption images.

All computations are carried out on a Apple Mac worksta-
tion with dual quad-core 2.26 GHz Intel Xeon processor with
24 GB memory. The computations used the open-source
NIRFAST for finite element method based modeling of near
infrared light propagation in the tissue [22].

3. RESULTS

The composition of model-resolution based regularization
(Eq. 15) involves computing M using Eq. (13), which uses
the constant penalty term (1). The effect of 1 for computing
the 4; is studied by varying A, for which the J is computed
using a 2D homogenous mesh with background optical prop-
erties as given in Section 2F. The 1 is varied from 0.001 to 1000
(resulting in a factor of 10 between successive steps) and the
A; is plotted in the Fig. 1. The figure shows that variation of
A on the normalized diagonal values of M or 4; has little to
no effect, and any constant regularization based model-
resolution matrix will provide similar characteristics (evident
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Fig. 1. (Color online) Plot of diagonal of model-resolution matrix (M,
Eq. 13) versus spatial location in the imaging domain as a function of 4
(values are given in the legend).
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in Fig. 1). Note that 2 = 1 is used throughout this work for
calculating M and in turn A;.

To understand the effect of different penalty terms dis-
cussed earlier in Subsections 2.B, 2.C, and 2.D, the diagonal
of
the model-resolution matrices (normalized) corresponding to
these penalty terms are plotted (Fig. 2). The model-resolution
matrix forms are given in Eqs. (13-14), and (18) for standard,
exponential, and model-resolution based penalty terms. The
normalized diagonal entries of the same for a uniform mesh
(similar to earlier) is plotted in Fig. 2 as a function of radial
distance. It is evident that variation in the model resolution is
higher for the constant/standard regularization and the least
being model-resolution based penalty term. Also note that
at edge the resolution characteristics are similar for all penalty
terms discussed here, but at the center the model-resolution
based penalty provides better resolution characteristics, as
the values are higher in magnitude and more close to 1.

As discussed in Subsection 2.E, the data-resolution matrix
plays an important role in terms of predicted errors. This pro-
vides another quantitative way of analyzing the penalty terms,
where the diagonal entries of D (Eq. 20) give the importance
of data-points. The normalized diagonal entries of D using
standard (constant), exponential, and model-resolution based
penalty terms are plotted in Fig. 3. The model-resolution based
penalty term provides higher magnitude of the diagonal en-
tries of D, indicating that the importance to the corresponding
data-points is higher in this case compared to other penalty
terms. This also implies the prediction errors are lower for
the case of model-resolution based regularization.

To assess the observations made based on model-
resolution matrix characteristics, numerical experiments
where two targets are located close to the center and verti-
cally placed are considered. The radius of the targets is
7.5 mm and are separated by 5 mm (vertical distance). The
target u, distribution is given in the top row first column of
Fig. 4(a). The 1D cross-sectional value along Y-direction is
plotted as a solid line in Fig. 4(b). The reconstructed absorp-
tion distributions obtained using the penalty terms discussed
are given in the same figure (Fig. 4). Resolution of these

= 1

= ° Standard

E « Exponential

g 0.8 .

E . @ Model Resolution g

=

S |

E 0.6

=}

3

-7

=z 04T

<

=]

=

St

S 02

]

=

=]

=T

=

2 o . . .
0 10 20 30 40 50

Distance from the center (in mm)

Fig. 2. (Color online) Plot of diagonal of model-resolution matrices
for the regularization schemes versus the spatial location in the ima-
ging domain. The model-resolution equation for standard regulariza-
tion is given by Eq. 13, exponential by Eq. 14, and model-resolution
one by Eq. 18. - -
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Fig. 3. (Color online) Plot of the diagonal of the data-resolution ma-
trix (D, Eq. 20) for the regularization schemes used in this work versus
the measurement number.

closely spaced targets is achieved using model-resolution
based penalty term.

The sensitivity in diffuse optical imaging is known to be
higher near the boundary [23]. Because of placement of
source/detectors, the same effort of resolving two targets that
are vertically separated and placed near to the boundary is
taken up next. Same as above (Fig. 4), these have radius of
7.5 mm and are separated by 5 mm. The reconstruction results
obtained using the regularization schemes discussed in this
work are given in Fig. 5(a), along with the target distribution.
The 1D cross-sectional plot along the vertical line passing
through the centers of the targets (x = 28.5 mm) are given
in Fig. 5(b). Even though standard and exponential penalty
terms are able to resolve the targets, the regularization
scheme that is based on the model-resolution matrix is more
close to the target distribution.

A similar effort in 3D using cylindrical imaging domain is
taken up to assess the effectiveness of model-resolution based
regularization scheme and in here the targets are cylindrical

Target Standard
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Exponential Model Resolution

00O

0.005 0.01
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Cross Sectional Values at X=0 mm
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ones (radius of 10 mm) extending in Z direction. These are
placed close to the center of imaging domain (distance be-
tween the targets is 10 mm). The target 2D cross sections
of the 3D volume in 9 mm increments from 2z = -50 mm to
z = 50 mm from left to right are shown as top-row in Fig. 6(a).
The reconstruction results are given in the rest of the rows in
Fig. 6(a). A 1D plot obtained at Z = 0, across Y is given in
Fig. 6(b) for the reconstruction results obtained in Fig. 6(a).
The performance of exponential and model-resolution based
regularization scheme is similar and better than the standard
regularization. In case of same targets being placed close to
the edge, reconstructed absorption distributions and cross-
sectional plots are given in Fig. 7. The exponential penalty
term performs better than the standard constant penalty,
but the performance of modelresolution based scheme is
within 5% of matching value obtained using exponential pen-
alty. The typical number of iterations to reach the conver-
gence was 18 for all three regularization schemes for both
2D and 3D cases presented in this work.

4. DISCUSSION

Diffuse optical tomographic imaging is known to be a ill-posed
problem, which is compensated by a regularization/penalty
term. The choice of the penalty terms dictates the solution
of the problem. The prior information based regularization
is known to provide more stabilized and accurate solution
[9,13]. The regularization schemes based on the data, wave-
length, and the parameter have also been proven to be more
effective than the standard ones, with a caveat that they re-
quire information about the characteristics of the data (includ-
ing noise level) [11,13,15,16]. In this work, a regularization
scheme that is based on the model was introduced and shown
to provide better spatial resolution characteristics compared
to the ones existing in the literature. This regularization
scheme does not require/assume any characteristics about
the data and is purely based on the numerical-model that is
used in obtaining optical images. Note that the exponential
regularization scheme, which was based on the heuristics

0.02
0.015 |- N R
N/ o4
0.01 [— = — _‘:?.7.,.,'_
e — Target
Standard
‘== Exponential
- - - Model Resolution
0.005
40 20 0 20 40
Y (mm)
(b)

Fig. 4. (Color online) (a). Comparison of reconstruction performance in 2D using three regularization schemes discussed in this work for the
circular targets located close to the center with numerically generated 1% noisy data. The reconstructed images obtained along with corresponding
regularization scheme (given on top of image) are given along with the target image. (b). 1D cross-sectional plot of y, along the vertical line

(x = 0 mm) for the target and reconstructed results presented in (a).
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Fig. 5. (Color online) Similar effort to Fig. 4 except the targets are
located close to the boundary (edge) of the imaging domain.

[10], was also used in this work and shown to be as effective as
model-resolution based regularization in 3D [Fig. 6 and 7].

Obtaining 4; in Eq. (15) requires construction of M (Eq. 13),
which is one extra inversion (O(NN?)) performed compared to
other regularization scheme and any constant 4 will lead to si-
milar 4; (Fig. 1). This extra computation is performed only at
the initial iteration and in our experience change in diagonal of
M is insignificant (less than 0.01%) with the iterations. So 4; is
obtained at the initial iteration is used in subsequent iterations.

The parameter (model) resolution using the three penalties
discussed in this work showed that the model-resolution
based penalty provides optimal resolution characteristics
and the same is evident from Fig. 2. It is interesting to note
that the standard (constant) penalty term resulted in resolu-
tion characteristics following the similar trend of sensitivity
plots observed in [23], showing that the parameter resolution
is more biased toward the edge. The improvement in the re-
solution is more evident at the center of imaging domain
(comparing value of 0.25 for model-resolution based regular-
ization with 0.01 using other penalty terms). The same is also
proven using numerical experiments, where the resolution of
two targets that are placed close together is taken up as a test
case (Fig. 4). Note that the same trend has not been observed
in 3D (Fig. 6). Even though spatially varying regularizations
provided better resolution, the improvement between expo-
nential penalty and model-resolution penalty is not significant
[Fig. 6(b)]. This is primarily because the sensitivity of 3D
imaging is at least 5 orders of magnitude less compared to
2D [23-24], resulting in poor resolution characteristics.
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Fig. 6. (Color online) (a). Comparison of reconstruction perfor-
mance in 3D using three regularization schemes discussed in this
work for the cylindrical targets located close to the center with nu-
merically generated 1% noisy data. 2D cross sections of the 3D cylind-
rical volume in 9 mm increments spanning from z = -50 mm to
2 = 50 mm from left to right are shown. The reconstructed distribu-
tions obtained along with corresponding regularization scheme (given
on top of images) are given along with the target distribution. (b). 1D
cross-sectional plot of u, at Z =0 mm along the vertical line
(X = 0 mm) for the target and reconstructed results presented in (a).

The free regularization parameters and weights used in this
work are kept constant for all numerical examples discussed,
and these were chosen based on the prior experience of
authors. Any deviations from this choice lead to deterioration
of the reconstructed image quality or lead to meaningless re-
sults. Also, when the distance between the targets (having ra-
dius of 5 mm or more) either in 2D or 3D has been decreased
less than 5 mm (which is the typical resolution of diffuse op-
tical imaging), all regularization schemes discussed here
failed to resolve these targets (not shown here). Also when
the target size is below 5 mm, the same trend is observed. This
asserts that no penalty term cannot overcome the inherent re-
solution limitation of diffuse imaging. The new regularization
scheme can only improve the qualitative (resolution) and
quantitative nature of the reconstructed images compared
to the traditional ones, provided there is enough sensitivity
of the imaging problem. It might be also the case where
the penalty term is dominating the optimization scheme result-
ing in highly smooth image.

The data importance using data-resolution characteristics
(Fig. 3) for three-regularization schemes also showed similar
characteristics as model-resolution matrix (Fig. 2). The
model-resolution based penalty fairs better compared to
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Fig. 7. (Color online) Similar effort to Fig. 6 with targets located
close to the boundary (edge) of the imaging domain.

exponential penalty and standard penalty taking the lowest
value, meaning that the importance of data points is greater
when model-resolution penalty is used and results in better
usage of acquired data, leading to better quality of recon-
structed images.

Even though this work is focused more on diffuse optical
imaging, the developed methodology could be used for other
imaging modalities whose imaging principles are similar to dif-
fuse optical imaging, examples being fluorescence optical to-
mography [25], bioluminescence tomography [26], electrical
impedance tomography [27], and electrical capacitance tomo-
graphy [28]. Also, the imaging domains that are considered are
regularly shaped, but the observed trends and conclusions of
this work should hold good for irregular shaped real tissues
as well.

This work introduced a new penalty/regularization scheme
based on the model of the problem and also provided a quan-
titative way of assessing the performance characteristics of the
regularization schemes using both model-resolution and data-
resolution matrices. Note that assessing these characteristics
does not require performing the image reconstruction proce-
dure and also does not depend on the data (or noise in it).
The regularization scheme based on model-resolution pro-
vided better performance characteristics compared to others.

5. CONCLUSIONS

As regularization/penalty scheme plays an important role in
obtaining good quality reconstructed optical images in diffuse
optical tomography, this work presented a regularization
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scheme based on the model of the problem, called as model-
resolution based penalty. The motivation for this arises from
spatially varying regularization introduced earlier by Pogue
et. al [10], and a formal approach for obtaining the regulariza-
tion has been presented. Also objectively evaluating the new
regularization scheme (or any regularization) using the model
and data-resolution characteristics was also presented along
with numerical evidence backing up observed trends. The
model-resolution based regularization scheme was shown
to provide better optical images both qualitatively and quan-
titatively. This asserts that model-resolution based regulariza-
tion holds a promise to become the mainstream regularization
scheme in diffuse optical tomography. The experimental ver-
ification of the trends observed in this work is being pursued
as a future work.
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