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Abstract

Quantitative susceptibility mapping (QSM) utilizes the relationship between the

measured local field and the unknown susceptibility map to perform dipole

deconvolution. The aim of this work is to introduce and systematically evaluate the

model resolution-based deconvolution for improved estimation of the susceptibility

map obtained using the thresholded k-space division (TKD). A two-step approach

has been proposed, wherein the first step involves the TKD susceptibility map

computation and the second step involves the correction of this susceptibility map

using the model-resolution matrix. The TKD-estimated susceptibility map can be

expressed as the weighted average of the true susceptibility map, where the weights

are determined by the rows of the model-resolution matrix, and hence a

deconvolution of the TKD susceptibility map using the model-resolution matrix yields

a better approximation to the true susceptibility map. The model resolution-based

deconvolution is realized using closed-form, iterative, and sparsity-regularized

implementations. The proposed approach was compared with L2 regularization, TKD,

rescaled TKD in superfast dipole inversion, the modulated closed-form method, and

iterative dipole inversion, as well as sparsity-regularized dipole inversion. It was

observed that the proposed approach showed a substantial reduction in the streaking

artifacts across 94 test volumes considered in this study. The proposed approach also

showed better error reduction and edge preservation compared with other

approaches. The proposed model resolution-based deconvolution compensates for

the truncation of zero coefficients in the dipole kernel at the magic angle and hence

provides a closer approximation to the true susceptibility map compared with other

direct methods.
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1 | INTRODUCTION

Quantitative susceptibility mapping (QSM) utilizes the relationship between the measured local field and the unknown susceptibility map to

perform dipole deconvolution.1–4 However, solving for the tissue susceptibility from the acquired phase data is intrinsically ill-posed because of

the zero-valued coefficients around a double-shaped conical surface at the magic angle in the dipole kernel. One method to overcome this issue is

the use of multiple orientation sampling data that leads to well-conditioned inversion, as in the case of calculation of susceptibility through

multiple orientation sampling (COSMOS)5 and susceptibility tensor imaging.6 Although such multiorientation methods can yield near-optimal

solutions, this requires a prohibitively high acquisition time and patient discomfort associated with collecting the data at different angular

positions relative to the main magnetic field. Therefore, most of the practical QSM reconstruction methods rely on single-orientation acquisition

with the utilization of prior information to stabilize the inversion. Broadly, the single-orientation methods can be grouped into three categories,

namely, direct methods,7,8 iterative methods,9–11 and deep learning-based approaches.12–14

The most straightforward reconstruction approach is the thresholded k-space division (TKD) proposed by Shmueli et al.,7 wherein the

deconvolution is performed using a truncated dipole kernel whose entries are thresholded at a predetermined value (threshold) to avoid divi-

sion by zero. Although the method is fast and simple, it can lead to undesirable streaking artifacts in the reconstructed susceptibility maps. This

is due to the modification of the dipole kernel wherein the values less than the threshold are replaced with the threshold, and hence the divi-

sion is performed with inflated values in the dipole kernel. To reduce these errors, a modified version of TKD was proposed by Schweser

et al.,15 wherein the susceptibility values obtained using TKD are rescaled using the maximum value of the point spread function (PSF) due to

the dipole modification. Alternatively, a quadratic prior is introduced into the cost function to account for the zero-valued coefficients by Bilgic

et al.8 This often leads to over-smoothing and an unnatural appearance of the image. To overcome these limitations, a weighting in the

k-space of the regularization term was introduced by Khabipova et al.,16 such that the quadratic prior is applied only to the ill-conditioned

k-space points. All methods discussed until now rely on the modification of the dipole kernel, which leads to artifacts in the reconstructed

susceptibility map.

This work proposes a two-step formulation to reduce the artifacts introduced in the closed-form methods due to the modification of the

dipole kernel based on a model-resolution matrix. Specifically, this work focuses on reducing the artifacts that appear in the susceptibility map

generated using TKD due to the truncation of small coefficients in the dipole kernel. The TKD-estimated susceptibility map can be expressed as

the weighted average of the true susceptibility map where the rows of the model-resolution matrix determine the weights, hence a deconvolution

of the TKD susceptibility map using the model-resolution matrix yields a better approximation to the true susceptibility map. The model

resolution-based deconvolution is realized using closed-form, iterative, and sparsity-regularized implementations. Experiments performed across

94 test volumes showed that the proposed approach consistently yields qualitatively and quantitatively more accurate QSM reconstructions

compared with the other deconvolution methods considered in this study.

2 | METHODS

2.1 | Datasets

A brief description of the two datasets utilized in this work is provided here. Dataset-I consisted of a total of 60 scans collected from

12 healthy subjects, acquired at 3 T (nine datasets using Tim Trio, and three datasets using MAGNETOM Skyra, Siemens Healthineers,

Forchheim, Germany) at five different head orientations.13 A 3D single-echo gradient echo (GRE) scan was used to acquire the dataset with

sequence parameters as follows: voxel size ¼1�1�1mm3, TR¼33ms, TE ¼ 25ms, bandwidth = 100Hz=pixel, flip angle = 150. The field of

views (FOVs) for the Tim Trio and Skyra scans were set to 256�224�176 and 224�224�176mm3, respectively.13 All imaging volumes in the

dataset had a matrix size of 176�176�160. Dataset-II consisted of eight healthy subjects, acquired at 7 T (Philips Achieva) with four head orien-

tations each, with a total of 32 volumes.17 Three slightly different 3D GRE sequences were used to acquire the dataset with voxel size

¼1�1�1mm3. The other sequence parameters were: TR=28ms, TE1/δTE=5/5ms, five echoes, FOV =224�224�126mm3 for the first four

subjects, TR=45ms, TE1/δTE=2/2ms, nine echoes, FOV ¼224�224�110mm3 for the next three subjects and TR=45ms, TE1/δTE=2/2ms,

16 echoes, FOV=224�224�110mm3 for the last subject.17 Among them, 16 volumes were of matrix sizes 224�224�126, and the remaining

16 volumes were of matrix size 224�224�110. Multiple phase preprocessing steps were performed for each dataset, including phase

unwrapping,18 brain masking with FSL BET,19 and background phase removal using V-SHARP.20,21 For the multiecho datasets, echo averaging

was also performed for echoes with TEs between 10 and 30ms. Dataset-I and Dataset-II were preprocessed and shared by Ref..13 and Ref.,17

respectively. The individual test data were referred to as subject 1 to 12 (Dataset-I) and subject 1 to 8 (Dataset-II), with the respective orientation

number.
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2.2 | Model resolution-based deconvolution

The measured local field δB rð Þ�P ⊆ℝp is related to the underlying unknown susceptibility map χtrue rð Þ�X ⊆ℝp as

FHD kð ÞFχtrue rð Þ¼ δB rð Þ, ð1Þ

where F denotes the Fourier transform matrix, D kð Þ denotes the diagonal matrix of size p�p with entries 1
3�

k2z
k2
, and P and X represent the

spaces of local field measurements and susceptibility maps, respectively. Here k denotes the coordinate vector in the Fourier domain, r denotes

the coordinate vector in the image domain, and k2 ¼ k2x þk2y þk2z . Because D kð Þ undersamples the frequency content of the susceptibility map

as its entries are equal to zero on the conical surface, the inverse computation is highly ill-posed. To overcome this issue, TKD7 performs the

inversion using a truncated version of the dipole kernel, replacing those entries of D where the value is less than a constant number τ,

D�1
τ kð Þ¼

1
3�

k2z
k2

h i�1
; if 1

3�
k2z
k2

��� ���> τ
sgn 1

3�
k2z
k2

h i
τ�1;otherwise

8><
>: : ð2Þ

Here sgn denotes the signum function. Then the susceptibility map bχTKD rð Þ is estimated as

bχTKD rð Þ¼FHD�1
τ kð ÞFδB rð Þ: ð3Þ

Substituting Equation (1) into Equation (3),

bχTKD rð Þ¼FHD�1
τ kð ÞD kð ÞFχtrue rð Þ: ð4Þ

Denoting

FHD�1
τ kð ÞD kð ÞF ¼M, ð5Þ

which is called the model-resolution matrix, of size p�p; Equation (4) can be represented as

bχTKD rð Þ¼Mχtrue rð Þ: ð6Þ

This indicates that the estimated susceptibility values are the weighted averages of the true susceptibility map, where the weights are

determined by the rows of the model-resolution matrix.22 Equation (6) can also be obtained in the following way. Denoting FHD kð ÞF as D and

χtrue rð Þ as X and δB rð Þ as B, Equation (1) can be represented as

DX¼B: ð7Þ

Multiplying Equation (7) using a preconditioner T yields,

TDX¼TB: ð8Þ

In the proposed model-resolution approach, the preconditioner in Equation (8) is taken as the truncated inverse of D denoted as

D�1
τ ¼FHD�1

τ kð ÞF
� �

, which transforms the domain of the problem, that is,

D�1
τ DX¼D�1

τ B, ð9Þ

where D�1
τ D is the model-resolution matrix23 denoted as M and D�1

τ B is the estimated susceptibility map bχTKD. The model-resolution matrix

is entirely determined by the operator matrix of the forward problem and is independent of the measured data (or noise therein). If M¼ I, where I

is the identity matrix, the susceptibility values are exactly determined. However, as the model-resolution matrix is composed of the truncated

version of the dipole kernel D�1
τ kð Þ, M≠ I. The diagonal entries that are not close to 1 indicate the deviation of estimated susceptibility maps from

the true susceptibility maps. Dipole kernel Dτ kð Þ and the corresponding D kð ÞD�1
τ kð Þ for each truncation parameter are shown in Figure S1.
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The aim of this work is to estimate χtrue rð Þ using M and bχTKD rð Þ. Because bχTKD rð Þ can be expressed as the weighted average of the true

susceptibility map, where the weights are determined by the model-resolution matrix as in Equation (6), the deconvolution of bχTKD rð Þ using the

model-resolution matrix yields a better approximation to the true susceptibility map. In other words, the second deconvolution is to reduce the

errors introduced because of the truncation of the dipole kernel. The effect of dipole modification (truncating the dipole kernel) was investigated

analytically by calculating the modulation transfer function (MTF) computed as D�1
τ kð ÞD kð Þ in Ref.15 which is equivalent to the model-resolution

matrix, provided that Equation (1) is expressed in the Fourier domain. To estimate a closer approximation to the χtrue rð Þ, Equation (6) is solved

using (i) closed-form, (ii) iterative, and (iii) sparsity-regularized implementations.

2.2.1 | Closed-form solution

To estimate a closed-form solution for Equation (6), an approximate inverse M�1
τ is first computed by taking D�1

τ

� ��1
≈D, and D�1 ≈D�1

τ ,

respectively. Thus, utilizing the dipole inverse in Equation (2), an estimate of χtrue rð Þ denoted as bχclosed rð Þ is computed as

bχclosed rð Þ¼M�1
τ bχTKD rð Þ, ð10Þ

where M�1
τ denotes the approximate inverse of M, computed as M�1

τ ¼FHD�1
τ kð ÞD kð ÞF . This step reduces the artifacts that are introduced in the

TKD solution due to the truncation of small coefficients in the dipole kernel. The computation of the susceptibility map using TKD requires O 3pð Þ
operations and that of MR-TKD requires O 6pð Þ operations, with reusing the matrix FHD�1

τ kð Þ from TKD. The truncation parameter τ to be used

in the reconstruction of the proposed approach can be determined as that corresponding to the maximum contrast-to-noise ratio (CNR).24,25

The computation of CNR was performed following the same procedure described in Ref.25 Initially, the susceptibility differenceΔχ¼ χ1�χ2 of

the red nucleus and substantia nigra (χ1) from the surrounding white matter (χ2) was computed. Then the CNR was obtained as

CNR¼ μΔχ
σΔχ

, ð11Þ

where μΔχ and σΔχ denote the mean and standard deviation of Δχ, respectively.

2.2.2 | Iterative solution

Although Equation (5) inversion can be achieved by a closed-form solution, M is ill-conditioned to be inverted, hence an iterative approach such

as gradient descent is better suited, where the number of iterations acts as an implicit regularization.18,26 To compute a closer approximation to

the true susceptibility map in an iterative fashion, the optimization problem from Equation (6)

argmin
χtrue rð Þ

1
2

Mχtrue rð Þ�bχTKD rð Þ
��� ���2

2
, ð12Þ

is solved using the gradient descent update,

bχ itþ1 rð Þ¼bχ i t rð Þ�αMH Mbχ it rð Þ�bχTKD rð Þ
� 	

, ð13Þ

where α and t denote the step size and iteration number, respectively.

2.2.3 | Sparsity-regularized solution

To compute a sparsity-regularized solution for Equation (6), the optimization function is modified with the inclusion of the regularization function as

argmin
χtrue rð Þ

1
2

Mχtrue rð Þ�bχTKD rð Þ
��� ���2

2
þR χtrue rð Þð Þ: ð14Þ
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Then a proximal forward-backward splitting method is used where nonlinear diffusion (the nonlinear diffusion becomes equivalent to the

total variation (TV) when the diffusivity function gð Þ used is g rχj jð Þ¼ 1
rχj jþϵ ,

27 where r denotes the gradient operator and ϵ¼10�6) forms

the forward step and biasing (enforcing data consistency) forms the backward step. This is solved iteratively using,

~χs
tþ1 rð Þ¼bχst rð Þ�αMH Mbχst rð Þ�bχTKD rð Þ

� 	
, ð15Þ

and

bχstþ1 rð Þ¼ ~χs
tþ1 rð Þþ γdiv g r~χs

tþ1 rð Þ
� �

r~χs
tþ1 rð Þ

� �
, ð16Þ

where div denotes the divergence operator, and γ is the regularization parameter.

2.3 | Figure of merit and comparison methods

The metrics considered in this work were structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), normalized mean

squared error (NMSE), and high-frequency error norm (HFEN), with all metrics computed with reference to COSMOS, as described in

Langkammer et al.28

The proposed approach was compared with the L2 regularized method,8 TKD,7 the rescaled TKD in superfast dipole inversion (SDI)15 referred

to as the SDI, modulated closed-form (MCF)16 method, iterative dipole inversion (Iterative DI), and that with TV prior (DI-TV). In L2-regularized

reconstruction (L2)8 Tikhonov formulation is utilized to obtain a closed-form solution computed as

~χL2 rð Þ¼FH D kð Þ

D kð Þ2þλ2
P3
i¼1

E2i

FδB rð Þ

8>>><
>>>:

9>>>=
>>>;
, ð17Þ

where λ is the regularization parameter, Ei is a diagonal matrix with entries given by 1�e�2πjki=Ni , and ki and Ni are the k-space coordinate and the

matrix size along i-direction, respectively. In SDI,15 the value of the PSF at the origin, PSF τ;0ð Þ, is used to scale the TKD solution as

~χSDI rð Þ¼ PSF τ;0ð Þ½ ��1bχTKD rð Þ, ð18Þ

where PSF τ;rð Þ¼FHD�1
τ kð ÞD kð Þ. In MCF, a weighted form of Tikhonov regularization can be computed as

~χMCF rð Þ¼FH D kð Þ
D kð Þ2þλ2Λ kð Þ

P3
i¼1E

2
i

FδB rð Þ
( )

, ð19Þ

where Λ kð Þ is a weighting matrix given by

Λ kð Þ¼ cos
π
2D kð Þ
τ ; if D kð Þj j< τ

0 ;otherwise:

(
ð20Þ

Iterative DI solves the optimization problem,

argmin
χtrue rð Þ

1
2

Aχtrue rð Þ�δB rð Þk k22, ð21Þ

using the gradient descent update,

bχtþ1
DI rð Þ¼bχtDI rð Þ�αAH AbχtDI rð Þ�δB rð Þ

� 	
, ð22Þ

where A¼FHD kð ÞF . With regularization prior, the optimization problem takes the form,
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argmin
χtrue rð Þ

1
2

Aχtrue rð Þ�δB rð Þk k22þR χtrue rð Þð Þ: ð23Þ

Then the above equation is solved iteratively using,

~χtþ1
DI�TV rð Þ¼bχtDI�TV rð Þ�αAH AbχtDI�TV rð Þ�δB rð Þ

� 	
, ð24Þ

and

bχtþ1
DI�TV rð Þ¼ ~χtþ1

DI�TV rð Þþ γdiv g r~χtþ1
DI�TV rð Þ

� �
r~χtþ1

DI�TV rð Þ
� �

: ð25Þ

The parameter values utilized in the reconstruction of each method were chosen to yield the minimum NMSE (averaged) across Dataset-I and

Dataset-II and are summarized in Table S1 for reference. In all the iterative methods, the initial susceptibility vector is initialized as a zero vector. All

implementations were performed using MATLAB on a Linux workstation with an Intel i9-10900 � 3.70 GHz processor and 128 GB of RAM.

3 | EXPERIMENTS

3.1 | Closed-form model resolution-based deconvolution

In this section, a brief description of the experiments performed for the selection of truncation parameters and comparison with other closed-

form methods are provided. For the former case, the selection of the optimal truncation parameter using COSMOS, its generalizability (to other

subjects, orientations, and acquisition protocols), and closeness to the parameter corresponding to maximum CNR, was examined by performing

the following set of experiments. To compute the optimal truncation parameter and analyze its generalizability across different subjects under the

same acquisition parameters, closed-form reconstructions (using Equation 10) were performed, with the values of τ varying from 0.10 to 0.50 in

steps of 0.02 for subjects 1 to 6 of Dataset-I and Dataset-II. The head orientation (orientation 1) was kept the same for all subjects. Similarly,

to compute the optimal truncation parameter and analyze its generalizability across different head orientations of the same subject, MR-TKD

reconstructions were performed with τ values varying from 0.10 to 0.50 using Subject-1 of Dataset-I with head orientations 1 to 5 and Dataset-II

with head orientations 1 to 4. To evaluate the closeness of the NMSE optimal parameter and that given by maximum CNR, the CNR values were

computed with the values of τ varying from 0.10 to 0.50 with different subjects with the same orientation and different orientations of the same

subjects for both Dataset-I and Dataset-II. To compare the performance of existing closed-form methods with the proposed closed-form method

(using Equation 10), reconstructions were performed using L2, MCF, SDI, TKD, and the proposed closed-form method, using Dataset-II

(Subject-3). It is to be noted that the rescaled TKD in SDI15 is referred to as SDI here.

3.2 | Iterative and sparsity-regularized model resolution-based deconvolution

In this section, a brief description of the experiments performed for choosing the optimal scale factor, stopping criterion, and comparison

with other methods, is provided. To choose the optimal scale factor, model resolution-based iterative deconvolution was performed with the scale

factor values varying from 0.05 to 0.50 for subjects 1 and 2 of both datasets. To determine the stopping criterion, NMSE and relative gradient

norms were computed at the prefixed scale factor for subjects 1 to 6 of Dataset-I and Dataset-II. For the chosen scale factor, the iterations were

stopped when the relative change in gradient vectors is less than a tolerance, fixed empirically. In both cases, the reconstructions were performed

for subjects 1 to 6 of Dataset-I. The performances of the proposed iterative and sparsity-regularized implementations were compared with

iterative DI and DI-TV reconstructions.

4 | RESULTS

4.1 | Visual and figure of merit comparison

The representative reconstructed susceptibility maps and difference images using Dataset-II for different closed-form dipole deconvolution

methods are shown in Figure 1. The susceptibility maps obtained using L2 were over-smoothed, whereas the ones for TKD, SDI, and MCF were
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sharper but with undesirable streaking artifacts. The images obtained using the MR-TKD yielded a better compromise between the mitigation of

artifacts and image sharpness along with lower NMSE values (listed below the difference images). The representative reconstructed susceptibility

maps and difference images using reconstruction challenge-1 (RC-1) data28 and reconstruction challenge-2 (Sim1Snr1) data29 of the dipole

deconvolution methods are shown in Figures 2 and 3, respectively. The images obtained using the model resolution-based deconvolution yielded

a better compromise between the mitigation of artifacts and image sharpness. It is to be noted that the model-resolution deconvolution proposed

in this work used the TKD susceptibility map for the first deconvolution. The average figure of merit values for the different reconstruction

methods are listed in Table 1. Compared with other methods, the proposed MR-TKD showed improvements in all metrics for both datasets.

4.2 | Local measurements

The local measurements of susceptibility values for five different regions of interest (ROIs) for different reconstruction methods and the

respective COSMOS values are summarized in Table 2. The metrics values obtained using the proposed model resolution-based deconvolution

were comparable with those of COSMOS for the different local regions considered.

4.3 | Selection and generalizability of truncation parameter for closed-form implementation

As reported for TKD,7 the optimal parameter value for closed-form implementation (MR-TKD) lies in the range of 0.20 to 0.50. Plots of NMSE

and CNR versus truncation parameters (τ) are shown in Figure S2. Plots of NMSE versus τ shown in Figure S2 (A1) and (A3) indicate that the

optimal parameter (i.e., the parameter corresponding to the minimum NMSE) for all six subjects (with the same orientation) lies between 0.20 and

0.30, for Dataset-I and Dataset-II, respectively. The corresponding plots for CNR versus τ are shown in Figure S2 (A2) and (A4). It was

observed that the truncation parameter corresponding to the maximum CNR, which provided a good trade-off between image contrast and noise

amplification, lies close to the optimal parameter. Similarly, the NMSE versus τ plots for the same subject with different head orientations shown

F IGURE 1 The first and third rows correspond to the axial and coronal views of the susceptibility maps reconstructed using different closed-
form methods (listed at the top of the first row) for one representative subject in orientation-1 of Dataset-II. The corresponding difference images
with respect to COSMOS (first column) are shown in the second and fourth rows, respectively. The NMSE values (with respect to COSMOS) for
each volume are listed at the bottom for reference. COSMOS, calculation of susceptibility through multiple orientation sampling; MCF, modulated
closed-form; MR-TKD, model resolution based truncated k-space division; NMSE, normalized mean squared error; SDI, superfast dipole inversion;
TKD, thresholded k-space division.
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F IGURE 2 Reconstructed susceptibility maps (sagittal, coronal, and axial views) as the first column, and corresponding difference images with
respect to COSMOS as the second column, obtained using the closed-form (rows 2 and 3), iterative (rows 4 and 5), and sparsity-enforced
methods (rows 6 and 7) for reconstruction challenge-1 data. The COSMOS susceptibility maps are shown in the top row for reference. The
NMSE values with respect to COSMOS are also shown in the insets. COSMOS, calculation of susceptibility through multiple orientation sampling;
DI, dipole inversion; DI-TV, dipole inversion with total variation prior; MR, iterative; MR-TKD, model resolution based truncated k-space division;
MR-TV, model resolution deconvolution with total variation prior; NMSE, normalized mean squared error; TKD, thresholded k-space division.
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F IGURE 3 Reconstructed susceptibility maps (sagittal, coronal, and axial views) and corresponding difference images with respect to the
ground truth susceptibility map obtained using the closed-form (rows 2 and 3), iterative (rows 4 and 5), and sparsity-enforced methods (rows
6 and 7) for reconstruction challenge2 (Sim1Snr1) data. The ground truth susceptibility maps are shown in the top row for reference. The
respective NMSE values with respect to the ground truth susceptibility maps are also shown in the insets. DI, dipole inversion; DI-TV, dipole
inversion with total variation prior; MR, iterative; MR-TKD, model resolution based truncated k-space division; MR-TV, model resolution
deconvolution with total variation prior; NMSE, normalized mean squared error; TKD, thresholded k-space division.
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in Figure S2 (B1) (Dataset-I) and (B3) (Dataset-II) also yielded an optimal τ value between 0.20 to 0.30 in all cases. It was also observed that

the truncation parameter corresponding to the maximum CNR, as shown in Figure S2 (B2) and (B4), lies close to the optimal parameter. Because

the optimal parameter has little variation across subjects, orientations, and acquisition protocols, we do not recommend repeatedly determining

the parameter for each test case. In all our experiments, we utilized a truncation parameter of τ¼0:22. The relative change in the figure of merit

observed while choosing a heuristic truncation parameter τ¼0:22 with respect to the optimal parameter is summarized in Table S2.

4.4 | Selection of scale factor and stopping criterion for iterative implementation

For the iterative implementation without regularization, plots of NMSE versus iterations are shown in Figure S3 for (A1) Subject-1 and

(A2) Subject-2 (Dataset-I). Similarly, plots of NMSE versus iterations for Subject-1 and Subject-2 of Dataset-II are shown in Figure S3 (A3) and

(A4), respectively. The minimum NMSE that can be achieved was found to be the same irrespective of the scale factor, in all cases. However, the

rate of change is higher for larger values of the scale factor. In all experiments, a fixed scale factor of 0.10 was utilized. Plots of NMSE versus

iterations for different subjects with the chosen scale factor are shown in Figure S3 (B1) (Dataset-I) and (B3) (Dataset-II). The corresponding

TABLE 1 Average figure of merit and computed time over Dataset-I13 (60 test volumes) and Dataset-II17 (32 test volumes). The best figure of
merit values are presented in bold.

Figure of merit

Dataset-I Dataset-II

SSIM PSNR (dB) NMSE (%) HFEN (%) Time (s) SSIM PSNR (dB) NMSE (%) HFEN (%) Time (s)

L2 0.8628 36.78 81.51 71.12 0.064 0.9122 32.46 83.29 67.39 0.058

MCF 0.8610 37.75 72.89 66.43 0.064 0.9132 32.85 69.16 62.80 0.075

SDI 0.8606 38.20 69.05 66.26 0.067 0.9153 32.85 66.11 63.57 0.068

TKD 0.8328 37.49 78.57 72.65 0.064 0.9098 32.05 70.21 67.14 0.072

MR-TKD (proposed) 0.8714 38.47 67.90 64.19 0.117 0.9230 32.91 62.53 60.23 0.139

Iterative DI 0.8747 38.46 66.58 64.45 1.70 0.9215 32.84 62.84 61.48 1.38

MR-iterative (proposed) 0.8752 38.59 65.88 63.06 1.69 0.9233 32.93 62.06 59.64 1.29

DI-TV 0.8778 38.48 65.74 63.35 3.74 0.9220 32.90 61.96 60.39 5.68

MR-TV (proposed) 0.8802 38.93 64.03 61.96 3.15 0.9236 32.96 60.81 59.25 5.05

Abbreviations: DI, dipole inversion; DI-TV, dipole inversion with total variation prior; HFEN, high-frequency error norm; MCF, modulated closed-form; MR,

iterative; MR-TKD, model resolution based truncated k-space division; MR-TV, model resolution deconvolution with total variation prior; NMSE, normalized

mean squared error; PSNR, peak signal-to-noise ratio; SDI, superfast dipole inversion; SSIM, structural similarity index measure; TKD, thresholded k-space

division.

TABLE 2 Local measurements (mean value and standard deviation) of the susceptibility values (in parts per billion) across five head
orientations for Subject-1 of Dataset-I.13

ROI GP PN CN SN RN

L2 124.8 ± 39.5 62.4 ± 28.8 31.7 ± 29.3 48.10 ± 29.0 83.1 ± 17.6

TKD 110.4 ± 39.0 49.2 ± 25.4 35.0 ± 26.6 36.4 ± 31.2 78.5 ± 27.4

SDI 84.5 ± 27.2 38.1 ± 19.9 26.9 ± 17.8 32.3 ± 21.3 60.1 ± 18.1

MCF 113.1 ± 31.9 54.6 ± 24.6 30.4 ± 26.2 28.7 ± 27.3 81.8 ± 21.4

MR-TKD (proposed) 103.3 ± 32.7 46.1 ± 18.5 27.7 ± 23.4 35.3 ± 27.7 72.9 ± 23.2

Iterative DI 90.0 ± 23.2 42.4 ± 13.9 20.9 ± 16.7 39.3 ± 19.6 59.8 ± 17.0

MR-Iterative (proposed) 101.1 ± 31.1 45.5 ± 17.6 26.4 ± 21.5 40.8 ± 25.1 66.0 ± 21.7

DI-TV 91.8 ± 23.2 43.7 ± 14.6 25.3 ± 17.5 39.9 ± 19.5 61.0 ± 16.3

MR-TV (proposed) 104.1 ± 32.6 46.6 ± 18.6 24.4 ± 21.3 41.3 ± 24.6 69.2 ± 16.9

COSMOS 136.4 47.4 23.0 89.6 67.9

Abbreviations: CN, caudate nucleus; COSMOS, calculation of susceptibility through multiple orientation sampling; DI, dipole inversion; DI-TV, dipole

inversion with total variation prior; GP, globus pallidus; MCF, modulated closed-form; MR, iterative; MR-TKD, model resolution based truncated k-space

division; MR-TV, model resolution deconvolution with total variation prior; PN, putamen; RN, red nucleus; ROI, region of interest; SDI, superfast dipole

inversion; SN, substantia nigra; TKD, thresholded k-space division.
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relative gradient norm versus iterations are shown in Figure S3 (B2) (Dataset-I) and (B4) (Dataset-II), respectively. The iterations were stopped

when the relative gradient norm fell below 8.5, which was empirically chosen.

4.5 | Selection of scale factor and stopping criterion for sparsity-regularized implementation

For the sparsity-regularized implementation, plots of NMSE versus iterations are shown in Figure S4 for the (A1) Subject-1 and (A2) Subject-2

(Dataset-I). Similarly, plots of NMSE versus iterations for Subject-1 and Subject-2 of Dataset-II are shown in Figure S4 (A3) and (A4), respectively.

Similar to the iterative implementation without regularization, the minimum NMSE that can be achieved was found to be the same irrespective of

the scale factor, in all cases. However, the rate of change is higher for larger values of the scale factor. In all experiments, a fixed scale factor

of 0.10 was utilized. Plots of NMSE versus iterations for different subjects with the chosen scale factor are shown in Figure S4 (B1) (Dataset-I)

and (B3) (Dataset-II). It was observed that with regularization, the NMSE values exhibited a converging behavior as opposed to those without

regularization. In all cases, the regularization parameter was empirically fixed as 10�4. The corresponding relative gradient norm versus iterations

are shown in Figure S4 (B2) (Dataset-I) and (B4) (Dataset-II), respectively. The iterations were stopped when the relative change in the successive

iterates fell below 0:01 or the maximum number of iterations was reached, as indicated by the red circular markers in the NMSE plots.

4.6 | Application to other closed-form methods

The proposed model resolution-based deconvolution can be applied to other closed-form methods, like L2 and MCF. The figure of merit values

obtained using these implementations are summarized in Table 3. It was observed that the proposed model-resolution deconvolution can improve

the susceptibility map reconstructions compared with those of the original implementations.

5 | DISCUSSION

QSM has gained broad interest in the field because of its wide range of potential clinical applications.30–32 However, the multiple processing steps

involved in the QSM pipeline, which are fairly complex and computationally expensive, call for careful optimization, while employing the same in

standard clinical practice. In this work, a two-step approach was proposed for improving the direct reconstruction approach in the context of

TKD. This involves the computation of the TKD susceptibility map followed by a model resolution-based deconvolution to estimate a closer

approximation to the true susceptibility map. Experiments demonstrated that the proposed approach compensates for the truncation of zero

coefficients in the dipole kernel at the magic angle, thereby yielding more accurate reconstructions compared with other direct methods.

The proposed two-step formulation was utilized earlier in diffuse optical tomography23 and photoacoustic tomography,33 where the effect of

regularization was lessened to provide better reconstructed images. In the QSM literature, a similar correction step to TKD was introduced

in SDI15 that utilizes the PSF due to dipole modification. The steps involved in TKD, MR-TKD, and SDI are summarized in Table S3 for easy

reference. In SDI, the PSF was approximated as a delta function that enables rescaling of the TKD solution using PSF τ;0ð Þ½ ��1. Although PSF τ;0ð Þ
corresponds to its maximum value, there exist many nonzero values in the PSF. Consequently, there still remains some component of

underestimation that further requires correction. Alternatively, all components of the model-resolution matrix have been utilized to perform the

second deconvolution in the proposed model resolution-based deconvolution, which yields a closer approximation to the true susceptibility map

than SDI.

TABLE 3 Average figure of merit over Dataset-I (60 test volumes) and Dataset-II (32 test volumes) without and with model-resolution
deconvolution for L2-regularized and MCF reconstructions.

Figure of merit

Dataset-I Dataset-II

SSIM PSNR (dB) NMSE (%) HFEN (%) SSIM PSNR (dB) NMSE (%) HFEN (%)

L2 0.8628 36.78 81.51 71.12 0.9122 32.46 83.29 67.39

MR-L2 0.8660 37.18 76.05 65.66 0.9159 32.73 72.50 65.01

MCF 0.8610 37.75 72.89 66.43 0.9132 32.85 69.16 62.80

MR-MCF 0.8645 38.09 69.45 65.47 0.9153 32.95 65.56 62.10

Abbreviations: HFEN, high-frequency error norm; MCF, modulated closed-form; MR-L2, model resolution deconvolution after L2 reconstruction;

MR-MCF, model resolution deconvolution after modulated closed form reconstruction; NMSE, normalized mean squared error; PSNR, peak signal-to-noise

ratio; SSIM, structural similarity index measure.
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6 | CONCLUSION

In this work, a two-step QSM reconstruction approach was established, wherein the model-resolution characteristics were utilized to reduce the

artifacts introduced by the truncation of coefficients in the dipole kernel. The performance of the proposed model-resolution deconvolution for

QSM reconstruction yields more accurate reconstructions compared with other direct and iterative methods across all datasets considered in the

study.
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