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Model-Resolution-Based Basis Pursuit
Deconvolution Improves Diffuse Optical

Tomographic Imaging
Jaya Prakash, Hamid Dehghani, Brian W. Pogue, and Phaneendra K. Yalavarthy*

Abstract—The image reconstruction problem encountered in
diffuse optical tomographic imaging is ill-posed in nature, necessi-
tating the usage of regularization to result in stable solutions. This
regularization also results in loss of resolution in the reconstructed
images. A frame work, that is attributed by model-resolution, to
improve the reconstructed image characteristics using the basis
pursuit deconvolution method is proposed here. The proposed
method performs this deconvolution as an additional step in the
image reconstruction scheme. It is shown, both in numerical and
experimental gelatin phantom cases, that the proposed method
yields better recovery of the target shapes compared to traditional
method, without the loss of quantitativeness of the results.

Index Terms—Basis pursuit deconvolution, diffuse optical
tomography, image reconstruction, near infrared imaging.

I. INTRODUCTION

S OFT tissue imaging using near infrared light (NIR),
having wavelength range of 600–1000 nm, has become a

promising physiological imaging modality due to the nonion-
izing nature of radiation [1]–[3]. Diffuse optical tomography,
which uses this NIR light as the probing media, exploits the
high intrinsic contrast provided by the soft tissue with main
applications being brain and breast imaging [1]–[4]. Estimating
the internal distribution of optical properties using NIR light
measurements acquired at the boundary is a critical step in
diffuse optical tomography [5], [6]. Unlike X-ray imaging, NIR
light interaction within the tissue is dominated by scattering
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rather than absorption [5], resulting in loss of resolution in the
reconstructed optical images.
Reconstruction of the optical parameters using the limited

boundary measurements, also known as the inverse problem, is
an ill-posed and under-determined problem (limited boundary
data) leading many possible solutions [7], [8]. Constraining
the solution space via regularization is one of the common
approaches for solving the inverse problem, resulting in most
popular Gauss-Newton image reconstruction scheme. The
addition of regularization also results in loss of resolution
characteristics of the Tikhonov solution, but often necessary
for enabling the computation of optical images [7], [8]. Even
though there is inherent limitation on the achievable spatial
resolution of optical images due to the dominance of scattering
at NIR wavelengths, the reconstructed optical images typically
appear to be blobby/blurry in nature with less ability to recover
shapes using standard reconstruction techniques. The main
source of this blur, other than the diffusion of light, is the
regularization used for stabilizing the inverse problem. As one
can not perform the image reconstruction without the aid of
regularization in these cases, there is a considerable interest
in methods that can minimize the effect of regularization and
reduce the blur caused by it.
The choice of the regularization scheme that is deployed in

performing the diffuse optical image reconstruction depends
on the prior information available to the user about the noise
characteristics of the data and expected image characteristics
[7]–[11]. These regularization schemes can be as advanced as
utilizing the structural priors available in dual-modality diffuse
optical imaging [7], [8]. More importantly, the simple standard
regularization schemes like Tikhonov method, that imposes
quadratic penalty, assumes that the expected optical image is
piece-wise constant and smooth in nature [5], [7]. Thus, it leads
to loss of sharp features in the reconstructed images.
Deblurring of diffuse optical images has shown some

promise in recovering the target shapes [12]–[14], these
methods had used forward operator characteristics and built
an information spread function (ISF) independent of image
reconstruction procedure. In the proposed work, the aim is to
build the ISF or its equivalent in an integrated approach with
inclusion of regularization. The image deblurring/deconvolu-
tion approaches work at their best in terms of restoration of
blurred images when the ISF contains all sources of blurring.
The deconvolution is typically performed by using constrained
deconvolution method and least squares filtering method [15],
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[16]. The reconstructed optical images can also be improved
by usage of shape-recovery algorithms [17]–[20], all of them
require shape-based parameterization, which are computa-
tionally expensive algorithms compared to the traditional
Gauss-Newton image reconstruction method. These edge-pre-
serving regularization methods deploy a first-order difference
matrix [19], [20], which tend to be computationally expensive
step for large problems. The method proposed in this work
does not have this requirement. The most computationally
expensive step in the proposed method involves singular value
decomposition (SVD), which is commonly used in performing
diffuse optical tomographic reconstruction [1], [21]. Also, the
proposed method is aimed at removing the blur introduced
by usage of regularization, making this universally appealing
irrespective of the regularization scheme deployed.
In the recent past, there is considerable interest in the image

deconvolution using basis pursuit deconvolution, resulting
in set of compressive sensing techniques based on -norm
minimization forming the state of the art image restoration
methods [22]–[26]. Basis pursuit deconvolution/denoising
(BPDN)-type methods have been used previously in diffuse
optical tomographic image reconstruction as an alternative
to traditional Gauss-Newton image reconstruction, having
advantage of providing better contrast recovery and improving
the spatial resolution of the reconstructed images [27]–[32].
This work aims at deploying the BPDN method coupled with
model-resolution matrix [33] to deconvolve the reconstructed
optical images using Gauss-Newton minimization scheme.
The model-resolution matrix is built using the Jacobian and
regularization (representing the model) making it the required
blur matrix (convolution matrix) [33]. In the previous work
[34], the model-resolution characteristics were incorporated
into the reconstruction procedure via regularization matrix.
In this work, the model-resolution matrix is built and used as
the blurring model in performing the deconvolution of images
obtained using a standard reconstruction method.
The basis pursuit deconvolution is achieved through usage

of spilt augmented Lagrangian shrinkage algorithm (SALSA),
which is a well-established method [35], [36]. In this work, a
SVD was adapted both for image reconstruction and decon-
volution as it provides highly computational efficient frame-
work. It is proven using both numerical and experimental gelatin
phantom results that the basis pursuit deconvolution improves
both quantitation and quality of the reconstructed optical im-
ages. Moreover, the shape recovery of target is much improved
using the proposed method. As the emphasis is on presenting a
novel approach in improving diffuse optical tomographic image
reconstruction using basis pursuit deconvolution, the discussion
is limited to continuous wave (CW) 2-D case, where only op-
tical absorption coefficient becomes the unknown.

II. CONTINUOUS WAVE DIFFUSE OPTICAL TOMOGRAPHY

A. Forward Model

CW NIR light propagation in diffuse optical tomography
is modeled as a steady-state diffuse equation (DE) [37]–[39]

which is given as

(1)

where and represents the photon density (real values)
and the isotropic CW light source at position , respectively.
The optical diffusion coefficient is represented by , by def-
inition

(2)

with and representing the optical absorption
and optical scattering coefficients. For the CW-case, it is
assumed that is known and uniform through out the
imaging domain. The partial differential equation in (1) is
solved for calculating using a well-established finite ele-
ment method [37]–[39]. Modeled data is found by
sampling the photon density at measurements position,
i.e., , where is representing the sampling
matrix (containing source/detector positions). Using the Rytov
approximation experimental data becomes the natural loga-
rithm of intensity for a given distribution of [40],
where represents the amplitude. Robin (Type-III) boundary
condition is used to account for refractive index mismatch at
the boundaries [40].

B. Standard Method (Inverse Model)

The inverse problem is performed by matching the modeled
data (obtained from the forward model) with the experimental
data in a least-square sense [1], [5]–[7], [38]. A regularization
term is added for stabilizing the inverse problem leading to a
objective function

(3)

where is the regularization parameter which is used to con-
strain the solution space and obtain a stable solution [7]. It is
kept constant through out the image reconstruction procedure.
The initial guess is represented as , which is obtained by cal-
ibration procedures as explained in [41]. Using the first-order
condition of (3) and linearizing the Taylor series expansion of
the nonlinear inverse problem results in an update equation of
the form [7]

(4)

where represents the sensitivity matrix
(Jacobian) of dimension NM NN with NM representing the
number of measurements and NN being the number of nodes.
The represents the identity matrix of dimension NN NN.
The update is represented by and data-model misfit is rep-
resented by . Alternate update equation which is
found to be computationally efficient in under-determined cases
[42] is given by

(5)
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with representing the identity matrix of dimension
NM NM. Note that both (4) and (5) form the standard
Gauss-Newton minimization method, that gives , which
is added to current . The process of finding , and subse-
quently is repeated, until the -norm between the in
subsequent iterations is not improving by more than 2%.

C. Estimation of Optimal Regularization Parameter

A generalized cross-validation (GCV)-based method [43]
was used to estimate the optimal regularization parameter in the
Tikhonov minimization scheme (standard method). The GCV
method is very popular for finding the regularization parameter
in cases where the prior information about the noise levels in
the experimental data and/or expected image is unavailable
[43]. Obtaining an estimate of the regularization parameter

is done by minimizing a function , which is evaluated
using the SVD of the Jacobian . The function

is given as [43]

(6)

where the th column of the matrix is represented as and
is the th singular value of the Jacobian matrix. The estimation
of was achieved through the open-source MATLAB-based
regularization toolbox [44]. The estimation of the regularization
parameter is performed in the first iteration, and the same value
is used for entire image reconstruction procedure.

D. Model-Resolution-Based Convolution/Blur Matrix

The convolution matrix that causes the blur in the recon-
structed is built using the concept of model-resolution. In an
ideal noiseless scenario, if the model is perfect, the experimental
data matches exactly with the modeled data, i.e., .
Now, perform the Taylor expansion of around

(7)

with and representing the Jacobian and the
Hessian, respectively, and . Linearizing (7) by
ignoring the higher order terms results in

(8)

using in the above equation results in

(9)

with representing the true update of in an ideal scenario.
Substituting (9) in (4) leads to [34], [45]

(10)

where is the estimate of the true update for the op-
tical absorption coefficient . Ideally for the estimated update

to be equal to true update , the regularization pa-
rameter should be equal to 0. The ill-posed nature of dif-
fuse optical tomography problem always requires , indi-
cating that . The in (10)
is known to be the model-resolution matrix or blurring matrix
having a dimension of NN NN [34], [45]. The blurring ma-
trix depends on the numerical characteristics of and the
regularization parameter , but does not depend on the data. In
the ideal noiseless scenario, the should be an identity matrix

with by having , indicating that there
is no blur in the model. For all practical cases, , denoting
that at every iteration there is a blur introduced. The aim of this
work is to deblur the solution and obtain a close approximation
to at every iteration.

III. BASIS PURSUIT DECONVOLUTION IN DIFFUSE
OPTICAL TOMOGRAPHY

As the update obtained using (4) is blurred by [(10)], the
aim will be here to obtain the true (or close approximate) update

by deconvolution.

A. Basis Pursuit Deconvolution

The deconvolution problem is one of the classical inverse
problems, where the aim will be to obtain a deconvolved (un-
blurred) image from a blurred version of the image. There are
several approaches proposed for achieving this [43], with Basis
pursuit deconvolution being state of the art [22], [23]. In this
approach, the penalty function is based on -norm, which pro-
motes sparseness and sharp features, compared to traditional
-norm based penalty [22], [23]. The objective function in this

case becomes

(11)

This objective function can be minimized using spilt augmented
Lagrangian shrinkage algorithm (SALSA) [35], [46], [47]. The
SALSA algorithm is known to have high convergence speed
among all existing -norm based algorithms, enabled via vari-
able splitting of minimization problem [32]. This conversion is
achieved using an alternating direction method of multipliers
(ADMM), which is based on augmented Lagrangian method
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(ALM) [35], [46]. The details of the algorithm is given in [35],
[46], it is only briefly reviewed here.
The basic steps needed for SALSA are given in Algorithm 1.

The inputs and are obtained using (10) and (5), respec-
tively. The is the regularization parameter for this decon-
volution problem and typically chosen heuristically. The other
reconstruction parameter that is used in this scheme is , which
has similar functionality as except, it weighs the -norm
of the unknown parameter. The other input to this estimation
process is number of iterations, , typically kept at 100. The
ADMM parameter , which has similar size of , is initial-
ized as zero vector. The initial estimate of is obtained using
backprojection-type operation (Step 1 of Algorithm 1). Even
though the -norm of the [(11)] leads to convex function,
the -norm penalty could become null especially when
values are close to zero. To overcome this, a soft threshold is
used in Step 2, which gives an approximation to the -norm
of and is always nonzero. The soft threshold here repre-
sents the maximum value (i.e., maximum absolute value among

and ). The Step 3 in here is direct trans-
lation of maximum a posteriori (MAP) estimate, which utilizes
the normal equations. The Step 4 updates the ADMM param-
eter, ideally when converged to solution there is no update in
the [35], [46]. It is important to note that in all our exper-
iments was kept as 0.01, hence making the number of
hyper-parameters to choose as only one. Since there is no uni-
versally acceptable algorithm for automated estimation of regu-
larization parameter in -norm based scheme, we have chosen
this hyper-parameter heuristically.
It can be clearly seen that SALSA algorithm requires

operations for obtaining the MAP estimate as size of the
is NN NN. This computational complexity can be reduced

with utilization of SVD of Jacobian matrix and rewriting
this Algorithm 1.

B. SVD-Based Basis Pursuit Deconvolution

The SVD of can be written as

(12)

where and are orthogonal matrices and is a diagonal ma-
trix containing the singular values of (arranged in descending
order). Substituting (12) in (4) leads to ([21, Appendix A])

(13)

where is the diagonal matrix with diagonal entries as
.

Similarly using (12) in (10) (which defines the ) leads to
(derived in Appendix A)

(14)

Now rewriting Algorithm 1 in terms of SVD of results in an
equivalent computationally efficient algorithm. The image re-
construction algorithm, including finding is summarized
in Algorithm 2. Note that Appendix B gives the derivation per-
tained to conversion of Step 3 of Algorithm 1 into Step 7 of
Algorithm 2.

C. Quantitative Metrics

The proposed algorithm was evaluated quantitatively using a
metric namely contrast-to-noise ratio (CNR) defined as [48]

(15)

where and represents the mean value of optical ab-
sorption coefficient of the region of interest (ROI) and the back-
ground, respectively. The variance of optical absorption coeffi-
cient of the ROI and the background is represented as and

. The ratio of the areas in ROI and background is given as
and . The higher

the CNR better is the image reconstruction and differentiability
of tumor and the background [48]. An human eye can perceive
the difference between the tumor and background if the CNR
value is 4 and above.
The efficacy of the proposed schemewas also evaluated using

another metric namely Pearson correlation (PC). The PC is de-
fined as [49]

(16)

where is the expected absorption coefficient distribu-
tion and represents the reconstructed absorption coeffi-
cient distribution. The COV is the covariance and indicates
the standard deviation. This measure describes how well the re-
construction distribution is correlated with the original target
distribution.

IV. NUMERICAL AND GELATIN PHANTOM EXPERIMENTS

A. Numerical Experiments

To assess the effectiveness of the proposed method in terms
of the resolution characteristics of the reconstructed image using
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Fig. 1. Comparison of the proposed method with standard Gauss-Newton re-
construction with data containing 1% noise. Top-left image shows the target and
the bottom right show the line profile across the line shown in the target image.
Reconstruction of the proposed scheme (basis pursuit) and standard method is
also shown.

multiple targets, a circular mesh with background optical prop-
erties as mm mm and uniform re-
fractive index of 1.33 is considered. The diameter of the cir-
cular mesh is 86 mm, it has two circular targets (mimicking
tumor region) of 2.5 mm radius separated by a distance of 11
mm centered at (20, 8) and having optical properties
as mm mm . The target distribution
is given in the Fig. 1 (top-left corner). Sixteen equidistant fibers
were placed on the boundary of the circular domain for data-col-
lection, when one fiber acts as a source rest act as detectors,
resulting in collection of number of measure-
ments (NM). Numerical experimental data was generated on a
fine mesh having 10 249 nodes (corresponding to 20 160 linear
triangular elements) and the data was added with 1% normally
distributed Gaussian noise. The reconstructions were performed
on a coarser mesh consisting of 1785 finite element nodes (cor-
responding to 3418 linear triangular elements) after calibration
of the data [50]. Similar to experimental case, the source was
modeled as Gaussian source having full width at half maximum
of 3 mm [51] and is placed at one mean transport length inside
the boundary.
The next numerical experiment that was performed was to

test the proposed method robustness to noise in the data. The
target here was rectangle in shape [having a length of 25mm and
breadth of 7 mm centered at (0, 15)], mimicking a step function
type change in the optical properties. The target distribution is
shown in top-left corner of Fig. 2. The data-collection set-up
was similar to earlier described case. Here, two noise levels
were considered, 1% noisy case (mimicking typical experiment)
and 5% case (extreme). In diffuse optical tomographic systems
up to 4% noise was reported [52], making 5% noise case as the
worst case. The data was generated on a fine mesh consisting

Fig. 2. Similar effort as the previous case with 1% and 5% noisy data, but here
the target is rectangular in shape as shown in the top-left corner. Noise level is
indicated in the parenthesis.

Fig. 3. Similar effort as Fig. 1, with target being irregular in shape.

of 10 249 nodes (corresponding to 20 160 linear triangular el-
ements) The reconstruction was performed on a coarse mesh
having 1785 finite element nodes (corresponding to 3418 linear
triangular elements).
The targets considered till now were regular in shape, next,

a numerical experiment where the target is irregular in shape
was considered. The target was in matchstick shape combining
rectangle and circle, the rectangle had a length of 25 mm and
breadth of 7 mm centered around (13, 0) and circular shape of
radius 8 mm was centered at (13, 19), resulting target distribu-
tion as shown in the top-left corner of Fig. 3. The data collection
geometry and the finite element meshes were same as in the pre-
vious case. In here, only the case of 1% noise was considered.
All the above considered cases did not have sharp transitions

(edges), hence a numerical experiment was performed by con-
sidering a L-shape object, as shown in top-left corner of Fig. 4.
The L-shape was generated by combining two rectangles, the
horizontal rectangle had a length of 25 mm and breadth of 7
mm centered around and the vertical rectangle had a
length of 32 mm and breadth of 7 mm centered around .
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Fig. 4. Similar effort as Fig. 1, with target being in L shape.

Fig. 5. Similar effort as Fig. 1, with target being circular in shape having a
smooth Gaussian variation.

The data was collected in similar fashion to the previously con-
sidered cases, and 1% noise was added to the obtained data.
Another numerical experiment was performed to check if the

proposed method is able to distinguish between the blur intro-
duced by the regularization parameter and the inherent blur in
the experiment. Hence, to simulate this, we considered a cir-
cular target with 8 mm radius centered around the origin, fur-
ther a mean filter was applied on this mesh which resulted in
target distribution, as shown in Fig. 5. The same finite element
meshes, as in previous case, were used to perform the data col-
lection and reconstruction, and 1% noise was added to the col-
lected data which was used to perform the image reconstruction
using the standard and proposed methods.

Fig. 6. Comparison of the performance of the standard and the proposed
methods in case of a realistic patient (irregular) imaging geometry.

B. Patient Mimicking Numerical Experiment (Irregular
Geometry)

To test the efficacy of the proposed method, a patient mim-
icking irregular geometry is considered having three regions,
which are typically observed in the human breast. The irreg-
ular geometry was acquired in Dartmouth NIR-MRI set-up [51],
here the tissue morphology is obtained using MRI, where both
the fatty and fibro-glandular tissue aremarked. The optical prop-
erty of the fibro-glandular region (which is also irregular in na-
ture) was set to mm and mm . The
other two regions, namely the tumor and fatty tissue have the
same optical properties as the previous cases. The target -dis-
tribution is shown in top-left corner of Fig. 6. The experimental
data was generated using a fine patient mesh having 5199 nodes
(corresponding to 10 208 linear triangular elements). This data
was added with 1% normally distributed Gaussian noise. The
reconstruction was performed on a coarser mesh consisting of
2002 nodes (corresponding to 3814 linear triangular elements).
The data collection strategy was similar to previous cases.

C. Gelatin Phantom Experiment

The proposed basis pursuit deconvolution method per-
formance was also evaluated using a experimental gelatin
phantom data [7], that mimics the typical layers observed
in Breast imaging. The Gelatin phantom having height 25
mm, radius 43 mm, was made using a mixture of Titanium
dioxide (TiO ) for producing scattering effect and India ink
for absorption. Different layers that were observed in a typical
breast case were fabricated using hardening heated gelatin
solution [having a concentration of 80% of deionized water and
20% of gelatin (G2625, Sigma Inc.)] successively. The optical
properties of the outer layer, mimicking the adipose/fat region,
was kept at mm and mm , having
a thickness of 10 mm. The fibro-glandular layer (middle layer)
has 76 mm diameter, having the optical properties at
mm and mm . The tumor region is mimicked
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Fig. 7. Evaluation of the performance of the proposed (basis-pursuit deconvo-
lution) method with the standard reconstruction method in case of experimental
gelatin phantom. Expected target distribution is given in the top-left corner. The
1-D cross-sectional profile along the dotted line of the target is given in the
bottom-right corner.

using a cylindrical hole extending in direction filled with
intra-lipid mixed with India ink. The optical properties of this
tumor region were mm and mm ,
having a radius of 8 mm and height of 24 mm. A 2-D cross
section of the gelatin phantom was shown in the top-left corner
of Fig. 7. The data was collected at 785 nm wavelength. The
data collection is done using a single layer of fibers (kept at

mm) leading to 240 data points. The collected data was
calibrated using the coarser mesh with 1785 finite element
mesh nodes (corresponding to 3418 linear triangular elements)
and the reconstruction was performed using this mesh.
All computations were carried out on a Linux worksta-

tion with dual six-core Intel Xeon processor of 2.66 GHz
speed having 64 GB RAM, with single thread execution.
The modeling of light propagation was achieved through
MATLAB-based open-source NIRFAST [38], the original
SALSA algorithm was based on an open-source package
available at [36], and the proposed modification for the SALSA
algorithm based on SVD of Jacobian is made available as
open-source for enthusiastic users [53].
In all experiments, the reconstruction time for both

Algorithm 1 and Algorithm 2 was recorded along with the
standard method timings. Moreover, for all reconstruction
results the CNR and PC (Section III-C) was computed for
quantitative assessment of the reconstructed results.

V. RESULTS

The reconstruction results involving two targets using the
standard method (without deconvolution) and proposed method
(basis pursuit deconvolution) were shown in Fig. 1. The reg-
ularization parameter in the Tikhonov minimization
(standard method) was chosen automatically using the GCV
method as described in Section II-C. The regularization pa-
rameter was chosen heuristically, and the corresponding

TABLE I
RECONSTRUCTION PARAMETERS ESTIMATED/USED FOR THE RESULTS
PRESENTED IN FIGS. 1–7 USING STANDARD RECONSTRUCTION AND
THE PROPOSED (SVD-BASED BPD) METHOD. NOTE THE
IS SAME FOR BOTH STANDARD AND SVD-BASED BPD METHODS

TABLE II
TOTAL COMPUTATIONAL TIME (IN SECONDS) TAKEN FOR OBTAINING
THE RESULTS PRESENTED IN FIGS. 1–7 USING STANDARD, BPD, AND
SVD-BASED BPD. NUMBER OF ITERATIONS TAKEN FOR CONVERGENCE

IS GIVEN IN THE PARENTHESIS

TABLE III
CNR OF THE RECONSTRUCTION RESULTS PRESENTED IN FIGS. 1–7

USING STANDARD RECONSTRUCTION AND THE PROPOSED
(SVD-BASED BPD) METHOD

value of was computed to be . The reconstruction
parameters for various cases considered here are reported in
Table I. The same reconstruction parameters were used in
both SVD-based basis pursuit deconvolution (BPD) and the
BPD-based image reconstruction. The reconstruction times
taken for standard method, traditional basis pursuit method,
and SVD-based proposed methods are reported in Table II. The
CNR and PC values for the reconstructed images are given
in Tables III and IV, respectively. The reconstruction results
indicate that the proposed method is able to recover anomalies
(tumors) of size 5 mm (typical resolution limit of diffuse optical
tomography) more effectively.
The reconstruction results for a horizontal rectangular target

absorber for varying noise level are shown in Fig. 2. Table II also
lists the total reconstruction time taken for the 1% and 5% noisy
data case. The CNR and PC values are reported in the Tables III
and IV, respectively. It is evident from the reconstruction re-
sults, the standard method fails to recover the shape, whereas
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TABLE IV
PEARSON CORRELATION OF THE RECONSTRUCTION RESULTS
PRESENTED IN FIGS. 1–7 USING STANDARD RECONSTRUCTION

AND THE PROPOSED (SVD-BASED BPD) METHOD

the proposed method was able to give close resemblance to the
original target shape, even in the high noisy data case (the same
could be observed in the PC values, which indicates that the pro-
posed method has close resemblance to the target than the result
obtained using standard reconstruction procedure).
The reconstruction results for an irregular absorber (match-

stick in shape) using the proposed and standard scheme are
shown in Fig. 3. Similar to earlier case, the total computational
time, CNR, and the PC values are given in Tables II, III, and IV,
respectively. These results indicate that the performance of the
proposed method is superior to standard method especially in
terms of shape recovery, as seen from the PC values (Table IV).
The reconstruction results corresponding to the L-shaped

target is shown in Fig. 4. The reconstruction parameters that
were used are reported in Table I. The computational time,
CNR, and the PC values are shown in Tables II, III, and IV, re-
spectively. It can be seen from Fig. 4, that the proposed method
can efficiently reconstruct sharp changes in the absorption
coefficient distribution, hence result in better recovery of shape
compared to the standard reconstruction.
Another experiment was performed to check if the proposed

method will be able to distinguish between the blur introduced
by regularization and the inherent blur in the absorption coef-
ficient distribution. The reconstruction results pertaining to this
experiment is shown in Fig. 5. It can be seen that the proposed
method is able to retain the inherent blur in the absorption coeffi-
cient, and perform the deblurring to remove the blur introduced
by the usage of regularization parameter. The same is reflected
in the CNR and the PC values reported in Tables III and IV,
respectively. The reconstruction parameters and the computa-
tional time corresponding to this case are compiled in Tables I
and II, respectively.
The reconstruction results corresponding to the patient mim-

icking case are shown in Fig. 6. It can be seen from the line pro-
file that the proposed method is able to detect the target better
than the standard method. The reconstruction parameters, com-
putational time, CNR, and the PC values corresponding to this
experiment is shown in Tables I, II, III, and IV, respectively.
The CNR value indicates that the proposed method is able to
detect the tumor region better than the standard method. Note
that for these type of multi-region cases, the CNR is evaluated
by considering the fibro-glandular region as the background.
The reconstruction results pertaining to gelatin phantom data

were presented in Fig. 7. The total computational time, CNR
and the PC values of the reconstruction results are compiled in

Tables II, III, and IV, respectively. The results reveal that the
shape recovery of the target, especially in these multi-layered
target cases, is superior with the proposed method (line-profile
plot of Fig. 7).

VI. DISCUSSION

The aim of this work is to introduce a basis pursuit deconvo-
lution approach for improving the diffuse optical tomographic
images, where the blur matrix used in deconvolution is built
using Jacobian and regularization. The proposed approach re-
quires an additional step of deconvolution compared to the stan-
dard approach, making it marginally computationally complex
(refer to Table II) compared to the standard approach. The im-
provement in the reconstruction absorption distribution (refer
to Tables III and IV) well justifies the additional computational
cost. The computational burden was further reduced with the
usage of SVD of Jacobian, which made the total reconstruc-
tion procedure to be in the order , which is taken for
SVD of . The traditional basis pursuit deconvolution will have
a complexity of , making it less desirable in real-
time. This image reconstruction can be further accelerated using
modern day graphics processing units [54]. It can be noted that
computation of the singular value decomposition of the Jaco-
bian is the most expensive step in terms of computation, hence
this step can be significantly parallelized using graphics pro-
cessing units (GPUs) [55], which provide massive paralleliza-
tion at the desktop level [54].
The two step reconstruction approach is commonly used in

diffuse optical imaging [56], [57], primarily to constrain the
image space or number of reconstruction parameters. In here, no
such constrain is applied, making it first of its kind approach in
improving diffuse optical image reconstruction scheme. There
were earlier attempts of deconvolving the diffuse optical im-
ages [12]–[14], which showed some promise, assumed that the
blur kernel was not known. This work introduced a framework
to build the blur matrix based on model-resolution and applied
state of the art basis pursuit deconvolution to improve the reso-
lution characteristics of reconstructed images (Fig. 1).
It is important to note that the convergence of the proposed

scheme is faster when compared to the traditional image re-
construction. This is because a step of image deconvolution is
performed at every iteration, producing more accurate solution
when compared to traditional scheme (Table II). The shape re-
covery using the proposed method in all cases presented here
was far superior to the reconstructions obtained using tradi-
tional method (Figs. 1–7). The cases that were shown here were
limited in nature to show the effectiveness of the proposed ap-
proach, but the trends observed will be true in general for any
case. The proposed method requires heuristic selection of only
one hyper-parameter making it more attractive for usage.
There are edge-preserving regularization schemes presented

in the literature for diffuse optical tomographic imaging
[17]–[20] that can improve the shape recovery of the targets,
with a caveat that they all require new parameterization for the
parameters. In here, using the standard reconstruction scheme
with the aid of resolution characteristics, the proposed scheme
was able to recover the shape of the target far superior to
standard method.
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The -norm based schemes were previously used for per-
forming image reconstruction in diffuse optical tomography
[49], and it was shown to be ineffective when the expected
optical distribution was not sparse (refer to [49, Fig. 4]). Even
in these cases, usage of -norm in the proposed deblurring
framework will be able to reconstruct the absorption coeffi-
cient well, as we expect the deblurred solution to be an edge
enhanced version of the blurred solution, making the usage of
-norm minimization, which promotes sparseness and sharp

edges, in this framework most optimal. The same was shown
in the patient mesh case (Fig. 6).
Even though the concept of model-resolution was intro-

duced well in the earlier works [34], the utilization was
limited to building a regularization matrix using this. This
work is first of its kind that used the model-resolution matrix
as a blur matrix and deconvolved the blur introduced by
standard reconstruction algorithms that use -norm in the
diffuse optical tomographic image reconstruction process.
Moreover, this is also the first attempt to deploy SVD of the
Jacobian matrix to reduce the computational complexity in
both building the model resolution matrix and performing
the deconvolution procedure in diffuse optical tomographic
image reconstruction. The computational cost of performing
the SVD of the Jacobian matrix is higher especially for 3-D
imaging, hence the formulation of model resolution matrix
and computation of deconvolved absorption coefficient could
be made computationally efficient via deployment of di-
mensionality reduction techniques, such as least squares QR
(LSQR) [48], [58] and Tikhonov-Arnoldi method [59].
The standard method proposed here used only the simplest

form of regularization. The advanced regularization schemes
have the capability to include more prior information to improve
the image characteristics [7], [34], [9]–[11]. In these cases, the
model-resolution matrix will also include this information, es-
sentially making the proposed method valid in these cases as
well. The work pertaining to this will be taken up in the future
to quantify the improvement. The future work will also involve
exploring different state of the art deconvolution algorithms.
Even though this work is mostly intended for diffuse optical

tomography, the developed methodology could be explored for
other imaging techniques whose characteristics are similar to
diffuse optical tomography, like electrical impedance tomog-
raphy [60], bioluminescence tomography, fluorescence optical
tomography [61], and electrical capacitance tomography [62].

VII. CONCLUSION

The diffuse optical tomographic imaging has been a main
contender to become adjunct imaging modality for breast
and brain imaging. The image reconstruction procedure is
highly ill-posed, necessitating the usage of regularization,
which makes the reconstructed images loose sharp features.
In this work, a basis pursuit deconvolution approach that uses
model-resolution matrix was introduced as an additional step
in the image reconstruction procedure to improve the recon-
structed image characteristics. Moreover, the algorithm was
further made computationally efficient using a SVD of the sen-
sitivity (Jacobian) matrix. It was shown that the reconstructed
images using the proposed method also display better contrast

to noise ratios compared to the results obtained using standard
reconstruction method.

APPENDIX A
MODEL RESOLUTION MATRIX USING SVD OF JACOBIAN

Consider the SVD of the Jacobian resulting in singular
value matrix, left and right orthogonal matrices to be and
, respectively. The model resolution matrix from (10) is de-

fined as

(17)

with representing the identitymatrix of dimensionNN NN.
Substituting (12) into (17) leads to

(18)

Since the matrix is an orthogonal giving us

(19)

Using , the above equation can be rewritten as

(20)

This can be rewritten as

(21)

Expanding the inverse makes it

(22)

Simplifying using and rearranging terms results in

(23)

Using , in (23) results in

(24)

The singular value matrix of can be written as
(where ) making

(25)

APPENDIX B
REWRITING STEP 3 OF ALGORITHM 1 USING SVD OF J

The deconvolved update is Step 3 of Algorithm 1 is
given by

(26)

Substituting the SVD of given by (25) gives

(27)
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with . Substituting in (27) gives

(28)

Taking the inverse in the above equation and rearranging the
terms results in

(29)

Multiplying the terms in the (29) leads to

(30)

The above equation can be rewritten as

(31)
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