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Purpose: A prior image based temporally constrained reconstruction (PITCR) algorithm was devel-
oped for obtaining accurate temperature maps having better volume coverage, and spatial, and
temporal resolution than other algorithms for highly undersampled data in magnetic resonance (MR)
thermometry.
Methods: The proposed PITCR approach is an algorithm that gives weight to the prior image and
performs accurate reconstruction in a dynamic imaging environment. The PITCR method is compared
with the temporally constrained reconstruction (TCR) algorithm using pork muscle data.
Results: The PITCR method provides superior performance compared to the TCR approach with
highly undersampled data. The proposed approach is computationally expensive compared to the
TCR approach, but this could be overcome by the advantage of reconstructing with fewer measure-
ments. In the case of reconstruction of temperature maps from 16% of fully sampled data, the PITCR
approach was 1.57⇥ slower compared to the TCR approach, while the root mean square error using
PITCR is 0.784 compared to 2.815 with the TCR scheme.
Conclusions: The PITCR approach is able to perform more accurate reconstructions of temper-
ature maps compared to the TCR approach with highly undersampled data in MR guided
high intensity focused ultrasound. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4934829]

Key words: MR thermometry, dynamic imaging, MRgHIFU, image reconstruction, temperature
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1. INTRODUCTION

Noninvasive local heating of tissues deep inside the human
body can be accomplished using high-intensity focused ultra-
sound (HIFU).1,2 Magnetic resonance imaging (MRI) provides
images which enable excellent visualization of anatomical
structures and tumors, resulting in better treatment planning.3
MRI can also provide continuous temperature maps based
on the proton resonance frequency (PRF) shift of water with
good spatial and temporal resolution for real-time magnetic
resonance (MR) thermometry.4,5 Thermal therapies through
the human skull using MR guided high intensity focused ultra-
sound (MRgHIFU) require e↵ective monitoring of 3D temper-
ature maps. These applications require MRgHIFU to perform
imaging over larger volumes, provide high spatiotemporal
resolution for accurate tracking of rapid heating at the focal
point, and monitoring the heating in the near- and far-fields
of the ultrasound beam.6,7 The methods for accurate recon-
struction of large-field of view (FOV) undersampled temper-
ature data sets in MRgHIFU applications8 include model

predictive filtering (MPF),9 temporally constrained recon-
struction (TCR),10 and parallel imaging with unaliasing by
Fourier encoding of the overlaps using the temporal dimension
(UNFOLD).11

Model predictive filtering requires prior knowledge of the
tissue acoustic and thermal properties for accurate estimation
of temperature maps.9 This method uses the Pennes bioheat
equation as a model, along with tissue acoustic properties,
to obtain the temperature distribution. A potential limiting
factor of this method is the requirement to accurately estimate
many tissue dependent parameters,9 and therefore MPF was
not utilized for comparison with the proposed scheme. Parallel
imaging with UNFOLD method is not capable of monitoring
the entire 3D volume of interest, as this scheme uses a spatially
selective RF pulse (2DRF) which assumes that only a small
part of the FOV is imaged.11 Parallel imaging results in aliasing
artifacts, which can be later removed using the UNFOLD
scheme.11 The TCR approach is a method that has the ability
to provide large coverage 3D temperature maps.12 Therefore,
this approach was used to validate the proposed algorithm.
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The critical aspect of MRgHIFU temperature map estima-
tion lies with obtaining the temperature maps in real-time.13

Moreover, the ability to estimate the temperature maps with
less data is also highly desirable in many clinical scenarios, as it
also reduces the scan time. Hence, obtaining accurate tempera-
ture maps with fewer measurements and estimating the temper-
ature maps in real-time plays a vital role in MRgHIFU. It is
important to note that the ultrasound is focused on a specific re-
gion of interest (ROI) (highly localized), leading to an increase
in temperature at the region of interest [making the temporal
changes in temperature (phase) sparse]. Therefore, reconstruc-
tion of the MR 3D temperature maps becomes a sparse recovery
problem. Previously, the TCR approach was used to accu-
rately estimate the temperature maps by imposing a smooth-
ness/sparsity constraint using a temporal gradient.10,12,14 Note
that the temporally constrained reconstruction is one of the
well-established approaches to estimate the temperature maps
in MRgHIFU;14 thus, the proposed scheme is compared with
TCR as the benchmark.

The TCR based algorithm enables a data compression of the
order of 2–6⇥ (17%–50% data), but this approach does not pro-
vide the high level of data optimization that is required, espe-
cially when the desirable compressed data is around 12⇥ (8%).
A prior image constrained compressive sensing (PICCS) algo-
rithm has been proposed in dynamic computed tomography
(CT), wherein it has been shown that incorporating a prior
image as a constraint can result in better reconstruction with
relatively few projections.15,16 Note that in CT, high undersam-
pling will help reduce dosage, while in MRI, it helps reduce
scan times (desirable in real-time MRI imaging). Hence in
this work, an additional constraint based on the prior image
(either the previous or next time frame) is applied and shown to
provide increased accuracy at very high undersampling rates.

Recent studies in MR thermometry have shown that the
usage of a `0-norm penalty on the phase shift of the temper-
ature can result in an estimation of the temperature maps with
fewer measurements.17,18 This constraint was implemented
using an iteratively reweighted least squares approach. Other
studies have proposed fitting the model directly to the baseline
images along with an `1-norm based minimization.19 Complex
di↵erence compressive sensing has also been proposed, where
baseline images were obtained before heating and included
as a constraint.20 In this paper, a variation of PICCS, to be
called prior image based temporally constrained reconstruc-
tion (PITCR), is presented and shown to produce accurate
temperature maps with fewer MR measurements. The PITCR
method performs the temperature map estimation by applying
a smoothness constraint and also giving weight to the prior
image, resulting in an improved temperature map estimation.
In contrast, existing complex di↵erence compressive sensing
employs the baseline images acquired before heating, while
in the proposed scheme, the prior image is generated using
the previous gradient iteration update. The proposed PITCR
algorithm is implemented to provide high spatial and temporal
resolution covering a large 3D volume. The proposed scheme
is found to be more robust to data noise. The performance of
the PITCR is also evaluated in the presence of motion outside
the FOV.

2. METHODS
2.A. TCR

A discrete inverse Fourier transform based reconstruction
(considered as truth for comparison with TCR and PITCR)
from the full k-space data can be written as10

d =Fm, (1)

where the 4D full k-space data acquired at various time frames
is represented by d and the complex MR image is represented
by m (having dimension M⇥N⇥L⇥T , where M⇥N⇥L repre-
sents the spatial dimensions corresponding to the x, y , and z
axis, respectively, and T represents the temporal dimension).
Here, F indicates the 2D Fourier transform at each time frame
in a dynamic sequence along the y-dimension.

The temperature distribution is obtained using a TCR algo-
rithm, where a data fidelity term is applied while constraining
the rapid temporal change. The undersampled sparse data
(d̃) are acquired (and the unacquired data points are 0), for
which the reconstruction is performed by minimizing the cost
function represented as10,12,14

min
m̃

{� k (�m̃) k22 + kWFm̃� d̃ k22}, (2)

where the 4D binary sparsifying pattern is represented by W
(of dimension N⇥N , representing here sample phase encoded
lines) to obtain d̃ (of dimension M ⇥ N ⇥ L ⇥T) from d (of
dimension M ⇥N ⇥L⇥T). The � is a scalar which acts like a
regularization parameter, and � represents the temporal deriv-
ative. This objective function can now be minimized using
a gradient descent approach with finite forward di↵erence
method, leading to a series of image frames updated iteratively
as10

m̃n+1= m̃n� ✏ sC 0(m̃n); n= 0,1,2,. . .,100, (3)

where ✏ s represents the step size corresponding to the gradient
descent approach and C 0(m̃) represents the Euler–Lagrange
derivative of the objective function given as10

C 0(m̃)= 2⇤ (F�1(WFm̃)�F�1(d̃)���2
t m̃), (4)

where �2
t denotes the temporal Laplacian and operates on

the complex data. The TCR algorithm takes advantage of the
Laplacian across frames (previous time point) to reconstruct
the temperature maps.

The TCR algorithm is applied in an `1-norm based frame-
work, where the following cost function is minimized:10,12,14

min
m̃

{�l1 k (�m̃)k1+ kWFm̃� d̃ k22}, (5)

where �l1 is the regularization parameter. The `1-norm is ap-
proximated using the following relation k�m̃k1=

p
(�m̃)2+ �

with � = 10�6 in this work.21 The Euler–Lagrange derivative of
the above function,

C 0(m̃)= 2⇤*,F�1(WFm̃)�F�1(d̃)��l1
�m̃

p
�+ (�m̃)2

+
-, (6)

is used in the finite forward di↵erence scheme. The regu-
larization parameter (� and �l1) is optimally chosen using a
L-curve22 or L1-curve23 based methods.
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2.B. PITCR

While TCR applies a temporal constraint to perform the
image reconstruction, the PITCR algorithm has an additional
constraint to include the temporal constraint that utilizes either
the previous or the next time frame. The usage of undersam-
pled data for reconstruction induces aliasing artifacts, which
are removed by usage of penalty terms (that act like filters)
in the TCR algorithm. The usage of a prior image in the
dynamic sequence along with the regularization penalty allows
for better image reconstruction with fewer measurements in
the PITCR algorithm. This approach minimizes the uncon-
strained variant, namely,

min
m̃

�
�̃
⇥
↵ k 4(m̃� m̃pr) k22

+ (1�↵) k (4m̃) k22
⇤
+ k Fm̃� d̃ k22

 
, (7)

with �̃ representing the non-negative regularization parameter
and m̃pr being the prior information calculated from the previ-
ous or the next time frame. The prior image for the proposed
scheme is defined as

m̃pr=
8><>:

m̃ j+1 if j > t⇤,
m̃ j�1 if j < t⇤, (8)

where t⇤ represents the frame at which the temperature reaches
a maximum. In practice, one can record when the ultrasound
is turned on and o↵ for HIFU heating, and the occurrence of
the maximum temperature coincides with the time point at
which the ultrasound is turned o↵. In this work, turning on
and o↵ of the ultrasound is not measured and it is di�cult
to estimate the maximum temperature peak before perform-
ing the reconstructions. Therefore, it was assumed that the
maximum peaks occurs at t⇤=T/2 (where T indicates the total
number of time frames). The reason for selecting this prior
image is that if the maximum temperature is increasing, the
previous time frame should act as the prior image and when the
maximum temperature decreases the next time frame should
act as the prior image. This prior image was computed based on
the previous gradient descent iteration update (m̃n at iteration
n+1). For example, at gradient descent iteration 10, the prior
term is computed based on the solution obtained at the gradient
descent iteration 9. Note that the first time point reconstruction
is performed with fully sampled k-space data, and the next
time points have undersampled k-space data (similar to the
TCR algorithm). To evaluate the performance of the proposed
PITCR method [defining prior term as in Eq. (8)] with the first
frame based image reconstruction, the prior image is consid-
ered to be the first frame, i.e., m̃pr= m̃0 with m̃0 indicating the
first frame reconstructed with all the data. The weight factor
is represented by ↵ (↵ = 0 indicates reconstruction using the
TCR approach and ↵ = 1 indicates full weight given for the
prior image). Note the above weights were used as ↵ and 1�↵
based on Ref. 15, but one can choose the weights as ↵ and � to
improve the reconstruction accuracy, at the cost of increasing
the number of reconstruction parameters. Equation (7) can
be solved employing a gradient descent approach with finite
forward di↵erence method using Eq. (3). The Euler–Lagrange

derivative [C(m̃)] of the PITCR objective function becomes

C(m̃) = 2⇤ (F�1(WFm̃)�F�1(d̃)��((1�↵)⇤�2
t m̃)

� �(↵ ⇤�2
t (m̃� m̃pr))). (9)

The steps of the PITCR algorithm for the 4D tempera-
ture map reconstruction are shown in Algorithm I. The for-
ward di↵erence step and Euler–Lagrange derivative estimation
should be performed using the above equation. Note that in
both the TCR and PITCR algorithms, the sliding window
reconstruction is used as the initial image estimate (current
TCR works in this fashion). A note about the convergence
of the PITCR approach can be found in the Appendix. The
comparison of the proposed scheme is done using ex vivo pork
muscle experiments, which will be discussed in Sec. 2.C.

2.C. Simulation and experiments

The PITCR method was evaluated using experimentally
measured MRgHIFU data sets. The HIFU heating was per-
formed in a Siemens TIM Trio MRI scanner (Siemens Medi-
cal Solutions, Erlangen, Germany) using an MRI-compatible
phased array transducer (256 elements, 13 cm radius of curva-
ture, 1 MHz frequency, Imasonic, Besancon, France and Im-
age Guided Therapy, Pessac, France). A 3D segmented EPI
gradient echo sequence was used for imaging in all experi-
ments conducted here.13

In the first set of experiments, HIFU heating experiments
were performed on an ex vivo pork muscle sample at 36 acous-
tic watts for 30 s; the rate of change in temperature at this
power level was 2.2 �C/s.13 Under identical circumstances, the
heating was repeated twice at this power level. During the
first heating, the imaging parameters were chosen such that
the 3D volume could be fully sampled at su�cient temporal
resolution. These fully sampled data sets were reconstructed
by means of the standard Fourier transform approach and
used to compute temperature maps (this was considered as
truth). Imaging parameters for the fully sampled data were
128⇥72⇥12 imaging matrix (10 slices plus 20% slice over-
sampling), 1.5 ⇥ 1.5 ⇥ 3.0 mm resolution, TR = 25 ms, TE
= 10 ms, EPI factor= 9, bandwidth= 738 Hz/pixel, flip angle
= 20�, and time interval of 2.4 s/scan. Then the proposed
PITCR and TCR reconstruction methods utilized the under-
sampled version of the acquired data, and the reconstructions
were performed by sampling 33% and 16% of the acquired
fully sampled data.

The TCR and PITCR temperature map estimation was
carried out for larger 3D volumes that were acquired at an
undersampling factor of 6. Each pair of identical heating runs
was performed at the same location in the sample. Imaging
parameters for the undersampled data were 1.5⇥1.5⇥3.0 mm
resolution, 128 ⇥ 108 ⇥ 24 imaging matrix (22 slices plus
9% slice oversampling), TR= 25 ms, TE = 10 ms, EPI factor
= 9, bandwidth = 738 Hz/pixel, flip angle = 20�, 6⇥ under-
sampling, and time interval of 1.2 s per undersampled time
frame.13 This undersampled data were used to obtain the
temperature maps with the TCR and the proposed PITCR algo-
rithms, and then compared with the standard Fourier transform
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Algorithm I. PITCR.

INPUT: d̃ (4-D Undersampled k-space data), W (4-D Sampling Pattern),
�̃ (Regularization Parameter), ↵ (Weight Parameter), Ni t (Number of iterations), st (time frames)

OUTPUT: m (4-D Output Temperature map)
1. Compute the Sliding Window k-space and initial image estimate; dSW = F(SW (d̃ . ⇤W )), mSW = F

0(dSW );
2. Initialize necessary variable; Sparse Image Estimate (mest= F

0(d̃ . ⇤W )), Image Estimate using SW using Fourier operator along 1st and 3rd dimension
(m = F(F(mSW,1),3))

for i=1 to Ni t

3. k-space (ď) estimate from Image Estimate; ď = F(m,2)
4. Sparse k-space (d̃) obtained from Sampling Pattern; d̂ = ď . ⇤W .
5. Sparse Image Estimate from (d̂); m̃ = F0(d̂,2)
6. Gradient of Fidelity Term; � =mest� m̃
7. Forward Di↵erence of the Image Estimate; 4mfwd(:, :, :,1 : st �1)=m(:, :, :,2 : st);4mfwd(:, :, :, st)=m(:, :, :, st)
8. Backward Di↵erence of the Image Estimate; 4mback(:, :, :,2 : st)=m(:, :, :,1 : st �1);4mback(:, :, :,1)=m(:, :, :,1)
9. Temporal Laplacian Estimate; �2mt = 4mfwd�2⇤m+4mback

for t = 1 to st

if t < st
2

if t == 1
10. mpr(:, :, :,1)=m(:, :, :,1)

else

11. mpr(:, :, :, t)=m(:, :, :, t �1)
end

else
if t == st

12. mpr(:, :, :, t)=m(:, :, :, t)
else

13. mpr(:, :, :, t)=m(:, :, :, t +1)
end

end
end

14. 4tmpr=m�mpr; �= �+ (1�↵)⇤ �̃⇤�2mt+↵ ⇤ �̃⇤ 42
tmpr; m =m+�

end

15. m = F0(F0(m,1),3)

reconstruction performed with full data. The obtained 6⇥ un-
dersampled dataset was further undersampled by 50% and the
reconstruction was performed using this highly undersampled
data to bring out the potential of the proposed method. The
same data were used to compare the proposed scheme by
applying a constraint employing the first frame.

The PITCR method was also evaluated with noisy 6⇥ data.
Zero-mean Gaussian random noise was added to the under-
sampled k-space data, such that the sliding window recon-
struction of the noisy k-space produced temperature maps with
temperature standard deviations of 1.02 �C as measured over
the ROI. These noisy data were used to perform the reconstruc-
tion using the TCR and the proposed PITCR approach. The
obtained noisy data were further undersampled by 50% and the
reconstruction was performed to determine the performance
of the PITCR scheme compared to TCR method in highly
undersampled data cases.

To verify the performance of the proposed method using
a motion data case, a HIFU heating of a pork muscle sample
was performed. Periodic motion was generated by placing
above the sample a water-filled balloon which was periodi-
cally compressed. The pork sample was not moved, but the
balloons changing volume a↵ected the phased data obtained,
resulting in disturbances to the temperature maps. The imaging

parameters were similar to those described above with 3D data
acquisition and 6⇥ undersampling. The balloon compression
was designed to mimic phase disturbances due to chest motion
from the breathing cycle and was compressed at a rate of
roughly once every 25 s. The data were undersampled as
described in Ref. 12. In brief, the data were fully sampled along
the partition direction (kz or “slow” phase encoding direction)
and undersampled along the phase encoding direction (ky).
The 3D data were acquired using a multishot EPI approach,
where the EPI factor denotes the number of echoes acquired
in each echo train. These echoes are evenly spaced in ky. An
in-house built 4-channel surface coil was utilized for the data
acquisition. The algorithms do not make use of coil sensitivity
profiles, either measured or estimated. For a detailed analysis
of various sampling strategies, see Ref. 24. The image recon-
struction was carried out on a machine with an Intel Xeon dual
six core processor with a processor speed of 2.66 GHz and
memory of 64 GB.

3. RESULTS
The fully sampled data obtained from the MRI scanner

were undersampled to have only 33% and 16% of the acquired
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Fig. 1. Comparison of temperature map reconstruction of the standard TCR with PITCR method. The reconstruction was performed using 33% and 16% of
the acquired fully sampled data. Di↵erence image is also shown for better comparison of reconstructed temperature distribution. The plots show the maximum
temperature increase over time in the HIFU heating.

data, which was then used for estimating the temperature maps
using the TCR and the PITCR method. Figure 1 shows the
temperature map reconstruction, the di↵erence between the
reconstructed temperature maps and the truth (reconstructed
with Fourier transform approach having full data), and the
maximum temperature over time graph. When less data are
available, the PITCR method provides a significantly better
estimation of the temperature than the TCR algorithm. The
weight parameter ↵ was kept as 0.3 for all cases in this work.
The computational time along with the root mean square error
(RMSE) is reported in Table I. The RMSE was calculated over
a 5⇥ 5⇥ 7 voxel region at the region of interest over all the
time points as used in Ref. 12. The number of gradient descent
iterations was 100 in all cases. The reconstruction parameter
� was selected optimally using an L-curve method, and for
this particular case, the � was found to be 0.0491 and 0.0451
for 33% and 16% data cases, respectively. The regularization
parameter (�̃) for the PITCR method was set at 0.05 in both
cases [note that (�̃) was chosen heuristically in this work due
to the huge computational cost associated with estimating �̃
using the L-curve method].

The reconstructed temperature distribution using the 6⇥ un-
dersampled data obtained from the MRI scanner for the stan-
dard TCR and the proposed PITCR method is shown in Fig. 2.
These data were further undersampled by 50%, and the recon-
struction results pertaining to these data were also shown in
Fig. 2. The 1D plot (temperature over time) in Fig. 2 shows that
both TCR and PITCR results in similar reconstructions when
the full 6⇥ undersampled data were utilized, while PITCR
outperforms TCR when fewer measurements are available.
Hence, it can be concluded that the PITCR algorithm works
better than TCR algorithm with highly undersampled data,
as can be observed from the RMSE values in Table I. Note
that the reconstruction pertaining to the `1-norm based TCR
is also compared with PITCR in Fig. 2. The proposed scheme
is able to estimate the temperature distribution better than the
`1-norm based TCR approach. The regularization parameter
(�) for the TCR algorithm is optimally selected using the L-
curve and L1-curve method as shown in Fig. 3. The recon-
struction parameter (�) used for the TCR algorithm (using
`2-norm) was 0.0931 and 0.0951 for 17% and 8.5% data cases,
while in the `1-norm case, the parameters were found to be

Table I. Comparison of computational time and RMSE for the results presented in this work. The percentage of
k-space data used is given in the parenthesis. The results show that the PITCR method has superior performance
compared to TCR with fewer measurements.

Fully sampled data (Fig. 1) Undersampled data (Fig. 2)

PITCR PITCR TCR TCR PITCR PITCR TCR TCR
Method (33%) (16%) (33%) (16%) (17%) (8.5%) (17%) (8.5%)

Data acquisition time 1 0.5 1 0.5 1 0.5 1 0.5
Reconstruction time 1.66 1.57 1 1 1.61 1.63 1 1
(time in seconds) (11.104) (11.65) (6.67) (7.39) (89.86) (88.48) (55.62) (54.32)
Total time 2.66 2.07 2 1.5 2.61 2.13 2 1.5
RMSE (in �C) 0.242 0.784 0.235 2.815 0.43 0.56 0.42 1.24

Medical Physics, Vol. 42, No. 12, December 2015



6809 Prakash, Todd, and Yalavarthy: PITCR for MRgHIFU 6809

Fig. 2. Comparison of temperature map reconstruction of the standard TCR with PITCR method. The sampling used is shown in the parenthesis. The plots show
the maximum temperature increase over time with 6⇥ undersampling and for acquired 6⇥ undersampled data further reduced by 50%.

0.12 and 0.15 for 17% and 8.5% data cases. The regularization
parameter used for PITCR method was 0.005 in these cases.

To show the e↵ectiveness of the PITCR method in a noisy
environment with few measurements, noise that mimics the
coil induced errors was added to the obtained undersampled
MRI data (6⇥ undersampling). The resultant noisy data were
undersampled by 50%, and then temperature maps were re-
constructed from this highly undersampled data using the TCR

and the PITCR methods. The reconstruction distribution using
17% and 8.5% measurements is shown in Fig. 4, along with
the maximum temperature versus time plot for all reconstruc-
tions. The reconstruction indicates that the proposed scheme
is robust in noisy environments and is able to reconstruct the
temperature distribution more accurately than the TCR algo-
rithm with fewer measurements, leading to faster data collec-
tion. The reconstruction parameter (�) for the TCR algorithm

Fig. 3. L-curve and L1-curve based method used for estimating optimal regularization parameter. The optimal regularization was found to be 0.0931 and 0.12
for the TCR with `2 and `1-norm based reconstruction. The optimal regularization for the PITCR approach was found to be 0.10 for the case shown in Fig. 7
(↵ = 0.1 and 17% undersampling).

Medical Physics, Vol. 42, No. 12, December 2015
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Fig. 4. Comparison of temperature map reconstruction of the standard TCR with PITCR method with noisy data. The percentage of sampling and noise (in �C)
used is indicated in the parenthesis. The plots show the maximum temperature increase over time with 6⇥ undersampling and for acquired 6⇥ undersampled
data further reduced by 50%.

in this case was found to be 0.0971 and 0.0911 for 17% and
8.5% data cases, respectively. The regularization parameter (�̃)
used for PITCR method was 0.005 for each of these cases.

To evaluate the proposed method with first frame based
image reconstruction (similar to the one proposed using com-
plex di↵erence based compressive sensing20), the obtained un-
dersampled MRI data (6⇥ undersampling) and a further 50%
reduction of this data was utilized. The reconstruction distri-
bution pertaining to 17% and 8.5% measurements is shown
in Fig. 5, along with the di↵erence between the truth and

the reconstructed temperature maps. This clearly indicates
that the proposed method performs better than the first frame
based reconstruction, as better prior information is included
in the PITCR objective function. The regularization param-
eter used for PITCR and the first frame based method was
0.005. Another experiment was performed to verify the e�-
cacy of the PITCR approach in the motion data case (motion
generated outside the FOV by movement of the balloon). The
obtained undersampled MRI motion data (6⇥ undersampling)
were used to reconstruct the image. The result pertaining to

Fig. 5. Comparison of temperature map reconstruction of the first frame based image reconstruction with PITCR method. Di↵erence image is also shown for
better comparison of reconstructed temperature distribution. The percentage of sampling used is indicated in the parenthesis.
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Fig. 6. Comparison of temperature map reconstruction of the standard TCR with PITCR method for motion data (outside the field of view) cases (6⇥ under-
sampling data). The reconstructed temperature distribution along di↵erent frames is shown (it can seen that temperature is varying a lot due to motion). The
di↵erence between the TCR and PITCR methods is less than 1%.

the motion data case is shown in Fig. 6. Based on Figs. 1, 2
and 4–6, it can be concluded that the proposed scheme can be
used in various settings like undersampled data cases, noisy
environments, and motion outside the FOV. The regularization
parameter for the TCR method was estimated as 0.071 using
the L-curve approach, while 0.05 was used as the regulariza-
tion parameter for the PITCR method.

Finally, the 6⇥ undersampled dataset was used to study the
e↵ect of varying the weight factor (↵) on the reconstruction

results, which is indicated in Fig. 7. The optimal regularization
parameter (�̃) for each of the weights was obtained using
the L-curve method shown in Fig. 3. The L-curve method to
estimate �̃ in the PITCR method was used only for these cases
(as obtaining optimal �̃ was computationally very expensive).
Figure 7 indicates that the PITCR algorithm performs well
within a range of weight factor (↵). The optimal regularization
parameters were 0.14 and 0.13 for the case ↵ = 0.3 with 17%
and 8.5% data, respectively, 0.10 and 0.12 for the case ↵ = 0.7

Fig. 7. Comparison of temperature map reconstruction of PITCR method for cases with di↵erent ↵ values [Eq. (7)]. The plot shows the maximum temperature
increase over time for the cases considered here.
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with 17% and 8.5% data, and 0.0871 and 0.06 for the case with
↵ = 0.1 with 17% and 8.5% data.

4. DISCUSSION AND CONCLUSION
The performance of the PITCR method for the obtained

MRgHIFU datasets was observed to be superior to the standard
TCR approach (see Figs. 1, 2, 4, and 5) using highly undersam-
pled data. The performance of the PITCR algorithm is similar
to the TCR algorithm when the number of measurements
available is high. Since the number of measurements required
is less for the PITCR algorithm, this can result in faster data
collection thereby reducing the scan time. The same data were
used to obtain the temperature distribution for both TCR and
PITCR algorithms. The PITCR method was also evaluated
using noisy measurements (noise introduced by the coil) and
even in the presence of noise the PITCR method was able
to reconstruct the temperature maps more accurately than the
TCR algorithm with fewer measurements.

Note that the proposed algorithm works better than the
TCR algorithm as the prior constraint identifies the rise and
fall in temperature more accurately than the TCR algorithm.
The prior term in the objective function applies a higher
order derivative constraint, enabling approximation of the
maximum temperature rise/fall slope better than a simple
temporal constraint. Recent works in x-ray CT have shown
that usage of higher-order total variation along with a total-
variation constraint results in a better solution than usage of a
pure total-variation constraint.25 Another work has used high-
degree total variation and shown that it provides better image
recovery compared to the total-variation approach.26 The pro-
posed approach uses a similar concept in a dynamic imaging
framework (for MRgHIFU) to show that it requires fewer
measurements to perform the temperature map reconstruction.
The first frame based method in the constraint is not able to
trace the slope (as shown in Fig. 5), because the constraint
is imposed on the di↵erence with the baseline alone rather
than the increase or decrease in the temperature (which is
obtained using prior images). The proposed scheme uses an `2-
norm based constraint instead of `1-norm based as used in the
original PICCS approach, because the change (rise or fall) in
the temperature is gradual (relates to the smoothness). Hence,
making use of isotropic total-variation would be more apt than
anisotropic total-variation schemes. Utilization of sparsity
transformation like wavelets and curvelets for converting the
smooth rise in temperature as a sparse representation can be
explored for performing PITCR in the `1-norm framework, but
this is beyond the scope of the present study.

Table I indicates the time taken for reconstructing temper-
ature maps using the TCR approach and the proposed PITCR
method. The reported times indicate that the PITCR method
is computationally expensive than the TCR algorithm. The
reported reconstruction times does not include the time taken
to estimate the optimal regularization parameter using the
L-curve approach. The PITCR scheme was able to give a
reasonable RMSE value (less than 1 �C at the ROI) when the
data compression was very high (fewer measurements were

acquired) as shown in Table I. Assuming the data-collection
time is in the same scale as the reconstruction time, the PITCR
algorithm can be used as an alternative to the TCR algorithm
when fewer measurements are available, and the same can
be inferred from Table I. At high acceleration factors like
6⇥, PITCR algorithm could be used to reconstruct the images
retrospectively. In clinical use, it is important to obtain accu-
rate temperature maps before the maximal temperature has
reached to prevent overheating of tissue (damaging normal tis-
sues). Note that even in these scenarios, the PITCR method is
very e�cient in obtaining accurate temperature maps, and this
can be observed by the time-point by time-point comparison
of the temperature rise (shown in Figs. 1, 2, and 4). Therefore,
the performance of the PITCR method is better than the TCR
method in cases of using a truncated dataset with only time
points before the maximal temperature.

The proposed algorithm is computationally intensive as
it requires estimation of an additional term in the gradient
(three terms: prior term, temporal constraint, and data fidel-
ity) as opposed to the TCR approach (two terms: temporal
constraint and data-fidelity). Recent work had proposed a real-
time TCR (RT-TCR) algorithm,13 wherein the TCR algorithm
was parallelized with graphics processing units (GPU’s).13

Thus, reconstructing the temperature maps faster than the data
collection time in the dynamic sequence. As a part of future
work, the PITCR algorithm would be rewritten for achieving
massive parallelism using GPU.

There are two aspects to consider while comparing fully-
sampled versus undersampled data sets designed to measure
a dynamic process. The first aspect is related to the temporal
resolution of the data. If the volume coverages are equal, the
fully-sampled data will take longer to acquire, and the timing
of the reconstructed image will be a complicated weighting
of k-space data that were acquired at di↵erent points during
the changing process of temperature rise/fall. On the other
hand in the undersampled data case, the acquisition time is less
and will be close to a “snap shot” of the process at the time
of data acquisition. The second issue relates to the precision
or temporal SNR. Fully sampled data have the advantage of
more data points going into the reconstruction. However, data
reconstructed with algorithms using constraints in the tempo-
ral dimension have the advantage of the constraint enforcing
smoothness in time on the final 4D images. Reference 10 indi-
cates that the temporal SNR of image data sets reconstructed
from undersampled data using a temporal constraint can be
higher than the fully-sampled data case.

The disadvantage of the PITCR algorithm is that it has two
reconstruction parameters (↵ and �̃) to be chosen compared
to the TCR algorithm (which has only �). The reconstruction
parameter (�) is selected optimally using a L-curve method in
the TCR algorithm (as shown in Fig. 3), doing the same for
multiple parameters in PITCR will be challenging. The recon-
struction parameters were selected heuristically (to result in
best possible temperature distribution) in the PITCR and first
frame based method. The selection of regularization parameter
(�̃) in the PITCR approach can be done using the L-curve
method, as indicated in Fig. 3. The optimal parameter selection
for the PITCR method is computationally very expensive and
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Fig. 8. The variation of the fidelity norm, prior term and the temporal gradient over gradient descent iteration in the PITCR approach for the case ↵ = 0.3 with
17% data shown in Fig. 7.

takes around five and half hours for the datasets used in this
application. Therefore, the optimal regularization parameter
was selected only in case of Fig. 7 (to study the e↵ect of �̃
and ↵ variation) and for the rest of the cases this parameter was
selected heuristically. Moreover, our observation has indicated
that for a specific noise level, the regularization parameter does
not vary much and can be fixed at a certain value. Reconstruc-
tion becomes more di�cult as the number of reconstruction
parameters to be estimated increases, thus the proposed algo-
rithm was only compared with the TCR algorithm and not
against model-based algorithms.

The sliding window k-space data are used as initialization
in both the TCR and the PITCR algorithms. The data ob-
tained from the sliding window lines (di↵erent phase encode
lines compared to current time point data-acquisition) will be
added to the undersampled data obtained at the current time
frame, thereby obtaining the full k-space data for reconstruc-
tion. Moreover, the PITCR algorithm requires the next time
frame (future time frame) for performing the image recon-
struction. This additional constraint will create a delay in
obtaining the reconstructed images by one acquisition cycle,
which could be acceptable in many scenarios especially in
cases requiring faster data acquisition. Figure 6 indicates that
the PITCR algorithm is able to provide accurate reconstruction
results in the presence of motion outside the region of inter-
est, similar to the TCR approach. Hence, making the PITCR
algorithm widely useful in scenarios where relatively fewer
measurements are available to cases in which data are cor-
rupted by motion and noise. Figure 8 indicates the convergence
behavior of the PITCR method, and it can be clearly seen from
the figure that the norm does not vary much using the PITCR
approach even after 100 iterations.

In conclusion, a PITCR approach is proposed, which e↵ec-
tively uses the prior image for accurately providing the temper-
ature map distribution with fewer measurements when com-
pared to the existing TCR approach. The proposed scheme was
found to be robust with noise when compared to the existing
TCR approach with requiring relatively fewer measurements.
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APPENDIX: CONVERGENCE OF THE
PITCR ALGORITHM

Even though the minimization used by the PITCR approach
is performed using a gradient descent approach, deriving
convergence for these set of algorithms tend to be di�cult
as the prior term is dynamically changing. Hence in this
appendix, it is shown that if the proposed PITCR approach has
at least one fixed point, then it converges to that fixed point.
Note that the investigation about the existence of that fixed
point is not studied here, as it is already present in Ref. 27.
The current derivation of showing the solution converging
to a existing fixed point is similar to the one presented in
Ref. 28. Nonexpansive mapping theory is used in investiga-
tion about the fixed point. Nonexpansive mapping can have
di↵erent characteristics like a mapping (K) is said to be
strongly nonexpansive if K is nonexpansive and the sequences
(xn)n2R and (yn)n2R are in RMNLT such that (xn � yn)n2R is
bounded and kxn� ynk2� kK xn�K ynk2! 0 holds. Then the
following (xn� yn)� (K xn�K yn)! 0 also holds.28,29 On the
other hand, when K is firmly nonexpansive if 8x,y 2 RMNLT,
kK x � K yk2

2  h(K x � K y),(x � y)i, where the definition of
h(K x�K y),(x� y)i=PMNLT

i=1 ((K x)i� (K y)i)(xi� yi).28–30

The operators used for the PITCR algorithms are nonexpan-
sive. The gradient descent with enough iterations is strongly
nonexpansive27,31 and the temporal derivatives are proximal
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mappings and hence are firmly nonexpansive.32 All the
operators used here are strongly nonexpansive and hence if K
has at least one fixed point, then PITCR algorithm converges
to that fixed point.29,30
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