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Image-guided diffuse optical tomography has the advantage of reducing the total number of optical parameters being
reconstructed to the number of distinct tissue types identified by the traditional imaging modality, converting the
optical image-reconstruction problem from underdetermined in nature to overdetermined. In such cases, the
minimum required measurements might be far less compared to those of the traditional diffuse optical imaging.
An approach to choose these optimally based on a data-resolution matrix is proposed, and it is shown that such
a choice does not compromise the reconstruction performance. © 2013 Optical Society of America
OCIS codes: 170.0170, 170.6960, 110.4190, 110.6955, 170.0110, 170.3890.

Image-guided diffuse optical tomography has been
shown to provide better diagnostic information com-
pared to the information provided by individual modal-
ities separately, where the image guidance refers to
the usage of structural information provided by tradi-
tional imaging modalities (examples being magnetic re-
sonance imaging [MRI], computed tomography, and
ultrasound) [1–3]. Utilization of structural information
provided by the traditional imaging modalities to improve
the image-reconstruction performance has been investi-
gated extensively [1].
The usage of structural information to reduce the re-

constructed number of optical parameters to the number
of distinct tissue types determined by the traditional ima-
ging modalities (also known as hard priors) is shown
to have a computational advantage compared to other
image-guided procedures [3–6]. In this approach, the as-
sumption is that the optical property value in each dis-
tinct region as identified by the traditional imaging
modality is uniform and can have distinct values across
regions. This makes the reconstructed image quality de-
pendent only on the prior information, and the recon-
struction procedure is about estimation of the optical
property value (quantification). Even though the number
of optical parameters to be reconstructed is much lower
in this approach compared to traditional diffuse optical
tomographic imaging [3–6], typically the same number of
measurements are utilized, which might be unnecessary.
Reduction of the minimum number of required measure-
ments without compromising the quantification of the re-
constructed optical properties is highly desirable as it has
implications in terms of reduced time to complete the
data-acquisition procedure, especially in the dynamic
imaging case [5,6].
In this Letter, a novel approach, to the best of our

knowledge, that can use the image guidance to reduce
the minimum required measurements substantially was
attempted. This work was motivated by the recent work
on the optimization of the data-collection strategy based
on data-resolution characteristics for traditional diffuse
optical tomographic imaging [7]. It will be shown through
usage of numerical experiments involving a realistic

breast tissue case and gelatin phantom experiments that
the quantification (contrast recovery) of reconstructed
optical parameters using the minimummeasurements de-
termined by the proposed method is similar to the results
obtained using all measurements. As the emphasis is on
optimal choice of minimum required measurements
using the proposed method, the discussion is limited
to continuous-wave (CW) two-dimensional imaging
domains.

The CW near-infrared light propagation in thick, soft
biological tissues, such as breast and brain tissue, can
be modeled using a diffusion equation [8] given by

−∇:D�r�∇Φ�r� � μa�r�Φ�r� � Qo�r�; (1)

where Qo�r� is the isotropic CW source located at posi-
tion r and Φ�r� is the photon density (real value). The
optical absorption coefficient, which is to be estimated,
is given by μa�r�. The diffusion coefficient, assumed to be
known and constant throughout the imaging domain in
the CW case, is represented by D�r� and is equal to
1∕3�μa�r� � μ0s�r��, with μ0s�r� representing the reduced
scattering coefficient. Due to the versatility provided
by the finite-element method (FEM) in terms of handling
the irregular geometries, Eq. (1) is solved numerically
using FEM [8]. A Robin-type (Type-III) boundary condi-
tion is deployed in this numerical scheme to take care
of the refractive-index mismatch at the boundary of
the imaging domain [8]. The modeled measurements,
represented by G�μa�, are the sampled values of Φ�r�
for given source-detector (measurement) locations at
the boundary of the imaging domain.

The objective function to be minimized with respect to
μa for the reconstruction problem in image-guided
diffuse optical tomography is given by

Ω � ‖y − G�μa�‖2; (2)

where y represents the experimentally measured
intensity data having dimension of NM × 1, with NM
representing the number of measurements. Note that
the dimension of μa to be estimated is NR × 1, with
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NR representing the number of distinct regions identified
by the traditional imaging modalities. For breast tissue,
typically NR � 3, where the segmented regions are fatty,
fibroglandular, and tumorous. Typically the optimization
is achieved the Lenverg–Marquardt method [3] with the
equation being

Δμa � �JTJ� λI�−1JTδ; (3)

where J represents the Jacobian (also known as the
sensitivity matrix), given by dG�μa�∕dμa, having dimen-
sions of NM × NR and computed using either a perturba-
tion or adjoint method combined with a region mapper
[3,8] with NM ≫ NR. The data–model misfit is repre-
sented by δ and is equal to y − G�μa�. The regularization
parameter is represented by λ, which allows the inversion
of the ill-conditioned matrix JTJ, typically reduced by a
small factor over the iterations (here it is 100.25). The
identity matrix is represented by I. The estimation of
μa is an iterative procedure in which every Δμa obtained
using Eq. (3) is added to the current μa and both J and δ
are recomputed using the updated μa. This iterative pro-
cedure is stopped when the change in the L2 norm of δ
between the successive iterations falls below 2% [3,7].
Taylor expansion of the modeled data G�μa� around an

initial guess μa0 and considering up to first-order (linear)
terms in combination with assuming a perfect model
leads to the well-known equality JΔμa � δ0 (Eq. 9 in
[7]), where δ0 represents the data–model misfit using a
perfect model (y � G�μa�). Using Δμa given by Eq. (3)
in this Letter leads to the definition of the data-resolution
matrix as

N � J�JTJ� λI�−1JT ; (4)

which has dimensions of NM × NM and represents the re-
lation between the perfect model and its linearized ver-
sion. In the ideal scenario, δ � δ0, leading to N � I, which
is only possible when λ � 0. In practice, λ > 0 due to the
ill-conditioned nature of the problem, making the recov-
ered μa not equal to the expected μa. The closer N is to I,
the smaller are the prediction errors for δ. The magnitude
of diagonal entries of N also indicate the importance of
the corresponding data point to its own prediction [7].
The closer the magnitude of diagonal entries to 1, the
higher the importance. Note that determination ofN does
not depend on δ (or the noise in the data) and is purely
characteristic of the underlying model, which includes
the prior information used for calculation of J and the
regularization scheme [7].
For determining the optimal minimal measurements,

initially N is computed at the first iteration. Next, the di-
agonal entries of N are sorted in the descending order;
this sorted list signifies the relative importance of a par-
ticular measurement, with the first entry being the most
important and the last entry having the least importance.
This leads us to the optimal choice of minimum required
measurements (M) based on the sorted diagonal entries
of N. The reduced Jacobian (~J) can be defined as

~J � J�Ind; :�; (5)

where Ind represents the indices of unsorted diagonal
entries of N corresponding to the first M entries, leading
to the dimensionality of ~J being M × NR (M ≪ NM). For
example, for breast imaging, ideally (in the noiseless
case) M � 3 as NR � 3. Real measurements are always
corrupted with the noise, leading to NR ≤ M ≤ NM. Deter-
mining the exact M for a given estimation problem de-
pends mainly on the condition number of ~J, with
optimal M choice resulting in the condition number of
~J being in the same numerical range as the condition
number of J. The determination of M was performed
at the first iteration and was reused in subsequent
iterations.

Numerical experiments using synthetic data generated
on a breast MRI image segmented by an FE mesh with
5199 nodes corresponding to 10,208 linear triangular
elements is used. The target μa distribution is shown
in Fig. 1 (top-left corner) consisting of three regions hav-
ing μa values of 0.01 (fatty), 0.015 (fibroglandular), and
0.02 (tumorous) mm−1. The fatty region μa value was
used as an initial guess for the iterative reconstruction
procedure in all cases, which could be easily obtained
using a data-calibration procedure [9]. Note that the nor-
malized value of N does not depend on the μa used as
long as it is within the acceptable range of normal tissue
values (0.005–0.03 mm−1); hence the initial guess’s effect
on choosing optimal M is negligible. The μ0s for all three
regions was set at 1 mm−1 and assumed to be known. Six-
teen fibers were arranged in a circular fashion at the in-
dentations of the boundary [given below the text of All
(1%) in Fig. 1], where when one fiber acts as source,
the remaining 15 act as detectors, resulting in a total
of 240 (NM) measurements. The numerically generated
data was combined with normally distributed Gaussian
noise levels of 1% (close to the expected noise level in
a typical experiment) and 10% (extreme case) to test

Fig. 1. (Color online) Reconstructed μa distributions using all
and an optimally chosen minimal number of measurements
(M � 6 in this case) with numerically generated 1% and 10%
noisy data in a realistic breast case (top left, obtained from vo-
lunteer). The text on top of each distribution represents the
number of measurements used, with the minimum being
obtained using the proposed method, where the data noise level
is given in parenthesis (λ � 1.5 for all cases). The correspond-
ing sources and detectors for each case are also indicated along
with their corresponding μa distribution. The bottom-right cor-
ner μa distribution was obtained by randomly choosing six mea-
surements. The one-dimensional cross-sectional profile plot
passing through the tumor for all reconstruction cases is given
at the right side.
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the robustness of the proposed method. An FEmesh with
2002 nodes corresponding to 3814 elements was used in
the reconstruction procedure with μa values of the fatty
region as the uniform initial guess. The M was chosen
initially as 3 and incremented by 1 at each step, the cor-
responding condition number of ~J for each M was
computed and compared with the condition number of
J. The condition numbers of ~J for M � 3, 4, 5, and 6
are 4.32e� 03, 4.19e� 03, 498.41, and 178.19, respec-
tively, and for J it is 43.28; hence the optimal M was
selected as 6. The reconstructed distributions and one-
dimensional profile plots using all (NM � 240) and
minimal (M � 6) measurements as determined by the
proposed method are given in Fig. 1.
The reconstructed μa distribution using a random

choice of six measurements is also given in Fig. 1 (bot-
tom right). It clearly shows that the optimal choice of
minimal measurements (in this case,M � 6) did not com-
promise the reconstructed μa quantification and recon-
structed results matched with the results obtained
using all measurements even for the extreme case of a
10% noise level. When the same number of minimal
measurements were chosen at random, results in tumor
region μa value were equal to the fatty region μa value,
missing the tumor completely and resulting in a false ne-
gative. With a similar effort as in Fig. 1, the results
obtained using the experimental data and using the gela-
tin phantom (height: 25 mm; diameter: 86 mm) that mi-
mics the layered tissue model of the breast [3,9] are
given in Fig. 2. The wavelength of the light source used

here is 785 nm. The expected (target) μa distribution is
given in the top-left corner of Fig. 2. The phantom had
contrast in μ0s as well, with values for fatty (outermost
region), fibroglandular (middle region), and tumor (smal-
lest circular region) regions being 0.65, 1.0, and
1.2 mm−1, respectively. Here the FE mesh that was used
in the reconstruction procedure had 1785 nodes corre-
sponding to 3418 linear triangular elements. The μ0s
was assumed to be known and to have a uniform value
of 0.65 mm−1. Here as well, theM value that was found to
be optimal was 6. The reconstruction result obtained
using an optimal choice of minimum required measure-
ments matches very closely (within 7%) with the one ob-
tained using all measurements. The higher recovery of μa
value in the tumor region was due to the assumption of
uniform μ0s across regions. Note that the heterogeneous
target μ0s in this case has no effect on the choice of
optimal M .

In summary, we have presented a novel approach
based on data-resolution characteristics of the imaging
problem for optimally choosing the minimum required
measurements for performing image-guided diffuse opti-
cal tomography. We also showed that such a choice
yields reconstruction results that are similar to the ones
obtained using all measurements.
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Fig. 2. (Color online) Results of a similar effort to that for
Fig. 1 for the case of experimental gelatin-phantom data. Here
also the M (minimal measurements) was chosen as 6. The reg-
ularization parameter in this case was kept at 0.01.
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