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Abstract
Corrosion poses a substantial economic burden, and machine learning is increas-
ingly being explored for its potential in staging, predictive maintenance, and
data-driven decision making. This study presents an unsupervised automated
corrosion staging method based on image processing and machine learning using
optical microscopy (OM) images. It detects and computes (i) the local poros-
ity in a neighborhood of 5µm × 5µm at pore locations, and (ii) the deposit
thickness in (µm). The local porosity and deposit thickness were used to esti-
mate the chloride concentration factor, associated pH, and the corrosion stage.
The approach was tested on 48 ex-service OM images of under-deposit corrosion
(UDC). A thickness-based approach yielded an accuracy of ∼73% in classifying
the corrosion stage in UDC compared to previous time-consuming approaches.
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This is a significant step in automating the evaluation of the corrosion stage,
enabling scalable data-driven corrosion assessment across critical infrastructures.

Keywords: Image Analysis, Machine Learning, Corrosion Staging, Porosity, Deposit
Thickness, Optical Microscopy, Digitalization

1 Introduction
Corrosion is a widespread and interdisciplinary phenomenon that results in the degra-
dation of metals, posing significant economic and safety challenges across various
industries. It undermines the reliability, efficiency, and longevity of structural and
functional components in critical sectors such as power generation, oil and gas, and
infrastructure. Traditional methods for analyzing corrosion—such as visual inspection,
potentiodynamic polarization, and electrochemical impedance spectroscopy—offer
valuable insights into the overall corrosion process, particularly in materials like car-
bon steel [1–4]. However, they fall short in revealing detailed surface characteristics
like porosity, which play a vital role in the initiation and progression of localized
corrosion.

Pores on metal surfaces act as entry points for corrosive agents, significantly
accelerating degradation through increased surface area exposure and the formation
of micro-environments conducive to corrosion. Studies have shown that pore size,
distribution, and inter-connectivity influence the kinetics of corrosion reactions [5].
Therefore, precise characterization of porosity is essential for predictive corrosion mod-
eling. Advanced imaging techniques such as optical microscopy (OM), X-ray computed
tomography, and scanning electron microscopy have made it possible to correlate sur-
face microstructure with corrosion susceptibility [6]. In industrial applications, such
insights facilitate more effective preventive maintenance strategies [7], especially in
complex systems like steam generators and pipelines.

The advent of digital monitoring and machine learning (ML) offers new oppor-
tunities for automating corrosion analysis, reducing reliance on subjective manual
inspection. ML enables the analysis of large, complex datasets and the discovery of
hidden patterns, making it an ideal tool for predicting corrosion rates, characteriz-
ing degradation, and optimizing mitigation strategies [8, 9]. While supervised ML
approaches have shown promise in predicting corrosion inhibitor performance and
material degradation trends [10–12], they are often limited by the need for labeled
datasets and the risk of overfitting [13]. Unsupervised ML, by contrast, circumvents
these limitations by identifying intrinsic data patterns without requiring prior anno-
tations. This makes it especially valuable in corrosion science, where labeled data are
scarce and experimental conditions are variable [14].

Recent studies have begun to explore the role of unsupervised ML in materials
science, such as in the classification of aluminum alloys [15] and quantification of
nanopores in oxide films [16]. However, its application to corrosion characterization
remains limited. In particular, under-deposit corrosion (UDC)—a localized corrosion
form prevalent in high-pressure steam generators—has not been extensively studied
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through unsupervised learning. UDC arises due to the accumulation of magnetite
deposits that trap chlorides and other ionic contaminants beneath porous surface
layers [1, 17–19]. These deposits alter local chemistry, such as pH and chloride con-
centration, and drive aggressive corrosion processes that are difficult to monitor using
conventional methods [20–25].

Common industrial practices for mitigating UDC include reducing chloride concen-
tration in steam generator water, monitoring deposit accumulation, and performing
chemical cleaning before critical thresholds are reached [26–28]. However, controlling
chlorine levels is often infeasible in large-scale systems, where trace chloride concentra-
tions in the parts-per-billion range are intentionally maintained to promote uniform
magnetite layer formation that protects steam generator tubes [29]. As a result, pre-
cise and continuous monitoring of deposit characteristics becomes critical to balance
protective deposition with the risk of corrosion. Experimental systems for simulat-
ing magnetite deposits have been developed [30], yet their real-world durability and
behavior remain uncertain. Imaging and quantification tools such as ImageJ [31] and
MATLAB [32] have been applied to assess corrosion features at high temperatures. In
this study, MATLAB was selected for image processing due to its compatibility with
machine learning workflows, although future adaptations of the algorithm could also
be developed as plugins for ImageJ to support wider community use.

Manual classification of UDC stages based on optical microscopy images has been
proposed to address this issue, defining four corrosion stages based on deposit layering
and porosity [33, 34]. However, this approach is labor-intensive, prone to interob-
server variability, and challenging to scale across industrial operations. Automated
image analysis, especially when combined with unsupervised ML techniques, offers
a more robust, scalable, and objective method for staging corrosion and enabling
predictive maintenance. Parameters such as surface texture, deposit thickness, and
porosity—readily extracted from OM images—can serve as inputs for ML algorithms
that estimate the extent and severity of corrosion [33, 35].

Recent studies on the progression of under-deposit corrosion (UDC) using optical
microscopy have proposed a staging system based on the morphological features of
corrosion deposits, particularly porosity and layer structure [33, 34]. This classification
allows for more effective preventive maintenance and monitoring in pipeline systems.
The UDC stages, as described in [33], are visually interpreted as follows:
• Stage 1 involves an unfractured scale with a thin protective magnetite layer and a

nonporous barrier adjacent to the steel surface;
• Stage 2 is marked by a porous layer forming on the magnetite, resulting in a double-

layer structure with pores concentrated on the outer surface;
• Stage 3 is characterized by the presence of multilayer corrosion product scales; and
• Stage 4 exhibits multilayer corrosion products with visible fractures between layers.

In this study, we present an unsupervised, image-based methodology for the auto-
mated staging of under-deposit corrosion. The proposed system computes two key
surface parameters—local porosity and deposit thickness—from optical microscopy
images of ex-service steam generator samples. These parameters are further used to
estimate the chloride concentration factor and associated pH, both critical indicators
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of corrosion severity. Our findings demonstrate that deposit thickness and porosity
not only reflect the underlying chemical environment but also correlate well with
expert-defined corrosion stages. Furthermore, we propose a fully automated staging
algorithm based on these metrics, advancing the digitalization of corrosion diagnostics
in industrial settings.

The main contributions of this study are as follows:
• Development and validation of an automated algorithm for thickness measurement

and porosity computation, which shows good agreement with manual measurements
and domain expertise calculations.

• Analysis of chloride concentration factor and pH as a function of deposit thick-
ness, revealing a correlation between increasing deposit thickness, higher chloride
concentration, and decreasing pH.

• Demonstration of the relationship between the progression of UDC and the increase
in the chloride concentration factor along with the decrease in pH values.

• Quantification of pH values for different stages of under-deposit corrosion (UDC),
particularly for stages 3 and 4, with stage 3 showing minimum pH values between
2.8 and 3.5, and stage 4 between 1 and 1.5.

• Identification of a potential threshold for transition from stage 3 to stage 4 UDC,
based on pH values between 2.8 and 3.

• Finally, a fully automated algorithm for automated corrosion staging based on OM
images was developed using the computed deposit thickness and local porosity from
the unsupervised machine learning method.

These findings contribute to a better understanding of the UDC process and pro-
vide quantitative data for predicting and monitoring corrosion stages in industrial
applications.

2 Results
All implementations were performed using MATLAB on a Linux workstation with an
Intel i9-9900X, 3.3GHz, 10 cores processor and 128 GB of RAM. Fig. 1 shows the input
OM image with the calibrated thickness obtained using Eq.(8), the local porosity map
obtained using Eqs. (6), the local porosity as a function of thickness obtained using
Eq.(7) and the attributes of the sample OM images were considered. As expected, the
porosity values were lower on the metal side (x) than on the oxide interface (y). The
local porosity map estimated using the proposed method is directly correlated with
the visual assessment of porosity throughout the width of the tube deposit. Further,
representative images from each stage is shown in Figure 2 along with the calibrated
thickness obtained using the proposed algorithm.

Figure 3 shows the confusion matrices corresponding to (a) porosity, (b) local
porosity, (c) thickness, and (d) UDC stage classifications based on the voting method.
These results corresponded to the 48 sample OM images used by Abitha et al. [33].
The true stage of the UDC corresponds to the actual stage of the UDC determined
by domain expertise [33]. The diagonal elements in each matrix represent the num-
ber of correctly classified samples and the nondiagonal elements represent the number
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Fig. 1 Representative results obtained using the proposed automated pore characterization on sam-
ple OM image. (a) Input image with calibrated thickness, (b) local porosity map, and (c) local porosity
computed as a function of thickness and attributes obtained.

of misclassified samples. Because the thickness-based criterion yielded the maximum
number along the diagonal with 72.9% accuracy, it was used for classification in the
results presented in this study. The classification methods based on porosity and
thickness exhibit relatively lower accuracy, and the voting-based approach tends to
produce conservative predictions—often assigning a corrosion stage that is equal to
or greater than the actual stage. Given the critical implications of missing a true
case of corrosion, the proposed approach was intentionally designed to be conserva-
tive, favoring false positives over false negatives. This aligns with our broader goal of
ensuring robust detection, even at the cost of overestimation, to enhance reliability in
early-stage corrosion monitoring.

Further in the proposed approach, the initial segmentation is performed using
an unsupervised deep learning method—k-means clustering—which does not rely on
predefined class labels. This segmentation is then used to compute local porosity
and deposit thickness. The final classification into UDC stages is carried out based
on quantitative thresholds of deposit thickness, rather than through a supervised
learning model trained directly on labeled class data. As such, the class distribution
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Fig. 2 Representative results obtained using the proposed automated pore characterization on sam-
ple OM images from each of the four stages. In each column, the top row corresponds to the input
image with calibrated thickness shown in the insets. The attributes such as porosity (Por), tortuosity
(Tor), local porosity (LPor) and local tortuosity (LTor) corresponding to the respective images are
also shown for reference.

arises naturally from the underlying physical measurements, and no supervised loss
function or class-based model training was applied. Therefore, class imbalance in the
traditional supervised learning sense does not influence the classification performance.

To understand how the thickness and local porosity of the deposit vary with the
UDC stage, the deposit thickness and local porosity versus the UDC stage are plotted
in Figs. 4(a) and 4(b), respectively. As expected, the thickness of the deposit and local
porosity increased with increasing stages of corrosion. Furthermore, the plots pinpoint
the thresholds at which the transition occurred from Stage 3 to Stage 4 UDC. The
thickness of the deposit was measured as the maximum value reading for each sample
and was free from variation due to spallation. The highest reading in Stage 3 was
approximately 90 µm and the lowest reading in Stage 4 was approximately 95 µm.
Similarly, for Stage 3, the median porosity reported was ∼ 30%, which is consistent
with the expert analysis of the subject matter reported by Abitha et al. [33]. Figure
5 shows a 2D histogram detailing the distribution of OM images with respect to the
thickness of the deposit and local porosity. As shown in Fig. 5, both the thickness of
the deposit and the local porosity increase as the UDC progresses. In Stage 1, the OM
images exhibited the lowest porosity and thickness, corresponding to the green peak.
Similarly, the peaks corresponding to the subsequent stages shifted toward higher
values of the deposit thickness and porosity as the UDC progressed.

Figure 6 shows the analysis of the Cl− concentration factor (Fig. 6 (a)) and pH
(at 286◦C) (Fig. 6(b)) as a function of the thickness of the deposit. For the thickness
of the deposit < 30µm, the chloride concentration factor under the deposits was not
high, and the local pH remained within the range of 5.5 to 5.8, which is close to the
pH of the bulk water (5.8). However, as the thickness of the deposit increased, the
concentration factor continued to increase and the pH continued to decrease (Fig. 6).
Figure 7 top row shows the Cl− Concentration Factor (Fig. 7(a)) and pH (at 286◦C)
(Fig. 7(b)) variation across the stages obtained using the manual thickness measure-
ment and porosity computation with domain expertise [33] and bottom row shows the
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Fig. 3 Confusion matrices corresponding to (a) porosity, (b) local porosity, (c) thickness and (d)
voting method based UDC stage classifications. These results correspond to the 48 sample OM images
used in [33]. The true UDC stage corresponds to UDC stage determined by [33]

Fig. 4 Deposit thickness (a) and local porosity (b) versus UDC stage. As expected, the deposit
thickness and local porosity increased during the later corrosion stages

Cl− Concentration Factor (Fig. 7(c)) and pH (at 286◦C) (Fig. 7(d)) variation across
the stages computed using the proposed automated algorithm. This shows that the
automated algorithm agrees well with manual thickness measurement and porosity
computation with domain expertise. The minimum pH value of stage-3 was approxi-
mately between 2.8 and 3.5 (Fig. 7 (d)). Similarly, for Stage 4, the minimum pH value
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Fig. 5 2D histogram detailing the distribution of OM images with respect to deposit thickness and
local porosity

Fig. 6 The chloride concentration factor and corresponding pH variation as a function of the deposit
thickness.

was between 1 and 1.5 (Fig. 7(d)). As shown in Fig. 7, Cl− Concentration Factor
increases and pH decreases as the UDC stage progresses. Although there is a spread
for both measures across stages, a stable threshold to decide the transition from stage
3 to stage 4 is approximately between 2.8 and 3 for the pH values.
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Fig. 7 The top row shows (a) the Chloride concentration factor versus UDC stage and (b) pH versus
UDC stage using manual thickness measurement and porosity computation with domain expertise, as
reported by Abitha et al.[33]. The bottom row shows (c) Chloride concentration factor versus UDC
stage and (d) pH versus UDC stage obtained using the proposed automated algorithm.

3 Discussion
This study demonstrated an unsupervised machine-learning-based automated image
processing algorithm for corrosion staging in optical microscopy images. The algo-
rithm automatically computed the deposit thickness and local porosity directly, which
facilitated the characterization of the corrosion stage. Furthermore, the calculated
porosity facilitates the quantitative analysis of the chloride concentration factor and
associated pH value. In particular, the observed deposit thickness transition between
Stages 3 and 4 aligned well with the estimated pH threshold. This alignment is sig-
nificant because it suggests a potential link between the deposit morphology, local
chemistry, and the progression of the corrosion stage, offering valuable insight into
the mechanisms of UDC.
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This work further demonstrates ∼73% accuracy in the characterization of the UDC
stage in ex-service samples. Although this level of accuracy is promising, future work
will focus on improving the robustness and performance of the algorithm for more
complex corrosion morphologies. In contrast to traditional manual analysis, the pro-
posed unsupervised algorithm offers an important advantage in eliminating human
subjectivity associated with repetitive tasks associated with labeled data generation
in supervised machine-learning approaches [9], paving the way for a broader applica-
tion of unsupervised techniques in image analysis. Specifically, it demonstrated the
feasibility of extracting meaningful quantitative information from complex corrosion
images without relying on manual annotation. Using unsupervised machine learning
and automated characterization techniques, this study presents a valuable tool for
the assessment of UDC, which will ultimately contribute to improved maintenance
strategies in large-scale settings.

4 Methods
4.1 Computation of Local Porosity
The method for computing the local porosity is divided into three parts: (i) pore
detection, (ii) estimation of the local porosity, and (iii) characterization of the porosity.
The process of characterizing the porosity throughout the thickness of the boiler
deposit is illustrated in Fig. 8.

K-means [36] is an unsupervised clustering algorithm that clusters (or groups)
data points according to their similarity score (often the mean squared error) is used
for the pores detection. In contrast to other machine learning methods, unsupervised
learning reduces dependency on labeled data, which is very rare in corrosion datasets.
In a given image, a random cluster of centroids is initially selected, and the cluster
centroids are refined over multiple iterations until the convergence criterion is satisfied.
As shown in Fig. 9 (a), there are three clusters: (i) the waterside region, (ii) the
deposit, and (iii) the metal pipe onto which the data points can be grouped. Each
pixel (data point) has three intensity values corresponding to the Red, Green, and
Blue (RGB) color model. An in-depth breakdown of the detection of pores from the
optical microscopy (OM) images is shown in Fig. 9.

Fig. 8 Cartoon picture showcasing the key steps involved in the characterization of local porosity
across the thickness of boiler deposit
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Consider an OM image consisting of N pixels, where each pixel (x1, ...xN ) is rep-
resented by vector 3 × 1. The objective was to divide the data into three clusters such
that the distance within each cluster was minimized and the distance between each
cluster was maximized. For a given data point xn and centroid µk of the kth clus-
ter, the binary variable gnk ∈ 0, 1 indicates whether xn belongs to cluster k. In other
words, if xn is assigned to group k, gnk takes a value of 1; otherwise, it takes a value
of 0. The clustering process aims to minimize the following:

J =
N∑

n=1

3∑
k=1

gnk||xn − µk||2 (1)

The algorithm starts by assigning random values to each cluster centroid, µk.
Initially, objective function J in Eq. (1) is minimized with respect to gnk while keeping
µk fixed. Then, J is minimized with respect to µk while keeping the value of gnk fixed.
This two-stage process is repeated until convergence is achieved. Subsequently, blob
removal [37] was performed to fill the small black/white regions in the segmented
image S(r, c) (Fig. 9 (b)) to obtain the tube deposit image T (r, c) (Fig. 9(c)). Here,
(r, c) corresponds to the rth row and cth column of the OM image. This is followed
by a logical AND operation [37] to obtain tube deposit with pores Tp(r, c) (Eq. (2))
as shown in Fig. 9(d),

Tp(r, c) =
{

1 if S(r, c) = 1, and T (r, c) = 1
0 otherwise.

(2)

Finally, pores P (r, c) were extracted using an XOR operation with T (r, c) (Fig. 9(c))
and Tp(r, c) (Fig. 9(d)) as shown in Eq. 3. Equation (3) produces an output consisting
of the pores present within the deposit region, as shown in Fig. 9(e).

P (r, c) =


1 if T (r, c) = 1, and Tp(r, c) = 0
1 if T (r, c) = 0, and Tp(r, c) = 1
0 otherwise.

(3)

In the local porosity estimation process, a localized porosity map is initially gen-
erated by aggregating the porosity values within a predefined neighborhood relative
to each pore. To compute the porosity within this neighborhood, a square matrix
denoted by M was employed, with all its entries set to 1 and a size of 55 × 55, equiv-
alent to a physical area of 5µm × 5µm. This matrix M is then convolved with the
pore image P (r, c) and tube deposit image T (r, c), as indicated in Eq. (4), and Eq.
(5), respectively.

V local
v (r, c) =

a∑
dr=−a

b∑
dc=−b

M(dr, dc)P (r − dr, c − dc) (4)
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Fig. 9 Illustration of the important steps involved in pore detection (a) Original OM image (clusters
C1: sample support, C2: deposit region and C3: metal tube), (b) Segmented Image obtained after
K-means clustering, (C) blob-filled tube deposit, (d) tube deposit with pores, and (e) detected pores.
The operations performed at each step were provided correspondingly at the bottom of the image.

V local
T (r, c) =

a∑
dr=−a

b∑
dc=−b

M(dr, dc)T (r − dr, c − dc), (5)

The edges of P and T are appropriately zero padded. However, V local
v (r, c) and

V local
T (r, c) are cropped to maintain the same size as P . This step is performed using

the conv2d function in MATLAB [32]. A sample of accumulated pores (V local
v (r, c))

and accumulated tube deposits (V local
T (r, c)) in the considered local neighborhood is

shown in Figs. 10 (a) and 10 (b), respectively. Then the local porosity map/image
(Fig. 10(c)) is computed as

ϕlocal(r, c) =


V local

v (r, c)
V local

T (r, c)
if P (r, c) = 1

0 otherwise.

(6)

Finally, the averaged local porosity is computed as the mean of the local porosity
map given in the equation. (6). Tortuosity was computed using the empirical relation
given in [33]. Similarly, the local tortuosity was computed using the same empirical
relation for tortuosity, but with porosity replaced with the averaged local porosity.

To characterize the local porosity along the thickness ϕth(r) of the deposit, the
ϕlocal(r, c) in Eq.(6) is averaged across each row r of the local porosity image,

ϕth(r) = 1
nC

C∑
c=1

ϕlocal(r, c), (7)
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Fig. 10 Example case (from left to right) showing (a) accumulated pores, (b) accumulated tube
deposits, and (c) local porosity map obtained using Eq. (6).

Table 1 Criteria for UDC stage classification based
on percentage of porosity and thickness

UDC Stage Porosity (%) Thickness (µm)
1 0 - 2 0 - 15

2 2 - 10 15 - 30

3 10 - 30 30 - 90

4 > 30 > 90

where nC is the number of pores in the rth row. The thickest portion in the deposit on
each sample image is identified and the deposit width at that location is estimated as

Thickness = np × resolution, (8)

where np is the number of pixels and resolution is the length of the pixels expressed
in µm. The resolution of the pixels in this case is 0.11µm.

4.2 Criteria for Corrosion Stage Classification
This study further evaluated the importance of the thickness of the calculated deposit
and the local porosity by using them to classify the UDC stages in [33]. The classifica-
tion was performed based on the porosity, which was first computed as the fraction of
total pores to the total tube deposit. By analyzing the experimental studies reported
by Abitha et al. [33], each OM image is assigned a UDC stage based on porosity
value as listed in Table 1. The same criteria based on the porosity values were utilized
for the averaged local-porosity-based classification. In the thickness-based classifica-
tion, the UDC stage is assigned according to the thickness values reported in Table
1 [33]. Next, for the voting method, if two of the aforementioned criteria agree, the
corresponding stage is assigned to the OM image. If none agreed with each other, a
thickness-based criterion was used.

Four boilers operating with all-volatile treatment (AVT) implementation produced
12 coil pieces, each measuring approximately 1 m in length. The OM images used
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in this study were acquired from a group of boilers operating simultaneously and
theoretically identically, all suffering from UDC. Typically, boilers have a helical coil
design [38, 39] with boiling water on the exterior and hot process gas inside. The
details of the image acquisition and corrosion stage characterization for UDC are
provided in Abitha et al. [33].

5 Data and Code Availability
The datasets used and/or analysed during the current study are available from the cor-
responding author on reasonable request.The software implementation can be accessed
from the GitHub repository provided in https://github.com/NaveenPaluru/UDC-
Analysis.
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Figure Legends
Figure 1. Representative results obtained using the proposed automated
pore characterization on sample OM image. (a) Input image with cali-
brated thickness, (b) local porosity map, and (c) local porosity computed
as a function of thickness and attributes obtained.

Figure 2. Representative results obtained using the proposed automated
pore characterization on sample OM images from each of the four stages.
In each column, the top row corresponds to the input image with calibrated
thickness shown in the insets. The attributes such as porosity (Por), tortu-
osity (Tor), local porosity (LPor) and local tortuosity (LTor) corresponding
to the respective images are also shown for reference.

Figure 3. Confusion matrices corresponding to (a) porosity, (b) local
porosity, (c) thickness and (d) voting method based UDC stage classifica-
tions. These results correspond to the 48 sample OM images used in [33].
The true UDC stage corresponds to UDC stage determined by [33]
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Figure 4. Deposit thickness (a) and local porosity (b) versus UDC stage.
As expected, the deposit thickness and local porosity increased during the
later corrosion stages

Figure 5. 2D histogram detailing the distribution of OM images with
respect to deposit thickness and local porosity

Figure 6. The chloride concentration factor and corresponding pH
variation as a function of the deposit thickness.

Figure 7. The top row shows (a) the Chloride concentration factor
versus UDC stage and (b) pH versus UDC stage using manual thick-
ness measurement and porosity computation with domain expertise, as
reported by Abitha et al.[33]. The bottom row shows (c) Chloride concen-
tration factor versus UDC stage and (d) pH versus UDC stage obtained
using the proposed automated algorithm.

Figure 8. Cartoon picture showcasing the key steps involved in the
characterization of local porosity across the thickness of boiler deposit

Figure 9. Illustration of the important steps involved in pore detec-
tion (a) Original OM image (clusters C1: sample support, C2: deposit
region and C3: metal tube), (b) Segmented Image obtained after K-means
clustering, (C) blob-filled tube deposit, (d) tube deposit with pores, and
(e) detected pores. The operations performed at each step were provided
correspondingly at the bottom of the image.

Figure 10. Example case (from left to right) showing (a) accumulated
pores, (b) accumulated tube deposits, and (c) local porosity map obtained
using Eq. (6).
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