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Purpose: To compare the performance of iterative direct and indirect parametric reconstruction
methods with indirect deep learning-based reconstruction methods in estimating tracer-kinetic param-
eters from highly undersampled DCE-MR Imaging breast data and provide a systematic comparison
of the same.
Methods: Estimation of tracer-kinetic parameters using indirect methods from undersampled data
requires to reconstruct the anatomical images initially by solving an inverse problem. This recon-
structed images gets utilized in turn to estimate the tracer-kinetic parameters. In direct estimation, the
parameters are estimated without reconstructing the anatomical images. Both problems are ill-posed
and are typically solved using prior-based regularization or using deep learning. In this study, for
indirect estimation, two deep learning-based reconstruction frameworks namely, ISTA-Net+ and
MODL, were utilized. For direct and indirect parametric estimation, sparsity inducing priors (L1 and
Total-Variation) and limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm as solver was
deployed. The performance of these techniques were compared systematically in estimation of vascu-
lar permeability (Ktrans) from undersampled DCE-MRI breast data using Patlak as pharmaco-kinetic
model. The experiments involved retrospective undersampling of the data 209, 509, and 1009 and
compared the results using PSNR, nRMSE, SSIM, and Xydeas metrics. The Ktrans maps estimated
from fully sampled data were utilized as ground truth. The developed code was made available as
https://github.com/Medical-Imaging-Group/DCE-MRI-Compare open-source for enthusiastic users.
Results: The reconstruction methods performance was evaluated using ten patients breast data (five
patients each for training and testing). Consistent with other studies, the results indicate that direct
parametric reconstruction methods provide improved performance compared to the indirect parame-
teric reconstruction methods. The results also indicate that for 209 undersampling, deep learning-
based methods performs better or at par with direct estimation in terms of PSNR, SSIM, and
nRMSE. However, for higher undersampling rates (509 and 1009) direct estimation performs better
in all metrics. For all undersampling rates, direct reconstruction performed better in terms of Xydeas
metric, which indicated fidelity in magnitude and orientation of edges.
Conclusion: Deep learning-based indirect techniques perform at par with direct estimation tech-
niques for lower undersampling rates in the breast DCE-MR imaging. At higher undersampling rates,
they are not able to provide much needed generalization. Direct estimation techniques are able to pro-
vide more accurate results than both deep learning- and parametric-based indirect methods in these
high undersampling scenarios. © 2020 American Association of Physicists in Medicine [https://
doi.org/10.1002/mp.14447]
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1. INTRODUCTION

Early detection of pathologies is vital for reducing mortality
and morbidity and with the development of various medical
imaging techniques, clinicians are able to provide early and
accurate diagnosis on the basis of anatomical manifestation
of these pathologies. In the past few years, techniques have
been developed, which can show both physical and physio-
logical manifestation of the diseases. One such technique is
dynamic contrast enhanced (DCE) magnetic resonance

imaging (MRI)1 in which a T1 shortening contrast agent2

(CA) gets injected into the bloodstream and T1 weighted
scans of the organ of interest are taken after that. This tech-
nique of acquiring three-dimensional (3D) data with time
results in Dynamic MR Imaging and based on the collected
dynamic data one can measure the physiological characteris-
tics of both healthy and unhealthy tissues. In DCE-MRI, one
takes advantage of the fact that the vasculature near the
unhealthy tissue will behave differently than that of its coun-
terpart’s, for example, the vasculature formed by malignant
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tumor tissues is leaky and this causes the contrast agent to
permeate through the vessels and accumulate in extracellular
extravascular space (EES).

In any contrast-based imaging method, traditional expert
analysis would involve subjective evaluation of the enhanced
voxels in region of interest (ROI). Apart from being obser-
ver dependent, this method may not provide quantifiable
parameters or measurements. To enable this, many methods
for quantitative analysis of DCE-MRI were proposed, that
can be divided into two groups namely, nonparametric
(model free) and parametric methods. Nonparametric meth-
ods analyze DCE-MRI data by characterizing the shape and
size of signal intensity over time at a voxel in ROI. Indices
commonly utilized in nonparametric analysis are peak
enhancement (DS), wash-in,3 wash-out4 slope, time to peak
enhancement (TP), signal enhancement ratio (SER),5 and
area under curve (AUC). These indices are intuitive, can be
inferred directly through images without finding CA concen-
trations, computationally cheap and does not require compu-
tation of Arterial Input Function (AIF). These indices are
correlated with the physiological behavior of tissues for
example, increased wash-in can indicated growth in tumor
or improvement in organ functionality (in case of renal
transplant).

However, these indices are dependent on gray scale values
of the image and, therefore, are influenced by scanner set-
tings and type.6 Moreover, even though these indices are cor-
related with the physiological behavior of tissue, they may
not provide physiological information like vascular perme-
ability and vascular density. These parameters can be esti-
mated using parametric methods of DCE-MRI analysis. In
parametric analysis, mathematical pharmaco-kinetic (PK)
models gets utilized with input being CA concentration
maps. These methods, include earlier investigations by
Tofts,7 Larson,8 Patlak,9 and Brix,10 in study of brain tumors
and other diseases. Many PK models exist in the literature
for DCE-MR imaging and they were based on different
assumptions about tissue physiology to provide computa-
tional tractability. However, unlike nonparametric methods,
parametric methods require AIF for parameter estimation.
Two main categories of PK models are compartmental mod-
els and spatially distributed models. In both models, the CA
exchange between blood and tissue has been modeled as
exchange between multiple interacting compartments. In
compartmental models, it was assumed that the compart-
ments are homogeneous that is, the concentration of CA in a
compartment at a time is uniform and the rate of change in
CA concentration is directly proportional to the concentra-
tion. Popular compartmental models used for DCE-MRI are
Brix model,10 Patlak model,9 and eTofts (e - extended)
model,11 two-compartment exchange model (2CXM).12 All
these models assume exchange between two compartments,
namely vascular and extravascular extracellular compart-
ments (EES). However because of the mathematical com-
plexity of 2CXM model and the assumption of AIF as a
single exponential function makes them less popular than
other Patlak and eTofts models. The eTofts model utilizes

three parameters namely vascular permeability (Ktrans), frac-
tional plasma volume (vp), and volume fraction of EES (ve).
The Patlak model uses the first two parameters only. Physio-
logically Ktrans is the most significant parameter and it jointly
models the plasma flow (FP) and tissue permeability. How-
ever, in tissue flow limited case, it models FP and in perme-
ability limited case, it models tissue permeability.

Contrary to compartmental models, the spatial distribution
model does not assume homogeneous CA concentration in
compartments, instead it assumes a gradient in CA concentra-
tion along the flow direction. Popular Spatial distribution
models are distributed parameter (DP)13 and tissue homo-
geneity (TH) model.14 However, the complexity of these
methods and high computational requirement makes it
impractical to deploy in many clinical scenarios.

For accurate estimation of these quantitative parameters,
high spatial and temporal resolution is crucial, however
improving one comes at the cost of the other. Compressed
sensing (CS)-based schemes in MRI15 have shown promising
results by undersampling the k-t space data below Nyquist
sampling threshold — undersampling in spatial domain leads
to better temporal resolution — and still reconstructing high-
resolution anatomical images. This also helps in reducing
motion artifacts by reducing the overall scan time. In the past,
Smith et al.,16 Feng et al.,17 and Rosenkrantz et al.18 have
shown, via experiments on various animal and human scans,
that undersampling rates (R) of 4-28.79 can be achieved
without compromising the diagnostically relevant informa-
tion. They also used priors such as Total Variation (TV) or
wavelet transform, induced by L1=2 or L1 norms as sparsity
constraints. These methods computed the anatomical images
first, and from them the TK parameters were estimated, and
hence known as indirect method of reconstruction.

Contrary to the indirect methods, Guo et al.19,20 and
Dikaois et al.21 estimated the TK parameters directly from
undersampled k-t space data without going into image
domain. Their experiments have shown that direct reconstruc-
tion methods, perform better than the indirect methods. In
Ref. [21] Bayesian inference on prostate cancer dataset was
utilized to achieve an undersampling rate of 49. More recent
works (19,20) validated direct estimation methods for higher
undersampling rate of 1009 and gave the flexibility to incor-
porate any prior. However, both indirect and direct methods
mentioned above are solved iteratively and involve regulariza-
tion. Hence, these methods are computationally expensive
and require manual tuning of regularization parameter.

These limitations can be addressed using deep learning
(DL) and recent advances in DL have inspired few neural net-
work-based direct estimation of TK parameters. Bliesener
et al.22 estimated Ktrans from fully sampled data using DL at
each pixel individually using one-dimensional (1D) convolu-
tion. However, instead of image as input, they used concen-
tration maps and AIF as input. Cagdas et al.23,24 have
estimated the tracer-kinetic parameters through DL using
dilated convolution and fully connected layers, where the
time dimension was treated as channels. Limitation of such
method is the lack of robustness for data with different
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number of time volumes and inflexibility in choice of PK
models. Moreover, they estimated the parameters without tak-
ing AIF into account. Kettelkamp et al.25 modified the net-
work proposed by Cadgas and incorporated AIF as an input
to the network as well. However, the inflexibility of such DL
methods can be addressed using DL models that reconstruct
the anatomical images from which the TK parameters can be
estimated. Recently, many networks for image reconstruction
have been developed which are based on unrolling of iterative
CS schemes like ISTA-Net+ 26 and MODL,27 however, the
performance of indirect estimation of TK parameters using
DL is yet to be validated against the iterative schemes of
reconstruction.

In this work, a systematic comparison was performed
between iterative direct and indirect estimation techniques
(utilizing different priors) with indirect estimation of TK
parameters using DL techniques that are based on compres-
sive sensing iterative schemes for different undersampling
rates (R) of 209, 509 and 1009. The breast DCE-MRI data
were utilized in the work presented here, as inhomogeneous28

nature of breast tissue across subjects will be a challenging
task for the neural networks to generalize. The performance
of the methods presented in this work was quantitatively eval-
uated using various figures of merit (e.g., PSNR, SSIM, and
Xydeas metric). In short, the novelty of this lies in following
points: (a). Evaluation of deep learning-based indirect estima-
tion of Ktrans for different undersampling rates (this maintains
the flexibility in terms of number of time volumes and choice
of PK model) (b). Detailed comparison between iterative
parametric (direct and indirect) estimation and deep learning-
based indirect estimation methods and an analysis of the per-
formance of DL models in generalizing inhomogeneous tis-
sues. (c). Providing the assessment of generalizability of deep
learning-based inverse methods for the case of DCE-MR
imaging of breast.

The rest of this manuscript has been organized as follows:
In Section 2, the description of TK parameter estimation
pipeline and formulation of the reconstruction problem are
presented. In Section 3, the algorithms utilized in this work
including the proposed ones are described. In Section 4, the
DCE-MRI breast dataset is described along with the experi-
mental procedure and comparison metrics. In Sections 5 and
6, the corresponding results and inferences are presented.
These sections also clearly describe the merits as well as the
limitation of the proposed approach, and finally the conclu-
sion are presented in Section 7.

2. BACKGROUND

2.A. Notations

The small boldface alphabets such as x for vectors and
capital boldface alphabets like A for matrices were used
throughout this manuscript. The r describes the spatial loca-
tion in 3D volume in image, that is, r 2 {x, y, z} and r̂ was
used to denote location in 3D volume of frequency domain,

that is, r̂ 2 fkx; ky; kzg. The pth-norm of any vector x was
denoted as kxkp and it is defined as kxkp ¼ ðRnjxnjpÞ1=p
where xn is the nth element of vector x. The small boldface
kðr̂; tÞ was utilized to denote fully sampled k-t space data and
small boldface k̂ðr̂; tÞ to denote undersampled k-t space data.
For denoting concentration maps, CA(r, t) was utilized and
for dynamic anatomical images, s(r, t) was used. Superscript
H was used to denote conjugate transpose of a matrix, if the
matrix is real, it is equivalent to transpose of the matrix. Also
we use “*” to define Hadamard product between two matri-
ces (element wise multiplication).

2.B. TK parameter modeling

In Tracer Kinetic parameter estimation, one assumes that
each voxel to be a tissue consisting of Intra-cellular space,
vascular space, and Extra-cellular Extra-vascular space
(EES). Ktrans (min�1) is defined as the rate at which the con-
trast agent gets accumulated in the EES due to capillary wall
permeability. The relation between the Tracer Kinetic (TK)
parameters and the undersampled k-t space data has been
known as forward modeling and the flow-chart for the same
is shown in Fig. 1. For any two-dimensional (2D) slice across
axial, coronal, or saggital plane, the matrix in which each
entry is the value of a TK parameter at the corresponding
location in the image, is known as a map of that particular
parameter. The estimation of TK parameter maps from under-
sampled k-t space data are known as Inverse modeling
(Fig. 1). The steps involved in forward modeling are
described below:

1. To compute CA(r,t) from TK parameter maps, PK
models should be utilized. For the work presented here,
Patlak model9 for determining the TK parameters with
population-specific AIF was utilized. For selecting
between Patlak model and eTofts model, we calculated
the error between concentration value calculated from
fully sampled anatomical images ~CAðr; tÞ and concen-
tration values calculated from KtransðrÞ and vpðrÞ that
is, CA(r, t) maps using Eq. (1).

kCAðr; tÞ � ~CAðr; tÞk
k ~CAðr; tÞk

(1)

The error in Patlak model was found to be less than
eTofts model and hence Patlak model was utilized for
all experiments performed in this work. The Patlak
model is given by Eq. (2):-

CAðr; tÞ ¼ vpðrÞCpðtÞ þ KtransðrÞ
Z t

0
CpðsÞds (2)

where CpðtÞ is the AIF defined as the concentration of
contrast agent in blood. This equation can be dis-
cretized and easily inverted as shown in Eq. (3).

CAðr; tÞ ¼ vpðrÞCpðtÞ þ KtransðrÞRt=Dt
n¼0CpðnDtÞDt (3)
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2. The image signal intensities s(r, t) can be calculated
from the CA(r, t) values as shown by Eq. (4)

sðr; tÞ ¼ M0ðrÞ sin að1� e�TR�½R1ðr;0ÞþCAðr;tÞ�r1�Þ
1� cos aðe�TR�½R1ðr;0ÞþCAðr;tÞ�r1�Þ

þ sðr; 0Þ �M0ðrÞ sin að1� eTR�R1ðr;0ÞÞ
1� cos aeTR�R1ðr;0Þ

(4)

Here TR is the repetition time, R1ðr; 0Þ & M0ðrÞ are
pre-contrast R1 (i.e., 1=T1) and longitudinal magnetiza-
tion at equilibrium, respectively, and a is the flip angle.
In this work, the value of R1ðr; 0Þ and M0ðrÞ were
assumed to be constant. The values of a and TR are
obtained from the metadata. s(r, 0) denoted the pre-
contrast signal that is, the first time frame volume and
r1 is the contrast agent relaxivity.

3. Undersampled k-t data k̂ðr̂; tÞ can be obtained from
fully sampled kðr̂; tÞ by Eq. (5)

k̂ðr̂; tÞ ¼ Uðr̂; tÞ � Fðsðr; tÞÞ (5)

where F(�) represents two-dimensional (2D) Fourier
transform and U is the under-sampling mask generated
using randomized golden angle sampling method as
mentioned in Ref. [17].

There are different methods to reconstruct Ktrans maps from
undersampled k̂ðr̂; tÞ data and can be classified broadly into
direct and indirect methods of reconstruction. In indirect
method of reconstruction,17,18 anatomical images are first recon-
structed from undersampled k-t space data and TK parameters
are reconstructed from these images as shown in Eq. (6).

sðr; tÞ ¼ argmin
sðr;tÞ

kUðr̂; tÞ � Fðsðr; tÞÞ � k̂ðr̂; tÞk22

þ kkCsðr; tÞkp (6)

Γ is the domain transform function in which the signal was
assumed to be sparse. This optimization problem can be
solved with proximal gradient methods29 like Iterative
Shrinkage-Thresholding Algorithm (ISTA) or using aug-
mented Lagrangian methods like alternating direction method
of multipliers (ADMM)30 or plug and play models.31

Recently, it has been shown that learning the function Γ via
deep learning for the specific class of inputs gives better
performance than using TV or wavelets as transform func-
tions.26,27,32

Direct method of reconstruction19 reconstructs the TK
maps directly from undersampled k-t space data using CS
techniques. Earlier works have shown that direct methods
perform better than indirect methods for reconstruction of
TK parameter maps from highly undersampled data (R ≥
209).19 Accordingly, the loss function can be written as Eq.
(7), which can be solved iteratively.

KtransðrÞ; vpðrÞ ¼ argmin
Ktrans;vp

kf ðKtrans; vpðrÞÞ � k̂ðr̂; tÞk22

(7)

where f(�,�) is a function that maps from TK parameters to
undersampled k-t space data.

3. METHODS

While iterative methods exist for directly estimating TK
parameters from undersampled data,19 deep learning methods
for directly estimating TK parameters have also been
attempted before.23,24 These approaches though perform at
par with model-based iterative parameter estimations, have
major limitations because of the fully connected layers and
stacking the time dimension data as channels in input. Due to
these two factors, the network cannot be deployed to scans
with different number of time points and/or image

FIG. 1. Flow diagram of forward and inverse modeling of Tracer-kinetic parameters. Patlak9 model was utilized in computation of the concentration maps and
Eq. (4) was deployed to construct dynamic anatomical images from them. Randomized golden-angle radial scheme17 was used for obtaining undersampled k-t
space data. The forward model details were presented in Section 2.B. Black solid arrows represent the steps in forward modeling. Red dashed arrows represent
the parameters required for reconstruction. [Color figure can be viewed at wileyonlinelibrary.com]
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dimensions. To provide more generic framework, in this
work, indirect estimation using deep learning in which cor-
rupted/noisy anatomical images are reconstructed from
undersampled k-t space data, which in turn gets utilized to
compute the TK parameters. To address the issue of large
dataset requirement in deep learning-based methods, unrolled
iterative implementation of algorithms designed to solve CS
problems were used. It was shown in Refs. [26] and [27] that
using this approach reduces the number of trainable parame-
ters and requires less data. Another approach to estimate the
PK parameters is to “denoise” the TK maps estimated from
corrupted anatomical images. Solving this problem using
classical methods is not feasible because of loss of structural
information and deep learning-based methods requires large
data, making it unrealistic to be utilized in real-time. These
methods along with their pipeline are summarized in Fig. 2,
in this work the discussion is limited to implementing meth-
ods that are illustrated as III and IV with Ktrans being the TK
parameter to be recovered. To compare the performance of
indirect deep learning-based methods with indirect paramet-
ric reconstruction methods, where TV + L1 regularization
was utilized to provide anatomical MR images and in turn
these provide the estimation of Ktrans map.

3.A. Direct Parametric Reconstruction using sparse
recovery methods

For direct reconstruction, using a model-based sparse
recovery scheme, the methodology is same as the one given
in Ref. [19]. Experiments were also performed using k � kTV
and k � k1 as regularization terms along with Eq. (7) to induce
sparsity, where k � kTV is anisotropic TV norm. The sparse-
ness constrain is valid due to low permeability of contrast in
the majority of breast tissue. The cost-function thus becomes
Eq. (8)

KtransðrÞ; vpðrÞ ¼ argmin
Ktrans;vp

kf ðKtrans; vpðrÞÞ � k̂ðr̂; tÞk22

þ k1kKtransðrÞkTV þ k2kKtransðrÞk1
þ k3kvpðrÞkTV þ k4kvpðrÞk1

(8)

This equation is solved by a method similar to19 alternatively
minimizing Ktrans and vp as shown in Eqs. (9) and (10)

KtransðrÞ ¼ argmin
Ktrans

kf ðKtransÞ � k̂ðr̂; tÞk22

þ k1kKtransðrÞkTV þ k2kKtransðrÞk1
(9)

FIG. 2. This figure shows the methods for TK parameter estimation from undersampled k-t space data. I represents estimating anatomical images from corrupted
images constructed from zero padded k̂ðr̂; tÞ using IFFT (a). II represents estimating Ktrans map from corrupted map which is constructed using zero padded
k̂ðr̂; tÞ using the Patlak model (b). III represents direct reconstruction of Ktrans map from k̂ðr̂; tÞ using model-based iterative schemes for sparse reconstruction.
IV represents construction of high quality anatomical images from k̂ðr̂; tÞ using Deep Learning, which in turn can be utilized to find TK parameters. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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vpðrÞ ¼ argmin
vp

kf ðvpÞ � k̂ðr̂; tÞk22

þ k3kvpðrÞkTV þ k4kvpðrÞk1
(10)

Each equation was solved independently using limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno (l- BFGS) algo-
rithm33 and gradients were calculated in similar fashion as in
Ref. [19] by relaxing the norm34. The pipeline of this method
with and without regularization is summarized in Fig. 2 as
method III in which L2 denotes solving Eq. (7) alone.

3.B. Indirect Parametric Reconstruction using
sparse recovery methods

For indirect reconstruction, experiments were also per-
formed using k � kTV and k � k1 as regularization terms as
shown in Eq. (11) to induce sparsity, where k � kTV is aniso-
tropic TV norm. This algorithm first reconstructs the anatom-
ical images from undersampled k-space data using these
regularization terms. Subsequently, these anatomical images
through Patlak model provide estimation of Ktrans map. This
method was tested for two patients to compare the perfor-
mance with direct parametric reconstruction methods as well
as indirect DL methods discussed in this work. The iterative
reconstruction utilized l-BFGS technique in the optimization.
The cost-function can be written as

sðr; tÞ ¼ argmin
sðr;tÞ

kUðr̂; tÞ � Fðsðr; tÞÞ � k̂ðr̂; tÞk22

þ k1ksðr; tÞkTV þ k2ksðr; tÞk1
(11)

3.C. ISTA-Net+

ISTA-Net+ 26 is a DL implementation of iterative shrink-
age threshold algorithm (ISTA).26 In this implementation,
unrolling the number of iterations and stacking them as indi-
vidual blocks (phases) of the neural network was performed.
ISTA is a popular method for solving the CS problem such as
Eq. (12).

x̂ ¼ argmin
x

kAx� bk22 þ hkCxk1 (12)

In the current problem of CS Dynamic MRI, the matrix A
represents the undersampling Fourier transform matrix that
is, A ¼ Uðr̂; tÞ � Fð�Þ, b ¼ k̂ðr̂; tÞ, h is the Lagrangian multi-
plier and Γ is the domain transfer function. This problem is
solved using proximal gradient method as shown below in
Eqs. (13) and (14).

rk ¼ xk�1 � qkAHðAxk�1 � bÞ; (13)

xk ¼ argmin
x

1
2
krk � xk22 þ hkkCxk1 (14)

Here qk denotes the step size of the steepest descent at
each iteration k. In Ref. [26] Eq. (14) was solved by

approximating xk ¼ rk þ wk where wk is the high-pass value
and is related to xk by relation wk ¼ Gk � DkðxkÞ, and both
Dkð�Þ & Gkð�Þ are implemented using a convolutional neural
network (CNN) at every iteration k . Using this relation and
denoting the domain transfer function Γ by Hð�Þ, Eq. (14) can
be modified as Eq. (15)

xk ¼ argmin
x

1
2
kHkðDkðxÞÞ � HkðDkðrkÞÞkj22

þ hkkHkðDkðxÞÞk1
(15)

Note that ~Hk is the left inverse of Hk , such that
~Hk � Hk ¼ I . Using these relations the solution of Eq. (15)
simplifies to

xk ¼ rk þ Gkð ~HkðsoftðHkðDkðrkÞÞ; hkÞÞÞ (16)

In the network, the parameters belong to a set Θ such that
H ¼ fqk; hk;Dk;Gk;Hk; ~HkgNk¼1 are trainable parameters,
where N is the number of iterations (phases) in unrolled net-
work. The loss function for this CNN was defined as

LðHÞ ¼ 1
Nb

RNb
i¼1kxNi � x̂ik22

þ C
NNb

RNb
i¼1R

N
k¼1k ~HkðHkðxki ÞÞ � x̂ik22

(17)

where Nb is the number of images in the batch, C is an con-
stant to give weightage to the second term, fbi; xigMi¼1 are the
input & label pair and M is the size of training set. The archi-
tecture of ISTA-Net+ is shown in Fig. 3.

3.D. MODL

MODL stands for MOdel-based reconstruction using DL
prior and was proposed in Ref. [27]. It is inspired from plug
and play35 methods for model-based reconstruction which
formulates the optimization equation as follows:-

xk ¼ argmin
x

f ðxÞ|{z}
Constraint

þ k gðxÞ|{z}
prior

(18)

For CS recovery in dynamic MRI (which is the problem at
hand), the formulation is as follows:

xk ¼ argmin
x

1
2
kAx� bk22|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Constraint

þ k kN wðxÞk22|fflfflfflfflfflffl{zfflfflfflfflfflffl}
prior

(19)

where A is the undersampling fourier transform and N w is
the prior of the noise and is given by N wðxÞ ¼ x�Dk

wðxÞ.
The optimization process is as given below: Eqs. (20) and
(21), where Eq. (21) was solved using conjugate gradient
(CG) and Eq. (20) was solved using a neural network in
which Dk and kk are trainable parameters.

zk ¼ Dk
wðxkÞ (20)

xkþ1 ¼ ðAHAþ kIÞ�1ðkzk þ AHbÞ (21)
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It has been demonstrated that sharing the weights across all
iterations(phases) give superior performance and requires less
training time and data.27 MODL network architecture is given
in Fig. 4 in a rolled fashion. Each iteration of the network
consists of a Denoising block (DW) and a Data Consistency
block (DC), which utilizes CNN and CG, respectively. The
DW block consists of NL layers out of which NL � 1 layers
each having 2D Convolutional (Conv) filters, a batch normal-
ization layer (BN) and a ReLU layer. The last layer in each
DW contained only 2D convolutional filters and a BN layer.

4. EXPERIMENTAL DETAILS

4.A. Dataset

For all experiments performed in this work, QIN Breast
DCE-MRI dataset36 was utilized which is publicly accessible
and is available on The Cancer Imaging Archive (TCIA).37 It
contains breast DCE-MRI images from a longitudinal study
to assess the breast cancer response to neoadjuvant
chemotherapy (NACT).38 Images were acquired at two
points: prior to first round of treatment (V1) and post first

FIG. 3. Network architecture of ISTA-Net+ expanded to show 1st iteration (phase) where fqð1Þ; hð1Þ;Dð1Þ;Gð1Þ;Hð1Þ; ~Hð1Þg are the trainable parameters in 1st

phase. The description of the same is provided in Section 3.C. In here, “Conv” stands for convolution filter. [Color figure can be viewed at wileyonlinelibrary.c
om]

FIG. 4. Network architecture of MODL showing N iterations(phases) in rolled fashion. In the figure Conv. stands for Convolution filter, DC stands for Data Con-
sistency block and DW stands for Denoising block. Each iteration in the network consists of two blocks, DC block and DW block, the expanded view of DW
block is shown below, which consists of NL � 1 layers of Conv. filters, BN (Batch Normalization) layer and ReLu layer and one layer of Conv. filters and BN
layer. The description of MODL is given in Section 3.D. [Color figure can be viewed at wileyonlinelibrary.com]
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round (V2). The images were acquired using Siemens 3T sys-
tem with a body coil and a four-channel bilateral phased-array
breast coil. The DCE-MRI images are fat-saturated and were
acquired using 3D gradient echo-based TWIST (Time-re-
solved angiography With Stochastic Trajectories) sequence.39

The data acquisition parameters included flip angle of ten�,
Time to echo (TE), and Time of repetition (TR) of 2.9 and
6.2 ms, respectively, field of view (FOV) of 30-34 cm,
320 9 320 in-plane matrix size and a slice thickness of
1.4 mm. There are 28-32 image volumes each containing
120-128 slices with temporal resolution of 18–20 s and total
acquisition time of � 10 min. A Gadolinum-based contrast
agent Gd-HP-D03A [trade name: ProHance] was adminis-
tered with a dose of 0.1 mmol/kg of body mass followed by
20 ml saline flush at a speed of 2 ml/s using a programmable
injector. The data that was utilized in this work included V1
and V2 studies of ten patients. Data for more patients with
scans after more treatment cycles is available40 and was dis-
cussed in detail in Ref. [41]. However, the data does not meet
the recommended practise guidelines of American Society of
Radiology for DCE-MRI of the breast.42 The dataset pro-
vided did not utilize fat suppression as recommended and
also does not satisfy the requirements of in-plane and slice
thickness recommendations (1 and 3 mm as per standard).
Hence this dataset was not utilized in this work.

4.B. Implementation

Data from ten patients was retrospectively undersampled
in the k-t space with undersampling rates (R) of 209, 509,
and 1009 with the sampling patterns or masks (Uðr̂; tÞ) gen-
erated by randomized golden-angle radial scheme.17 The AIF
was assumed to be the population average with delay time as
specified in the patient’s metadata. The Ktrans maps generated
from undersampled data with zero padding (without CS tech-
niques), suffer from loss of high frequency details as shown
in Fig. 5, these maps are labeled as noisy Ktrans maps. From
the undersampled k-t space data k̂ðr̂; tÞ, our aim is to generate
the Ktrans map using methods mentioned in Section 3 via Pat-
lak model.9 The details of implementation of each method
are given below and are summarized in Table I.

4.B.1. Direct reconstruction

As discussed in Section 3.A., the direct reconstruction
method was deployed with k � kTV and k � k1 regularization
and without any regularization (abbreviated as TV + L1
and L2, respectively). The regularization parameters
fk1; k2; k3; k4g shown in Eqs. (9) and (10) were selected on
the basis of reconstruction performance on a single patient
and were generalized for all patients for the given undersam-
pling rate. For all experiments, the number of iterations were
fixed as ten as the cost function variation beyond ten itera-
tions was not significant. For comparison, we also generated
the map directly from undersampled k-t space data using zero
padding and these results were reported as undersampled
map.

4.B.2. Indirect parametric reconstruction

Indirect parametric reconstruction using k � kTV and k � k1
was performed on two patients to compare the performance
of indirect iterative technique with direct parametric tech-
nique as well as indirect deep learning-based technique. The
method was discussed in Section 3.B. The regularization
parameters k1 and k2 were determined in a similar manner as
for direct iterative methods.

FIG. 5. Ktrans maps reconstructed using zero padding (a) fully sampled k-t space data; undersampling rate, R, being (b) 209, (c) 509, and (d) 1009. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

TABLE I. Summary of reconstruction methods utilized in this work.

Method
Iterative Parametric
Reconstruction Deep Learning (DL)

Direct Deployed for all ten subjects
data. [Referred as ‘Direct
TV + L1’]

Not performed as method is not
generic to deploy for varying
number of time points and image
size. More training data are
required.

Indirect Deployed on two subjects to
demonstrate better
performance of direct
parametric reconstruction.
method [Referred as
‘Indirect TV + L1’]

Deploys generic DL-based
(iterative) reconstruction
methods and is trainable with
very less data (in here with five
patients data). Tested on five
patients data. [Referred as
“DL” (ISTA and MODL)]
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4.B.3. ISTA-Net+

For all under-sampling rates (R), the number of phases N
are fixed to 11. ADAM43 was used for optimization as this
scheme maintains two learning rates corresponding to each
parameter. These learning rates are estimated from the first
and second moments of the gradients. The size and number
of filters (shown in Fig. 3) are provided in Table II and were
kept constant for all values of R. ISTA-Net+ also learns the
step size qk and regularization parameter hk for each phase.
There are no bias parameters in this network. For each R, the
network was trained from scratch for 100 epochs with batch-
size of 8, using the loss function as shown in Eq. (17). The
learning rate was 10�4 and other parameters for ADAM were
b1 ¼ 0:9, b2 ¼ 0:999, and � ¼ 10�8. We divided the dataset
into training and testing at the patient level. Five of them were
utilized for training and another five for testing making sure
that no two images from the same patient were utilized for
both training and testing. For training ISTA-Net+ (and
MODL), total of 4,000 (nz ¼ 40, nt ¼ 10) 2D images from
both V1 and V2 data of five patients were selected as training
data and 400 images were utilized for validation. Here nz
stands for number of axial slice and nt stands for number of
dynamic acquisitions. ISTA-Net+ was trained for MRI recon-
struction from undersampled data using 100 (360 for MODL)
images26 hence our data were 409 (≃119 for MODL) the
training data used in base paper and deemed to be sufficient
for this task. The input-label pair for training the network is
T ¼ ffk̂ðr̂; tÞ;Uðr̂; tÞgi; siðr; tÞg

M
i¼1 where Uðr̂; tÞ stands for

the undersampling mask. To incorporate the information in
complex domain of AH k̂ðr̂; tÞ, we utilized the modulus (abso-
lute value) of steepest descent estimate rk calculated from Eq.
(13). For testing, anatomical images of all slices containing
ROI of five patients were utilized in which 3248 two-dimen-
sional slices (resulting in 220 Ktrans maps) were present in
total. As mentioned earlier, the testing set corresponds to dif-
ferent patient data than the training set. From these anatomi-
cal images, Ktrans maps were generated using Patlak model.
The total number of trainable parameters in ISTA-Net+ for 11
phases are 411 862 and it took ≃ 18 h to train with each
epoch taking ≃ 11 mins. Reconstruction time for a single
anatomical image was ≃ 42 ms.

4.B.4. MODL

For training MODL network, the training, validation, and
testing dataset were same as ISTA-Net+. The trainable param-
eters were shared among all layers and the iterations of CG
were performed till change in residue was less than 10�4. The
number of iterations (N) were 11 for R of 209 and 15 for R
of 509 and 1009. The number of layers (NL) were kept as
five in all cases and the filter size and number of filters that
were deployed are given in Table III. MODL also learns the
regularization parameter k shown in Eq. (19). The real and
complex components of the AH k̂ðr̂; tÞ were taken as separate
channels in input to the neural network. For each R, the net-
work was trained initially with N = 1 for 100 epochs. These
trained parameters were used to initialize networks with
N = 11 (for R = 209) and N = 15 (for R = 509 and 1009)
and further trained for 50 epochs with batch size of 4. ADAM
optimizer was used for training MODL and mean squared
error between label and output was taken as loss function.
The learning rate was 10�3 and the parameters for ADAM
were b1 ¼ 0:9, b2 ¼ 0:999 and � ¼ 10�8. The total number
of trainable parameters in MODL are 113,921 and it took ≃
25 hrs to train for N = 10 and ≃ 36 hrs for N = 15. It took ≃
140 ms to reconstruct one anatomical image for N = 10 and ≃
160 ms to reconstruct for N = 15.

4.B.5. Computational implementation

All computations were carried out on a Linux workstation
with Intel i9 processor with 2.10 GHz clock speed, having
128 GB RAM and a Quadro RTX 8000 GPU with 48 GB
memory. Pre-processing and Post-processing steps were per-
formed in MATLAB and both neural networks were imple-
mented in Tensorflow v1.13. The direction reconstruction
algorithm was implemented on MATLAB 2018b using paral-
lel computing toolbox on eight threads. Implementation of
the proposed method including the developed code was made
available as open-source at https://github.com/Medical-Imag-
ing-Group/DCE-MRI-Compare.

4.C. Figures of merit

For comparing the performance of the above mentioned
methods, four figures of merit (metrics) were utilized namely,

TABLE II. Size of filters Nx � Ny, number of channels Nc and the number of
filters Nf at each layer of a phase (k) for ISTA-Net

+ as shown in Fig 3.

Filter Name Size of filter (NxxNyxNcxNf )

DðkÞ 39391932

HðkÞ Conv_1 393932932

Conv_2 393932932
~HðkÞ Conv_1 393932932

Conv_2 393932932

GðkÞ 39393291

These hyperparameters were same were same for all phases/iterations (k),
although weights were not shared.

TABLE III. Size of filters Nx � Ny, number of channels Nc and the number of
filters Nf at every layer in DW block of kth iteration for MODL as shown in
Fig 4.

Layer no. Size of filter (NxxNyxNcxNf )

1 39392964

2 - 4 393964964

5 39396492

These hyperparameters were same for all phases/iterations and the weights were
also shared.
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PSNR (peak signal-to-noise-ratio), normalized Root-Mean-
Square-Error (nRMSE), Structural Similarity Index Measure
(SSIM), 44 and a modification of Xydeas45 metric. The
nRMSE is RMSE, divided by the 90th percentile value of
Ktrans in the ROI of reference image (ground truth, in here
reconstructed Ktrans using fully sampled data) as the 90th per-
centile of Ktrans value has been found as a clinically signifi-
cant biomarker for tumor.46 The lower the value, the better is
performance of the method under consideration. Xydeas met-
ric measures the edge information that is present in each pixel
and compares the magnitude and orientation of the edges in
the reference and test image. In case of this metric, higher
value represents better performance of the method. The
PSNR 2 (0,∞) (measured in dB), is the measure of signal
compare to noise present in the reconstructed Ktrans, higher
value represent better reconstructed Ktrans. SSIM & Xydeas
metric 2 (0,1] and they take value 1 when both images are
same. nRMSE 2 [0,∞) and the value is 0 when both images
are exactly same.

4.C.1. Statistical test

We conducted t-test for unequal variance (also known as
Welch test). The null hypothesis was that TV + L1 and deep
learning-based methods have same mean performance for
PSNR and SSIM. We only performed statistical test on DL
and TV + L1 as it is evident from the results that TV + L1
always outperform L2 and, therefore, only the best method of
direct iterative technique was compared with indirect DL-
based methods. Welch test was conducted for PSNR and
SSIM separately for R = 209, 509 and 1009 for each of
five patients. Xydeas metric was not used for statistical test as
it only conveys the information about edges and not the whole
image. Similarly nRMSE was not utilized for this test as it
just a scaled form of PSNR (PSNR = 20 logmax

mse). The number
of observations for each patient were the number of slices
having the tumor. Significance level of 0.05 was selected for

testing and was modified using �Sid�ak47 correction to ≃ 0.01
for testing on five patients data. The results were shown in
Table IV for Welch test in whole breast region and in Table V
for the ROI. Negative “t-stat” shows that DL performed better
than TV + L1 and Positive t-stat shows the opposite. “P”
value of < 0.01 shows significant difference in the perfor-
mance of two methods. Columns “TV/DL” shows whether
TV L1 or DL has performed better in that patient for that
metric. TV + L1 performs better if “t-stat” >0 and DL per-
forms better if “t-stat” < 0. “Sig ?” denotes if the difference is
significant to reject the null hypothesis (P < 0.01) or not.

5. RESULTS

The reconstructed Ktrans map for the mentioned undersam-
pling rates (R) using the methods described earlier were pre-
sented for two representative cases, patients “A” and “B” in
Figs. 6 and 9, respectively. These figures present the Ktrans

map generated from fully sampled data, undersampled data
with zero padding and using direct (iterative CS scheme) and
indirect deep learning-based reconstruction techniques. For
indirect reconstruction, as mentioned earlier, k � kTV þ k � k1
regularization was utilized. For model-based direct recon-
struction, no regularization (L2), and k � kTV þ k � k1 regular-
ization were used and for indirect deep learning-based
reconstruction (deep learning, DL-based), ISTA-Net+ (ISTA)
and MODL were used to reconstruct the anatomical images,
which were later used to estimate the map. Figures 8 and 11
shows the performance of these methods for these patients
“A” and “B”, respectively, in terms of the metrics mentioned
in subsection 4.C. The abbreviation 209, 509, and 1009
was utilized to denote respective rates of undersampling (R).
In Fig. 12, the average performance of these methods on the
test dataset from five patients which consists of multiple sam-
ples from multiple patients as mentioned in Section 4.A. was
presented. No sample from either V1 or V2 volume for these
five patients were present in training set. From here onward,

TABLE IV. Table showing t-test results for the whole breast region of five patients for R= 209, 509, 1009.

Pat No. Metric

R = 209 R = 509 R = 1009

t-stat P TV/ DL Sig? t-stat P TV/ DL Sig? t-stat P TV/ DL Sig?

A PSNR �4.23 3.1e�4 DL Yes �0.42 0.67 DL No 2.97 0.0065 TV Yes

SSIM �3.01 0.0058 DL Yes 3.51 0.0019 TV Yes 6.61 6.1e�6 TV Yes

B PSNR �2.11 0.048 DL No 5.01 5.2e�5 TV Yes 7.95 6.6e�8 TV Yes

SSIM �0.91 0.37 DL No 6.58 3.52e�6 TV Yes 12.39 2.7e�9 TV Yes

C PSNR 2.73 0.014 TV Yes 6.03 1.1 e�5 TV Yes 8.54 3.8 e�7 TV Yes

SSIM 12.35 1.5 e�8 TV Yes 7.15 5.3 e�5 TV Yes 8.65 1.2 e�5 TV Yes

D PSNR �4.07 6.5e�4 DL Yes �0.27 0.79 DL No 1.16 0.26 TV No

SSIM 4.13 3.5e�4 TV Yes 6.58 5.6 e�7 TV Yes 10.71 2.1 e�10 TV Yes

E PSNR �3.93 0.0023 DL Yes 0.29 0.77 TV No 4.62 1.3e�4 TV Yes

SSIM 9.96 2.1 e�9 TV Yes 13.62 8.6 e�13 TV Yes 16.25 5.1 e�10 TV Yes

The t-test was performed for two metrics PSNR and SSIM. Negative “t-stat” shows that DL performed better than direct TV + L1 (abbreviated as TV in this table) and pos-
itive t-stat shows the opposite. “P” value of < 0.01 shows significant difference in the performance of two methods. “Sig ?” denotes if the difference is significant to reject
the null hypothesis (P < 0.01) or not. Description of these are given in Section 4.C.1.
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we will use L2 and direct TV + L1 as shorthand notation for
model-based direct reconstruction method using no regular-
ization and k � kTV þ k � k1 regularization, respectively. The
indirect TV +L1 for indirect k � kTV þ k � k1 regularized
reconstruction. Of the testing dataset, these two patients were
taken as representative cases because they belong to the
extreme spectrum of breast tissue inhomogeneity. Patient “A”
has less dense breast than patient “B” (as patient “A” is post-
menopausal) and the former also has a largest breast tumor in
the dataset, whereas the tumor in latter is the smallest. Exper-
iments using indirect TV + L1 was only performed in these
two cases to corroborate claim in Ref. [19] that direct recon-
struction perform better than indirect for higher undersam-
pling rate and to explore the difference in results of TV + L1
and DL was caused due to direct vs indirect techniques or
not. The results confirms that direct TV + L1 performs the
best compared to indirect TV+ L1 with DL-based methods
being the least performing, especially in higher undersam-
pling rates. The detailed analysis has been presented in the
next subsections.

5.A. R = 203

5.A.1. Patient “A”

Figure 6 shows the Ktrans map of left breast and ROI of
patient “A,” generated from fully sampled k-t space data of
patient “A.” The patient is 56 yr old and has been diagnosed
with invasive ductal carcinoma (IDC). Figure 6 also shows
the Ktrans map generated using the discussed reconstruction
methods as mentioned above. Figures 6(a) and 6(b) shows
the map of the left breast and the ROI of the patient, respec-
tively. Figure 7 shows the absolute difference between Ktrans

maps generated using different reconstruction techniques and
map generated from fully sampled data. Figure 8 shows per-
formance of these techniques in terms of figures of merit. For
the left breast of patient, the DL methods perform better in

terms of PSNR, nRMSE, and SSIM, but are surpassed by
direct and indirect TV + L1 regularized reconstruction in
terms of Xydeas metric as seen in Fig. 8(a). Same can be veri-
fied from Fig. 6(a) that although the boundaries are well-pre-
served in DL-based methods, the texture of tissues is lost.
The results in ROI (i.e., tumor) can be seen in Fig. 8(b) in
which direct TV + L1 performs comparable to DL in terms
of SSIM as well and even L2 gives better results for Xydeas
metric than DL. This can be attributed to loss of tissue texture
in and around the tumor in the map generated using DL-
based methods. In the left breast and ROI region, it can be
seen that indirect TV + L1 is surpassed by DL for all R in
terms of PSNR, SSIM, and nRMSE. Moreover, direct
TV + L1 performs better than indirect TV + L1 in terms of
SSIM and Xydeas metric for R = 209.

5.A.2. Patient “B”

Figure 9 shows the Ktrans map of right breast and ROI in
patient “B,” generated from fully sampled k-t space data of
patient “B.” The patient is 33 yr old and was diagnosed with
IDC. Fig. 9 also shows the Ktrans map generated using recon-
struction methods as discussed above. Figures 9(a) and 9(b)
shows the map of the right breast and in the ROI of patient,
respectively. Figure 10 shows the absolute difference between
Ktrans maps generated using different reconstruction tech-
niques and map generated from fully sampled data. Figure 11
shows performance of these techniques objectively. For the
right breast of patient the DL perform better in terms of
PSNR, nRMSE, and SSIM, but are surpassed by direct
TV + L1 regularized reconstruction in terms of Xydeas met-
ric as seen in Fig. 11(a). Same can be verified from Fig. 9(a)
that although the boundaries are well-preserved in DL-based
methods, the map looks smoothed. Indirect TV + L1 per-
forms at par with direct TV + L1 but is outperformed by DL
in all metrics except Xydeas. The performance in ROI (i.e.,
tumor) can be seen in Fig. 11(b) in which the DL outperforms

TABLE V. Table showing t-test results for the ROI of five patients for R= 209, 509, 1009.

Pat No. Metric

R = 209 R = 509 R = 1009

t-stat P TV/ DL Sig? t-stat P TV/ DL Sig? t-stat P TV/ DL Sig?

A PSNR �2.94 0.0069 DL Yes 2.47 0.021 TV No 3.11 0.0049 TV Yes

SSIM �1.51 0.14 DL No 6.16 4.1 e�6 TV Yes 7.36 8.1 e�8 TV Yes

B PSNR �2.88 0.011 DL Yes 0.72 0.47 TV No 4.24 3.6 e�4 TV Yes

SSIM 1.04 0.31 TV No 5.54 4.4 e�5 TV Yes 9.44 1.1 e�7 TV Yes

C PSNR 0.19 0.85 TV No 4.74 1.6 e�4 TV Yes 5.55 5.5 e�5 TV Yes

SSIM 8.13 1.9 e�7 TV Yes 7.37 2.3 e�5 TV Yes 6.68 9.1 e�5 TV Yes

D PSNR �3.62 0.0021 DL Yes �1.46 0.16 DL No �0.47 0.64 DL No

SSIM 0.31 0.76 TV No 5.74 7.6 e�6 TV Yes 4.98 4.8 e�5 TV Yes

E PSNR �3.86 0.0015 DL Yes �1.43 0.17 DL No 2.47 0.021 TV No

SSIM 3.32 0.0046 TV Yes 7.25 2.9 e�7 TV Yes 15.31 3.8 e�12 TV Yes

The t-test was performed for two metrics PSNR and SSIM. Negative “t-stat” shows that DL performed better than direct TV + L1 (abbreviated as TV in this table) and pos-
itive t-stat shows the opposite. “P” value of < 0.01 shows significant difference in the performance of two methods. “Sig ?” denotes if the difference is significant to reject
the null hypothesis (P < 0.01) or not. Description of these are given in Section 4.C.1.
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even for Xydeas metric because of small size of ROI and less
soft tissue texture being present in it. In both right breast and
ROI it can be seen that L2 reconstruction leads to specular
noise in the map (visible in the region of implant), whereas
TV + L1 was able to suppress this noise more effectively.
Indirect TV + L1 performs better than direct TV + L1 in
terms of PSNR and nRMSE but is outperformed by DL in all
metrics.

5.A.3. Average Results

Figure 12 shows the average and extremum perfor-
mance of all methods used for estimating the Ktrans map,
where Fig. 12(a) shows the performance in the whole

breast that contains the tumor and Fig. 12(b) compares the
performance in the ROI. For under-sampling rate of 209,
it can be inferred that in whole breast region, DL at aver-
age performs better in terms of PSNR and nRMSE than
other methods and the results are comparable to direct
TV + L1 for SSIM. Both direct reconstruction techniques
score better in Xydeas metric although direct TV + L1
fairs better than L2. In ROI, the same trend was followed
as seen for whole breast region. From Table IV, it is evi-
dent that for whole breast reconstruction, in four patients
DL performs better in terms of PSNR compared to direct
TV + L1 and for two cases in SSIM. Results for statistical
test in ROI are shown in Table V, it can be seen that in
terms of PSNR, DL performs better in four cases.

(a)

(a) (b)

(b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

FIG. 6. Reconstructed Ktrans map for one representative slice of (a) the left breast along with the ROI and (b) the zoomed version of ROI (green color bounded
box in (a)) of patient “A.” The different under-sampling rates, R, was given column wise. The reconstruction methods deployed row wise are I. Fully sampled
data, II. Undersampled data with zero padding, III. L2 (no regularization)-based direct reconstruction, IV. Direct TV + L1 regularized direct reconstruction, V.
ISTA-Net+-based indirect reconstruction, VI. MODL-based indirect reconstruction and VII. Indirect TV + L1 iterative reconstruction. In (a) it can be seen that
as R increases the details present in the map were lost, also for all R, direct TV + L1 regularization preserves edges and boundaries, whereas DL-based methods
(ISTA and MODL) causes blurring of the tumor region and surrounding tissues. Meanwhile indirect TV + L1 causes diffusion effect at boundaries. In (b) it can
be seen that direct TV + L1 preserves the interior and exterior boundary of the tumor and the surrounding fibrous tissues. These details were lost in DL-based
reconstruction. For L2 based direct reconstruction, the tumor boundaries become blurry as R increases. [Color figure can be viewed at wileyonlinelibrary.com]
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5.B. R = 503

5.B.1. Patient “A”

From Figs. 6 and 8, it can be seen that as R increases,
more information was lost in the map in both left breast and
ROI. In latter, one can observe that for the breast region, DL
methods (IstaNet+ and MODL) comparable in terms of PSNR
and nRMSE, while direct TV + L1 and L2 performs compa-
rable or better in other metrics. Moreover, both direct
TV + L1 and DL outperform indirect TV + L1 in all metrics.
In ROI, the results are similar to that of left breast region
except for the better performance of direct TV + L1 in all fig-
ures of merit. Both direct TV + L1 and DL perform better
than indirect TV + L1 in all metrics. It can be seen from
Fig. 6(b) that maps indirectly estimated using DL methods
have lost more texture and the boundaries appear to be
blurred. In L2 estimation of the map some texture within the
tumor boundary was lost and for direct TV + L1, one can
observe the staircase effect within the tumor boundary (top
boundary of the tumor).

5.B.2. Patient “B”

From Figs. 9 and 11 the same trend of loss of details as R
increases was noticed. From latter, it can be seen that in the
right breast region, for all figures of merit, direct TV + L1
performs better than rest while results from DL methods are
comparable in terms of SSIM. In Fig. 9(a), for undersampling
rate of 509, the specular noise in L2 increases, and in maps
generated from DL methods there is further loss of texture in
surrounding tissues. Moreover, the thoracic wall is not as
clear in maps generated from the latter. In ROI, DL performs
comparable to direct TV + L1 in terms of PSNR, but is out-
performed by latter in rest metrics. Also, DL performs better
than indirect TV + L1 in terms of SSIM, PSNR, and nRMSE.
L2 also outperforms DL in terms of SSIM and Xydeas metric
Fig. 9(b), the wall on which the tumor rest and surrounding
tissues are blurred by DL methods, however, the shape of the
tumor is better preserved in terms of outer and inner bound-
ary. The L2 and direct TV + L1 regularized methods suffer
from staircase effects at boundary but are able to preserve the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(a) (b)

FIG. 7. Difference images between reconstructed Ktrans map and ground truth (utilizing full data) for one representative slice of (a) the left breast along with the
ROI and (b) the zoomed version of ROI (green color bounded box in (a)) of patient “A.” The original reconstructed Ktrans maps are given in Fig. 6. In (a) it can
be seen that as R increases the details present in the map were lost, also for all R, direct TV + L1 has less loss of information on edges and in fibrous tissues sur-
rounding tumor that DL-based methods. Meanwhile indirect TV + L1 have large errors at boundaries. In (b) it can be seen that direct TV + L1 preserves the inte-
rior and exterior boundary of the tumor and the surrounding fibrous tissues. These details were lost in DL-based reconstruction. It can also be seen that indirect
TV + L1 has error in estimating Ktrans in surrounding regions of the tumor. [Color figure can be viewed at wileyonlinelibrary.com]
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soft tissue structures around the tumor including the wall on
which the tumor rests. In ROI, DL performs better than indi-
rect TV + L1 in terms of SSIM, PSNR, and nRMSE as well,
while the latter performs better than direct method in terms
of Xydeas metric.

5.B.3. Average results

From Fig. 12(a), it can be inferred that in the whole breast
region, the performance of direct TV + L1 is best compared to
other methods while DL performs close to the former in metrics
other than Xydeas in which L2 also performs better than DL. In
ROI direct TV + L1 outperforms other reconstruction methods
and L2 performs close to or better than DL as shown in
Fig. 12(b). From Table IV, it is clear that in terms of PSNR,
direct TV + L1 outperforms DL in three cases but the difference
is significant in only two. Moreover, in terms of SSIM, direct
TV + L1 performs significantly better in all five cases. From
Table V, it can be seen that in terms of PSNR direct TV + L1
outperforms DL in three cases and significantly in one. In terms
of SSIM, it performs significantly better in all five cases.

5.C. R = 1003

5.C.1. Patient “A”

From Fig. 8, it can be seen that for 1009, in the left
breast region TV + L1 regularized reconstruction performs

better than other methods in all metrics. While DL performs
comparable to direct TV + L1 in terms of PSNR and
nRMSE, L2 performs at par or better than DL-based meth-
ods. Moreover, DL performs better than indirect TV + L1 in
terms of PSNR and nRMSE, whereas the results are compa-
rable in terms of SSIM. In Fig. 6(a) the loss of texture in
DL-based methods are more pronounced and even the tho-
racic wall is not clearly visible. In the ROI direct TV + L1
and L2 provide improved performance compared to DL-
based methods in all metrics, while direct TV + L1 outper-
forms L2 as shown in Fig. 8(b). Same can be inferred from
Fig. 6(b) in which for 1009 most of the high-frequency
information in the map was lost in DL-based reconstruction
and even the inner and outer boundaries of the tumor appear
blurry. Direct TV + L1 preserves the boundaries and high-
frequency details better than other methods, but suffers from
staircase effect. The L2-based regularization performs better
in preserving boundaries and surrounding tissues compared
to DL, it blurs the region between the outer and inner bound-
ary of the tumor. From Fig. 8(b) it can be seen that DL per-
forms better than indirect TV + L1 in terms of all metrics
except Xydeas.

5.C.2. Patient “B”

In the right breast of Patient “B,” direct estimation of map
using direct TV + L1 perform better or at par with indirect
estimation using DL in all metrics as shown in Fig. 11(a).

FIG. 8. Comparison of figures of merit, as discussed in Section 4.C., using different reconstruction methods presented in Section 3 for patient “A” (representative
images are given in Fig. 6), in (a) left breast and (b) in ROI. In (a) For R (undersampling factor) being 209, DL- based methods perform better in terms of PSNR,
nRMSE, and SSIM while both TV + L1 regularized methods performs better in conserving edges. Indirect TV + L1 also performs better than direct methods in
terms of PSNR. For higherR values, direct TV + L1 performs comparable or better than DL methods and indirect TV + L1 method. For 1009 L2 performs compa-
rable to or better than DL methods and indirect TV + L1. For allR, DL-based indirect method performs better than indirect TV + L1 in PSNR and SSIM. In (b) DL
outperforms other techniques for 209 except for SSIM and Xydeas metric. For 509 and 1009, direct TV + L1 gives best results in all metrics and for 1009 L2 out-
performs DL as well. Overall, for 209, DL-based methods perform better, whereas, for 509 and 1009, direct TV + L1 regularization provides improved perfor-
mance. Here also indirect DL performs better than indirect TV + L1 in terms of PSNR and SSIM for allR. [Color figure can be viewed at wileyonlinelibrary.com]
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Whereas, DL performs better than indirect TV + L1 in terms
of PSNR and nRMSE and the results are comparable in terms
of SSIM. Indirect TV + L1 performs better than direct
method in terms of Xydeas metric. L2 performance is compa-
rable to DL-based methods in terms of PSNR, nRMSE and
SSIM and outperforms the latter in Xydeas metric. Same can
be inferred from Fig. 9(a) as the map estimated using DL-
based methods shows loss of texture and edges including the
implant wall. Specular noise is visible in map estimated using
L2 which is better handled by direct TV + L1. In ROI, direct
TV + L1 and L2 perform better than DL for all metrics while
the former outperforms the latter as seen in Fig. 11(b). In

ROI, the map estimated using DL shows boundary of tumor
which does not match the true boundary as seen in Fig. 9(b).
In ROI, DL performs better than indirect TV + L1 in all met-
rics except Xydeas. Direct TV + L1 performs better than indi-
rect method in all metrics. The boundary of tumor in map
estimated using L2 and direct TV + L1 matches that of fully
sampled better, however both suffers from diffusion effect at
boundaries because of which the map value at outer bound-
ary were underestimated and at inner boundary (consisting of
dead tissue) is overestimated. Direct TV + L1 also suffers
from staircase effect near boundaries, but is less pronounced
than in DL-based reconstruction.
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(p) (q) (r)
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FIG. 9. This figure illustrates the reconstructed Ktrans map for one representative slice of (a) the right breast along with ROI and (b) the zoomed version of ROI
(green color bounded box in (a)) of patient “B.” It compares the map for different undersampling rates (R (column wise)), reconstructed (row wise) from I. Fully
sampled data, II. Undersampled data with zero padding, III. L2 (no regularization)-based direct reconstruction, IV TV + L1 regularized direct reconstruction, V.
ISTA-Net+-based indirect reconstruction, VI. MODL-based indirect reconstruction and VII. TV + L1-based indirect reconstruction. The wall on which the tumor
rests is the boundary of breast implants. In (a) it can be seen that as the R increases L2-based direct reconstruction becomes noisy. DL- based methods gives
blurred results. TV + L1-based reconstruction gives less noisy results and causes less blurring. In (b) it can be seen that TV + L1 and L2 preserves the interior
and exterior boundary of the tumor for 209 R but the boundary get diffused for higher R. The DL-based methods miss correct estimation of boundary for 1009
R. Indirect TV + L1 estimates a hypo-permeable region in tumor and for 1009 the internal and external boundaries of tumor are no longer distinct. [Color figure
can be viewed at wileyonlinelibrary.com]

Medical Physics, 47 (10), October 2020

4852 Rastogi and Yalavarthy: Deep learning for DCE-MRI of breast 4852

www.wileyonlinelibrary.com


5.C.3. Average results

Even though the reconstruction of Ktrans map for only two
patients presented in here, the results from other test cases
(five patients, 220 slices excluding time dimension) were
similar and same trends were observed as in the Patient-“A”
and “B.” To quantitatively evaluate the performance across all
test cases (five patients, 220 slices), the averaged results in
terms of figures of merit have been presented in Fig. 12. It is
evident that L2 and direct TV + L1 perform better than the
deep learning-based methods (ISTA and MODL) in all met-
rics for both, whole breast regions and the ROI. This figure
also shows that as R increases, the average performance of
both direct and indirect reconstruction methods fall however
the performance of indirect methods of reconstruction using
DL-based methods is sub-par compared to direct methods
and, therefore, the gap between the performance of direct
reconstruction methods that utilize sparse recovery tech-
niques and indirect methods using DL keeps increasing.

Table IV shows that the direct TV + L1 performs better in
five cases in terms of PSNR and in all five cases in terms of
SSIM. In terms of ROI results (Table V), the direct TV + L1
performs better in four cases and significantly better in three
in terms of PSNR and in terms of SSIM the former performs
significantly better in all five cases.

5.D. Uniform spiral undersampling mask

We conducted an experiment by changing the undersam-
pling mask from the Radial Golden Angle (RGA) one
(which was utilized for the results presented till now) to
uniform density spiral. Direct reconstruction and DL-based
(trained on RGA pattern) reconstruction techniques were
tested for their performance on uniform density spiral
undersampling mask. The two patterns are shown in
Fig. 13. Uniform density spiral mask was tested on same
slices of patient “A” and “B” as shown in Figs. 6 and 9,
respectively. The results for patient “A” for spiral
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(a) (b) (c)

(d) (e) (f)
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FIG. 10. This figure illustrates the difference between reconstructed Ktrans map and ground truth for one representative slice of (a) the right breast along with ROI
and (b) the zoomed version of ROI (green color bounded box in (a)) of patient “B.” It compares the map for different undersampling rates (R (column wise)),
reconstructed (row wise) from I. Undersampled data with zero padding, II. L2 (no regularization)-based direct reconstruction, III TV + L1 regularized direct
reconstruction, IV. ISTA-Net+-based indirect reconstruction, V. MODL-based indirect reconstruction and VI. TV + L1-based indirect reconstruction. The wall on
which the tumor rests is the boundary of breast implants. In (a) it can be seen that as the R increases indirect methods show higher error in estimating perfusion
in fibrous tissues around tumor. In (b) it can be seen that for R = 209 DL-based techniques show less error in tumor region. However, for R = 1009 direct
TV + L1 shows less error than other techniques. In all cases it can be seen that indirect TV + L1 has large errors at both internal and external boundaries. [Color
figure can be viewed at wileyonlinelibrary.com]
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FIG. 11. Comparison of figures of merit, as discussed in Section 4.C., using different reconstruction methods presented in Section 3 for patient “B” (representa-
tive images are given in Fig. 9), in (a) right breast and (b) in ROI. Same trends as observed in patient “A” (Fig. 8) are valid here. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 12. Comparison between Ktrans map generated from fully sampled data and from undersampled data using reconstruction techniques mentioned in text for
all test cases (five patients data) considered in this work. The results show the average and extremum value of metrics in (a) the breast containing the pathology
and (b) the ROI of tumor. In (a) for R being 209, performance of DL-based methods (ISTA-Net+ and MODL) is better or comparable to direct TV + L1. How-
ever, in Xydeas metric, performance of direct TV + L1 is superior. For 509, direct TV + L1 performs better in all figures of merit while L2 and DL provides
comparable results. For 1009 both L2 and direct TV + L1 performs better than DL with TV + L1 performing the best in all metrics. In (b) for R being 209, DL
performs better in terms of PSNR and nRMSE, whereas direct TV + L1 on average performs marginally better in terms of SSIM and gives considerable improve-
ment in terms of Xydeas metric. For 509, direct TV + L1 performs better on average compared to other methods for all metrics while L2 performs comparable to
DL in terms of PSNR & nRMSE and better than DL in terms of other metrics. For 1009 both L2 and direct TV + L1 outperform the DL- based method, with
direct TV + L1 being best in the lot. [Color figure can be viewed at wileyonlinelibrary.com]
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undersampling is shown in Fig. 14 and for patient “B” is
shown in Fig. 16. In Fig. 15 we compare the performance
of L2, direct TV + L1 and DL-based indirect reconstruction
technique for PSNR and SSIM metrics in both whole
breast and ROI region for the two undersampling patterns

for a single slice of patient “A.” Similarly, in Fig. 17 com-
parison between L2, direct TV + L1 and DL-based indirect
reconstruction technique for PSNR and SSIM metrics in
both whole breast and ROI region for the two undersam-
pling patterns for a single slice of patient “B” is given.

FIG. 13. The undersampling masks for R = 209 using (a) Radial Golden angle (RGA) pattern, and (b) Uniform density spiral pattern.
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FIG. 14. Same effort as Fig. 6 for the case of uniform density spiral undersampling mask utilizing patient “A” data. Comparing it with Fig. 6 it can be seen that
direct iterative methods give better results for a different undersampling pattern than DL-based methods. The quantitative comparison in terms of PSNR and
SSIM has been provided in Fig. 15. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 15. Comparison of PSNR and SSIM for Radial golden angle and uniform density spiral undersampling masks, using L2, direct TV + L1 and DL-based
reconstruction methods presented in Section 3 for patient “A” (representative images are given in Figs. 6 and 14, respectively), in (a) left breast and (b) in ROI. In
(a) for all R, direct TV + L1 gives comparable results for both radial golden angle undersampling and spiral undersampling. The performance of DL (trained on
radial golden angle mask) drops when tested on spiral masks for both SSIM and PSNR. In (b), the similar trend in performance of direct TV + L1 and DL meth-
ods for the two undersampling patterns can be observed. [Color figure can be viewed at wileyonlinelibrary.com]
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5.D.1. Patient “A”

From Fig. 14(a), it is obvious that for all R there is no visi-
ble information present in the tumor region in undersample
estimate. As R increases the DL reconstructed technique
shows smoothening in ROI. For 1009 the DL reconstruction
shows diffused tumor boundaries. L2 reconstruction pre-
serves the edges and texture but is hypo-permeable. Direct
TV + L1 shows better overall reconstruction compared to
other methods. From Fig. 14(b), it can be observed that all
reconstruction methods show less perfusion in ROI for uni-
form density spiral undersampling, however this effect is
minimum in direct TV + L1. It can also be seen that the
fibrous tissues adjacent to the ROI are better reconstructed by
direct TVL1 method than other techniques. In Fig. 15(a), it
can be seen that for all R, direct TV + L1 perform similar for
both sampling patterns in whole breast. However, DL trained
and tested on RGA sampling mask outperforms DL tested on
spiral mask in terms of both PSNR and SSIM. Direct
TV + L1 performs better in terms of SSIM for RGA. In ROI
as shown in Fig. 15(b), one can observe the same trend for
PSNR, however uniform density spiral undersampling pro-
vides marginally better SSIM for 1009 undersampling in
case of DL.

5.D.2. Patient “‘B”

From Fig. 16(a), the same trens as observed in patient “A”
case. All reconstructed maps were hypo-permeable compared
to maps generated from fully sampled data. Same can be
inferred from Fig.16(b), however this effect is minimal for direct
TV + L1. Moreover, as R increases, direct iterative techniques
conserve the shape of the tumor, unlike DL-based techniques.
In Fig. 17(a), it can be observed that for all R, both direct
TV + L1 and DL perform better for RGA pattern. However the
difference in performance of DL for the two patterns is more.
The same is true for SSIM as well. In ROI, as shown in
Fig. 17(b), in terms of PSNR the performance of DL with spiral
pattern is considerably lower compared to RGA pattern. How-
ever, direct TV + L1 performs similar for both patterns. In terms
of SSIM for ROI, we notice the same trend as for PSNR.

6. DISCUSSION & LIMITATIONS

6.A. Discussion

As mentioned in previous section, as R increases the infor-
mation present in Ktrans map estimated with zero padding
decreases. This is due to loss of high frequency information
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FIG. 16. Same effort as Fig. 9 for the case of uniform density spiral undersampling mask utilizing patient “B” data. Comparing it with Fig. 9 it can be seen that
direct iterative methods give better results for a different undersampling pattern than DL-based methods. The quantitative comparison in terms of PSNR and
SSIM has been provided in Fig. 17. [Color figure can be viewed at wileyonlinelibrary.com]
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in k-t space, which causes loss of data in image space and
these errors get propagated to the Ktrans map. However using
the methods mentioned in previous sections, we were able to
estimate the Ktrans map for R 2 {209,509,1009} more

accurately. On basis of Fig. 12, for 209, the DL-based indi-
rect method of map estimation performs better than or at par
with other methods in terms of PSNR, nRMSE, and SSIM.
However, for Xydeas metric which compares the edge

FIG. 17. Comparison of PSNR and SSIM for Radial golden angle and uniform density spiral undersampling masks, using L2, direct TV + L1 and DL reconstruc-
tion methods presented in Section 3 for patient “B” (representative images are given in Fig. 9 and 16, respectively), in (a) right breast and (b) in ROI. In (a) for all
R, direct TV + L1 gives comparable results for both radial golden angle undersampling and spiral undersampling. The trends are similar to those observed in
Fig. 15. [Color figure can be viewed at wileyonlinelibrary.com]
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information in the original map and reconstructed map, direct
reconstruction using iterative schemes (L2 and TV + L1) per-
forms better. The possible reason for this is that deep learn-
ing-based methods generalize the breast tissue characteristics
and as breast tissue heterogeneity is larger among patient
population26 (density of breast is widely varying among pop-
ulation), the generalization misses out high-frequency struc-
tures (edges) in reconstructed images. This leads to loss of
edge information as seen in Fig. 6(b) for all values of R. For
higher R values, the performance of direct TV + L1 either
matches or surpasses that of DL-based methods. There are
mainly two reasons for it, first, being the problem of general-
ization which becomes more difficult as R increases and this
leads to inaccurate reconstruction of tissue texture. Second,
being the indirect method of estimation itself. Because DL-
based methods are indirect methods of estimation of Ktrans

maps, the error gets accumulated in each step, from going to
image domain s(r,t) to concentration values CA(r, t) and fur-
ther down to KtransðrÞ. In the case of direct reconstruction of
map, the value of KtransðrÞ is itself optimized such that the
error is minimized, as shown in Eqs. (9) and (10). These two
reasons explains the degradation of performance of DL-based
indirect methods of reconstruction. Another disadvantage of
indirect DL-based method is that the performance deterio-
rates when tested on an undersampling pattern different from
the pattern used for training as seen in Figs. 15 and 17. In
these cases, the performance of direct TV + L1 is more con-
sistent. Also, from 8 and Fig. 11, it can be inferred that the
indirect DL-based estimation is more accurate than indirect
TV + L1-based estimation for all R in terms of SSIM, PSNR,
and nRMSE. However, the latter performs better in terms of
Xydeas metric as the generalization in DL causes loss of tex-
ture in case of inhomogeneous data like breast tissues.

6.B. Limitations

There are some inherent limitations in the methods we uti-
lized for reconstructing the Ktrans map from the undersampled
k-t space data. The Patlak model was chosen for this study
based on error as shown in Eq. (1). Although this model gives
the advantage of linear approximation and a convex solution,
it may not fit all datasets accurately. Taking higher order mod-
els will have a shortcoming of higher error between forward
and inverse model and will make Eq. (2) non-linear and non-
convex. Methods like l-BFGS33 will be needed to solve this
step which will make the computation more expensive.

The second limitation of our experiments is the choice of
prior in Ktrans regularization. As shown above in section 5,
the k � kTV gives staircase effect, a solution to this is to use
total generalized variation (TGV)48 which is shown to be free
from this artifact. This will be taken up as future work to fur-
ther improve the framework.

The third limitation of this study is the choice of dataset.
The organ of interest in this work was breast and breast tissue
density is known to be inhomogeneous28 across the population
and with age compared to other tissues. This is caused by vary-
ing distribution of fibrous, glandular and fatty tissue and leads

to variation in tissue texture among the population. This makes
generalization using any DL technique difficult for reconstruc-
tion. Therefore, the trend of performance for the breast imag-
ing case might not be same for other DCE-MR imaging cases.

Other limitation is that deep learning-based methods uti-
lized here were generic, mostly to solve inverse problems in
terms of MR image reconstruction, and only employed for
indirect estimation of Ktrans. These DL-based methods were
known to be solving generic inverse problems and is agnostic
to the problem at hand. So these methods may not provide
optimal performance especially for increased under sampling
rates compared to sparse recovery methods. However, this
study also shows that deep learning-based methods may not
be suitable for all cases and can only provide optimal perfor-
mance where generalization is not challenging. The informa-
tion retrieval of DL models is dependent on available data
(they are generally data hungry), requiring large scale training
data, which is not always possible especially medical imag-
ing/physics areas. In these cases, it has been shown through
this work that traditional sparse recovery methods hold value.

7. CONCLUSIONS

In this work, direct and indirect estimation of TK parame-
ters using iterative schemes were compared with indirect esti-
mation of TK parameters using DL methods, from
undersampled k-t space data. The undersampling rates that
were used are 209, 509 and 1009. We compared the perfor-
mance of these methods on DCE-MRI data of breast tissues
of five patients by retrospectively undersampling the data.
The Ktrans map generated from fully sampled data were con-
sidered as ground truth and we compared the performance of
direct and indirect estimation methods using PSNR, n-
RMSE, SSIM and Xydeas metric. On the basis of these
experiments, we observe that for breast DCE-MRI data of
inhomogeneous population, direct reconstruction of Ktrans

using direct TV + L1TV + L1 regularization performs better
than indirect estimation methods (iterative as well as DL
methods) for higher undersampling rates (509 and 1009).
We have also provided detailed explanation of our observa-
tions and have highlighted the limitations of both approaches.
We have also discussed the way forward to address some
of these limitations and plan to pursue them as part of
future work. The developed code was made available as
https://github.com/Medical-Imaging-Group/DCE-MRI-Com-
pare open-source for enthusiastic users as well as to enable
further investigations.
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