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Abstract—The test-time adaptation (TTA) of deep-
learning-based semantic segmentation models, specific
to individual patient data, was addressed in this study.
The existing TTA methods in medical imaging are often
unconstrained, require anatomical prior information or
additional neural networks built during training phase,
making them less practical, and prone to performance
deterioration. In this study, a novel framework based
on information geometric principles was proposed to
achieve generic, off-the-shelf, regularized patient-specific
adaptation of models during test-time. By considering the
pre-trained model and the adapted models as part of
statistical neuromanifolds, test-time adaptation was treated
as constrained functional regularization using information
geometric measures, leading to improved generalization
and patient optimality. The efficacy of the proposed
approach was shown on three challenging problems: 1)
improving generalization of state-of-the-art models for
segmenting COVID-19 anomalies in Computed Tomography
(CT) images 2) cross-institutional brain tumor segmentation
from magnetic resonance (MR) images, 3) segmentation
of retinal layers in Optical Coherence Tomography (OCT)
images. Further, it was demonstrated that robust patient-
specific adaptation can be achieved without adding
significant computational burden, making it first of its kind
based on information geometric principles.

Index Terms—Deep learning, information geometry,
medical imaging, semantic segmentation, patient-specific
adaptation, generalization.

[. INTRODUCTION

EEP learning models have achieved state-of-the-art
(SOTA) results in medical imaging applications and
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resulted in the adoption of artificial intelligence (AI) models
for many radiological workflows [1]. Despite their success,
these models often demonstrate a considerable drop in per-
formance after deployment in real-world applications [2]. The
generalization of deep-learning models, that is, performance
on unseen data, remains one of the biggest challenges
to overcome [3]. Especially in medical imaging, this is
compounded by potential “distribution-shift” on unseen data
due to changes in demography, subject variability, acquisition
hardware, and protocols [4]. Another potential impediment
towards utilizing Al models is the lack of “patient-optimality.”
Despite the high average performance, deep learning models
are prone to failures on “individual” cases with minor
input modulations than the training data [4]. This was also
consistently observed across the experiments conducted in
this study. Solving this problem is critical in healthcare
because this variance in performance will increase the burden
on care-giving experts and reduce their trust in Al-based
applications.

Sustaining performance on every patient data is a challenge
for the current AI methods. AI models that provide
“personalised” healthcare, tailored to individual patients, are
seen as the next step in medical imaging evolution [5].
The need and potential of such patient-specific models have
been identified in the National Science and Technology
Council’s medical imaging roadmap [6]. This study proposes
ways to improve the generalization of deep-learning-based
medical imaging segmentation models by personalizing
them to individual patients during testing. It develops a
mathematical framework based on information geometry that
simultaneously addresses generalization and personalization,
advancing the increased use of AI models in radiological
workflows.

1. RELATED WORK
A. Model Adaptation Paradigms

Consider the class of semantic segmentation problems that
map N-D medical images (X; € &) into multiclass pixel-wise
maps (Y; € )). Feed-forward neural networks f parameterized
by @ are utilized to obtain the mappings fp : X — ). These
parameters are learned via an empirical risk minimization
(ERM) process that involves optimizing the risk Jgrm(6)
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TABLE | B. Test-Time Adaptation (TTA) Methods
MODEL ADAPTATION PARADIGMS AND PROBLEM OF INTEREST . .
Test time adaptation (TTA) methods have recently demon-
: Type Data required Comments strated a significant impact on computer vision problems.
Fine-tuning {X71,Yr} Ground-truth required .. . . ..
Unsupervised domain | {Xgs,Ys}, {X7r} | Source domain data required Slgl.n.ﬁcant works ln_dude test-time tralglng [1.2].’ Where ap
adaptation auxiliary self-supervised task learned during training is repli-
Source free domain {Xr} Entire target domain datare-  cated on test data to drive weight updates. In reference [13],
adaptation quired full test-ti daptati i d h
Patient-specific X* Only subject data required a lu e? g m_le .a aptation  setting - was propose > where
adaptation entropy minimization (Tent) was shown to effectively improve

Test-time Patient-wise

Adaptation
Individual @ x* ) Patient-wise
patient data ) — specialized
-
+ model 6

Patient-specific test-time adaptation framework.

Pre-trained Model gy

Fig. 1.

over the source domain data Dg = {Xs, Vs}. Common
choices for loss Jgrm(@) include binary cross-entropy, Dice
loss, or variants. The set of neural network weights obtained
at the end of this training procedure is denoted as Ozgy.
The target-domain input data is denoted by a collection of
N subject data as X7 = {X], X3,...X}}. In a traditional
machine learning setting, inference on a new sample X* € D
is obtained using @zry. To address the loss of performance in
D7, Osry is adapted to the data from D7. Table I summarizes
the various model-adaptation paradigms available in the
literature.

Fine-tuning methods [7] address post-deployment perfor-
mance drops by collecting ground-truth annotations )7 =
{Yy. Yy, .-, Yy} along with X7 and modifying the weights
of the pre-trained models using supervised loss (Table I).
While fine-tuning promises the best adaptation performance,
these methods are impractical because expert annotation is
expensive and model adaptation cycles take a longer time.

To overcome the dependence on expert annotation for model
fine-tuning, “unsupervised domain-adaptation” techniques [4]
have been proposed. Owing to privacy issues, it is impractical
to make source data available at every target site. This
constraint has given rise to the field of “source-free domain
adaptation” [8], where source data is not required. Although
the dependence on source data and target domain annotation
has been relaxed, these adaptation methods require access to
the entirety of the target domain data (Table I). Similar to
fine-tuning methods, the accumulation of a sufficient amount
of target domain data leads to longer model update cycles.

In this study, the problem of generalization was addressed
by the “patient-specific adaptation” of pre-trained models.
As depicted in Fig. 1, the performance of a model gets tailored
to individual test subject (X*) and not the entire target-domain
data, giving rise to patient-specific models 0*. Although this
setting is more challenging than full-domain adaptation [9],
[10], [11], patient-wise adaptation is more practical and serves
the goal of precision medicine and patient-optimality [5].

classification performance. Following Tent [13], efficient TTA
without forgetting [14] and robust TTA using sharpness-aware-
minimizers [15] achieved SOTA results on distribution-shifted
datasets. A comprehensive survey of TTA methods was
presented in [16]. Owing to their promise, TTA methods
have recently been used for semantic segmentation in medical
imaging, which fall into following three major subcategories.

1) Learning Auxiliary Networks During Training: Autoen-
coders (AE-SDA) were used in [10] for patient-wise self-
domain adaptation for retinal layers segmentation from OCT
images. In [17] (TTA-DAE), the authors used a denoising
auto-encoder (DAE) and adapted the input normalization
sub-network during test time. The [11] proposed on-the-fly
test-time adaptation (OF-DPG) without weight modification.
A domain prior generator (DPG) is pre-trained from multiple
domains (requires access to data from all domains) to generate
“domain code” for the segmentation network. The downside
in this class of approaches used in AE-SDA [10], TTA-
DAE [17], OF-DPG [11] and their variants is that they modify
the training procedure, making them unsuitable for off-the-
shelf adaptation.

2) Utilizing Anatomy Priors: Another collection of works [8],
[9] utilize invariance of anatomical priors (relative distribution
of sub-anatomies in prostrate, heart, etc) across domains
to drive model adaptation. In the [8], class-ratio priors
from standard anatomical references were utilized for model
adaptation for full target domain adaptation (SF-UDA).
Patient-specific adaptation with the same anatomical priors
along with additional shape moments (TTA-SM) has been
presented in [9]. Anatomical priors are limited to anatomy
segmentation and not pathology segmentation. For instance,
the ratio of healthy and non-healthy regions in CT images
varies with lung infection severity. Additionally, anatomical
priors may differ across subjects, which can affect these
methods, making these methods have limited utility in real-
time.

3) Regularization: The unconstrained model adaptation
on target domain patient data can lead to performance
deterioration. To address this, additional constraints have been
proposed to control weight perturbations. A group of methods
attempt regularization on batch-normalization statistics [18],
[19] using KL divergence and mean square error (MSE),
respectively. The work in [20] proposed constraining batch-
normalization scaling and shifting parameters (OSUDA) to
be consistent between the pre-trained and adapted models.
Major issues with these methods are that they attempt “weight
regularization” and some of them are not patient-specific
methods.

Table II presents the salient features of these studies.
In short, gaps in existing methods include one of -
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TABLE I
SUMMARY OF RELATED METHODS

Method Patient- | Anatomical| Regularization | Off-the-shelf
specific | prior reqd. adaptation

Tent [13] 4 No None 4
AE-SDA [10] %4 No None X
TTA-DAE [17] v No None X
OF-DPG [11] 4 No None X
SF-UDA [8] X Yes Class Ratio X
TTA-SM [9] 4 Yes Class Ratio X
OSUDA [20] X No Weight ['4
IGTTA ['4 No Functional ['4
(Proposed)

Geodesic distance
using R(0)

drr(pe,pe’) ~

7

AN

o—6'l, o

Fig. 2. Curvilinear geometry of test-time neuromanifold: functional
regularization versus Euclidean weight regularization.

1) requirement of entire target domain data — not being
patient-specific, 2) dependence on anatomical prior making
them unsuitable for pathology/varying anatomy, 3) modifying
training procedures by learning auxiliary networks, making
them unsuitable for off-the-shelf adaptation, and 4) lack
of regularization leading to unconstrained updates. In this
study, information geometric approaches were presented to
specifically address these gaps.

Information geometry enables the application of differential
geometry tools for analyzing probability distributions [21].
An early application of information geometry in DL led to the
popular natural gradient method [22], which used the Fisher
information metric on statistical neuromanifolds parameterized
by network weights [22]. Recently, information geometric
approaches have been proposed for shape clustering [23],
image segmentation [24], learning under noisy labels [25] and
out-of-domain detection [26]. To the best of our knowledge,
this work is the first attempt to apply information geometric
approaches for model adaptation.

The major contributions of this study are as follows.

1) proposed a novel framework of IGTTA: based on
information geometric (IG) principles to achieve patient-
specific, generic, off-the-shelf, test-time adaptation
(TTA) of semantic segmentation models in medical
imaging.

2) developed a novel composite loss function for joint con-
fidence maximization and functional regularization on
statistical neuromanifolds using Fisher-Rao distance and
other divergences to avoid performance deterioration.

3) established theoretical connections between Fisher-
Rao distance and KL divergence within information-
geometric framework and also study impact on
performance and adaptation times.

4) demonstration of efficacy of proposed IGTTA on three
challenging medical imaging segmentation problems:

i) Chest CT anomaly segmentation in COVID-19
subjects (at least 4% improvement over SOTA methods
across CNN and transformer-based architectures); ii)
multi-site tumor segmentation in Brain MR images
(> 3—7% improvement over other TTA methods across
architectures), and iii) OCT retinal layers segmentation
(2.8% improvement over baseline).

5) carefully curated ablation studies on design choices of
the approach and comparisons with SOTA TTA methods.

[1l. FORMULATION AND MOTIVATION
A. Label-Free Surrogate Objective for Specialization

To obtain the patient-specific adapted model 8* from 0zry
for individual subject data X*, as true segmentation map Y* is
not available during test time, a surrogate two-part composite
loss function Gy (X™*, Ogryv) is proposed, which requires only
the pretrained model’s weights and the new sample.

Go(X™, 0crm) = L1(X*,0) + A\Lo(X™, 0, Opru). (D

L1(X*,0) is a term for improving pixel-wise confidence of
adapted model’s predictions, and Ly(X*, 0, Ogry) is a term
that inhibits model collapse, ensuring divergence between pre-
trained model and adapted model is limited.

The intuition is to drive model weights to produce more
confident voxel-level predictions while ensuring that the
adapted model does not deviate from the pretrained model.
The patient-specific model 8* can be obtained by solving,

0" = argmin Gp(X™, Opru). 2
[4

B. Motivation for Information Geometric Approaches

The major challenge in specifying G (X*, @gry) lies in the
design of constraining objective £,. However, the constraints
on the Euclidean geometry (Fig. 2) of weights space of the
form ||0ERM—0*||p < B might seem natural [18], [19], [20], the
loss surface for target domain patient data may not be stable
for even small 8. To understand the robustness of the weight
regularizations, a simple experiment of perturbing weights of
the SOTA method [27] for segmenting anomalous regions
from Chest CT images was conducted. The performance
drop from the baseline for uniformly sampled random weight
perturbations for various values of 8 is shown in Fig. 3. It is
interesting to note that even for smaller weight perturbations of
relative magnitude < 0.1, there is a mean performance drop
of 2.32%, with a maximum decrease of up to 69.5% dice-
overlap. Indeed, there are a few perturbations that increase
the performance, which are useful models, and locating them
is the goal of TTA. For slightly higher perturbations sampled
from || ~ 4(0, 0.15) and 3| ~ 1/(0, 0.20), the problem is
acute with more frequent failures (more brown in Fig. 3) as
well larger mean decrease.

In summary, the loss-surface around #zgry may not be
flat enough for target domain subject data, potentially
rendering weight regularization ineffective. Simply, weight
regularization may not guarantee functional regularization,
where the updated model can produce diverging outputs from
the pretrained model. This is observed in the experiments
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Dice Score drop in % for |%| ~ 110,0.1) Dice Score drop in % for [%] ~ 10,0.15) Dice Score drop in % for [%] ~ 10, 0.20)
0
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Max Decrease: 69.5%; Max Increase: 3.22% Max Decrease: 71.6%; Max Increase: 4.05% Max Decrease: 72.2%; Max increase: 4.15%
Mean Decrease: 2.32% Mean decrease: 7.27% Mean decrease: 14.9%
Fig. 3. Performance change from baseline in segmenting anomalies from target-domain Chest CT images for various degrees of uniformly

sampled random weight perturbations of the state-of-the-art model [27]. Each simulation contained 1000 random perturbations to the learnable
affine parameters of all the batch normalization layers. Color (blue to brown) and size (small to large) capture the range of performance reduction

in increasing order. Negative: Dice decreases; Positive: Dice increases.

reported in the paper (Section IV) where the OSUDA
approach [20] deteriorates the performance of many subjects.
In this study, an information geometric approach for
functional regularization is proposed as the choice for £;. This
design does not require additional priors regarding the target
domain or learning auxiliary networks from the source domain,
making the approach more practical, robust, and generic.

V. INFORMATION GEOMETRIC TEST-TIME ADAPTATION
A. Geometry of Test-Time Neuromanifold

Consider a statistical manifold M of the probability
distributions parameterized by weights of the neural network.
When these probability distributions are derived as predictions
of different neural networks on test-time subject data X*
corresponding to varying weights @, M is defined as the fest-
time neuromanifold. Note that the pre-trained model fzry and
the optimal patient-specific model #* are points on M among
many other plausible neural networks.

M d;f {p0 — fo(X*) | 0 = {91,92, 9,/,} e® C Rn} (3)

Here 6 is the vector of all the weights of the neural network
which is made up of scalar weights 61, 65, ...0,. Fig. 2 depicts
test-time neuromanifold for current problem of adaptation,
which is a curvilinear manifold with network weights as
coordinates. If M satisfies certain regularity constraints and is
smoothly parameterized by € (shown in [21], [22], [25]), one
can obtain the Fisher information matrix (FIM): R(@) which
can be used to define a Riemannian metric on the statistical
neuromanifold. Proceeding with R(#) as metric tensor, the
Fisher-Rao distance between two neural networks on M, 0
and @’ is defined as,

et ‘/do(tﬁ do ()
dFR(Po’Po’)—II)}f/O N R(9) o dt. (4

In Eq. (4), y : [0, 1] — 6 represents a curve or a path between
arbitrary pair of weights @ and @', such that y(0) = 6 and
v (1) = 0’. Hence, the Fisher-Rao distance (FRD) between py
and pg is the geodesic distance between 6 and @’ using the

FIM metric tensor R(#) [21], obtained as the infimum across
different y values (Fig. 2). While the Fisher—Rao distance for
arbitrary probability distributions is difficult to obtain, closed-
form expressions exist for common distributions, such as the
exponential family and discrete distributions [25].

Without loss of generality, let us consider mapping one pixel
of X* to one of K segmentation classes. Here, fo(X™*)[/]
corresponds to the soft-max probabilities of j* pixel of
interest; hence, pg is essentially a probability simplex in
K — 1 dimensions. For such probability simplexes AKX,
Fisher-Rao distance (FRD) between two models @ and 6’ has
been derived using spherical re-parameterizations [25], [26] as

K
drr(py. py) = 2arccos (Z NITCOE fy(X*)[j]i),

i=1

S

Note that this definition of a test-time neuromanifold is
unique and differs from other applications of information
geometry in deep learning. In the natural gradient method [28],
the neuromanifold is defined based on the distribution of
predictions of training data for varying weights. In out-of-
distribution detection [26], the neuromanifold corresponds to
the predictions on samples from in-domain and out-of-domain
data, but for a fixed pretrained model.

1) Relating FRD to Other Divergences: Recently, there have
been efforts linking Fisher Rao distance (FRD) to other
popular divergences. In [28], authors relate KL divergence and
FRD on a neuromanifold described by softmax probabilities
on two different inputs but same model. It is reiterated that
neuromanifolds described in this paper are fundamentally
different, where two points on the manifold are obtained via
two distributions of softmax probabilities on same input X*
but two different models 6 and 6’. A theorem establishing the
relationship between two divergences for these manifolds is
given below, modifying the result in [28].

Theorem 1: The FRD between two soft-max predictions
po = fo(X¥) and py = fp(X*) given in eqn. (5) is related
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to KL divergence by,

1
1 —cos(drr(pg, Pg’)/2) <= EdKL(Po, Do) (6)

Proof: Starting from Hellinger distance [28] between pg
and pj, defined as,

X 1/2
H(pg. po) & fz(l — > VRO - fo/(X*)[j]i))
i=1
)
Using eqn. (5) in eqn. (7),

NN 172
H(py. py) = ﬁ(l ~cos (W#)) "

Denoting KL divergence as dkr(py, pgr), and noting that
H(py, po/)2 <=dgL(py, pg'), theorem 1 is readily obtained.
|
This result establishes that KL divergence is an approxi-
mation and an upper bound for exact geodesic distance given
by FRD. As noted in [28], despite their relationship, FRD
and KL divergences can behave differently in optimization
procedures. Empirical results and adaptation dynamics using
these two divergences are discussed in Section. VII.

B. Design of Lo in IGTTA: Functional Regularization

The aim of this work is to define divergences that ensure
that patient-specific model #* does not deviate much from
0 £ry and utilize them in an adaptation procedure for semantic
segmentation problems. Thus, the single-pixel definition of
FRD in Eq. (4) is expanded to cover the entire volume of
predictions, using two possible aggregation strategies.

1) Voxel Manifold Regularizer - IGTTA-VM: The first aggrega-
tion strategy is to accumulate drr(py, Po g, ) Over all voxels
in X* in the newly obtained patient data volume X*.

X

Lo(X*, 0, 0zr) = mzdm(pg[j], PoeruliD- (9

j=1

2) Class-Ratio Manifold Regularizer - IGTTA-CRM: In this
aggregation strategy, the class ratio estimates for K classes
are computed per slice and aggregated over all slices in the
volume. Denoting class ratio estimate of s slice as CR[s]
and for total number of S slices, £, is defined as,

S
1
L£2(X*, 0, 8s500) = < D> drr(CRyls], CRopy s (10)

s=1

Note that CR[s] is again a AX~!-simplex. Therefore, the
definition of Eq. (4) holds. While the Fisher—Rao distance is a
divergence measure, other common divergences, such as KL
divergences, are also explored and compared in experiments.

Intuitively, the voxel manifold regularizer constrains the per-
pixel functional divergence of 6* from gy, whereas the
class-ratio manifold regularizer ensures that the distribution of
the class types per slice does not diverge. These two manifolds
represent examples of the proposed approach. More advanced
regularizers can be derived by using the same framework to
impose spatial constraints.

TABLE IlI
LIST OF OBJECTIVE FUNCTIONS THAT MEASURE UNCERTAINTY OR
CONFIDENCE IN A VECTOR OF k-WAY PREDICTIONS

Confidence Loss

Functions : {.on ¢ Formulae

Soft-max
entropy [13]: Zent
Generalized
cross-entropy [29]: £4ce

k—1
- gopr(j, 0) log (p"(4,0))
¢ (1 -p°(35,0)), ¢ €10,1]

7(1)0(]‘, 0) — MaXp-£c pr(j> 9))

Margin (proposed): {rarg

C. Design of L;: Confidence Maximization

Recently, several studies established empirical correlations
between classification accuracy and confidence in predic-
tions [9], [13], [20]. Inspired by these, this study proposes
minimizing the average pixel-wise uncertainty during the
specialization procedure as a choice for £;. The average pixel-
wise prediction confidence £ is defined as the average of
Leony over all pixels of X*.

|X*|
> leons (fo(XHID,

<

L1(X*,0) = (11

| X

Table III lists the choices of (£conr). In addition, ¢ denotes
the winning class ¢ = argmax { fp (X*)[j]}.

o Soft-max entropy (£.,:) [13] - measures uncertainty in the
prediction vector. Entropy will be zero if the prediction
for the winning class ¢ is 1. If the predictions for all
classes are equal, the entropy will be maximum.

« Generalized cross entropy (£4ce) [29] - another way of
measuring uncertainty. As g — 0, €4c. approaches £,
and as g — 1, it approaches mean absolute error loss.
This study is the first attempt to utilize £4.. in medical
imaging applications.

o Margin loss (£;,4r¢) - Proposed in this study is a simple
loss function that measures difference between winning
class prediction value and next best prediction.

Recently, there have been works that explored margin-

loss based training paradigms for improved calibration and
generalization [30], [31]. These works are inherently training-
time methodologies where the aim is to achieve a balance
between performance and calibration. In this work, margin-
based confidence maximization is proposed for test-time
adaptation, which has not been explored in prior works in
general or for medical image segmentation.

D. Algorithmic Procedure for IGTTA

By using the definitions of £ and L, the specification
of the label-free surrogate loss Gg(.) in Eq. (1) is complete.
To obtain #* from @ggry customized for X*, an iterative
optimization procedure was proposed, similar to the standard
learning procedures for training neural networks. The gradients
computed using G (X™*, Ozry) are backpropagated to update
the model weights for a predetermined number of steps
(typically 10, with A = 1 in Eq. (1)). To establish
architecture-agnostic effectiveness of proposed framework,
we demonstrate results using SOTA medical imaging seg-
mentation architectures that are a) CNN-based: AnamNet
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[27], residual U-Net [10], etc and b) vision-transformer
based: MissFormer [32]. In all the adaptations performed in
this work starting from CNN-based architectures, learnable
affine parameters of BatchNorm layers (shift and scale) were
updated along with the usage of subject-level statistics (mean
and standard deviation). This is similar to the results of
references [9], [13], [20], where updating these limited the
number of parameters has been demonstrated to handle co-
variate shift. In experiments involving adaptations of vision
transformer based architecture: MissFormer [32], we update
the affine parameters of LayerNorm layers.

V. EXAMPLE PROBLEMS AND DATA-SETS

In this study, three segmentation problems were investigated
to show the generic applicability of proposed IGTTA to
multiple modalities (CT, MR, and OCT), showing utility for
both anatomy and pathology segmentation, and robustness
to the number of classes (3 to 11). Furthermore, they
cover the common domain adaptation scenarios in medical
imaging because of 1) covariate shift across multiple sites and
demography, 2) Anatomy/Pathology sub-type differences, and
3) variability due to scanner-types.

A. Segmentation of Anomalies in COVID-19 CT Images

1) Problem Set-up and Data-Sets: The first problem is
segmenting Chest CT images obtained from COVID-19
patients into three classes: background, healthy lung regions,
and anomalies. Common anomalies observed in chest CT
scans of COVID-19 patients include ground-glass opacities
(GGO), consolidation, and pleural effusion [27].

The axial chest CT images utilized in this work were
obtained from two publicly available open-source datasets:
1) Dataset I - Italian Society of Medical and Interventional
Radiology [33] and 2) Dataset II - radiopedia [34]. Dataset I
consists of 100 slices from approximately 40 patient CT scans,
and Dataset II contains 829 slices obtained from 9 subjects.

2) Baseline Models: To study the benefits of the proposed
adaptation scheme, models built using Dataset I were
evaluated on Dataset II. The light-weight CNN architecture
called “AnamNet” proposed in [27] has reported state-of-
the-art (SOTA) results for this problem, while training on
270 augmented images from Dataset I and testing on 704 slices
from Dataset II. Firstly, 90 slices with significant lung regions
were selected out of 100 training slices and then augmentations
included horizontal and vertical flip leading to a total of
270 slices. In this study, the same experimental setup was used.
In addition to AnamNet, seven other architectures reported in
[27] were also utilized.

B. Multi-Site Brain Tumor Segmentation on MR Images

1) Problem Set-up and Data-Sets: The Federated Tumor
Segmentation challenge (FETS) [35] involves cross-
institutional, multi-contrast preoperative MRI scans of
the brain, containing heterogeneous tumors, namely gliomas.
Aggregated from 23 different sites, FETS data contained a
total of 1251 patient scans, with each scan containing four
contrasts: T1-weighted (T1), Tl-contrast enhanced (Tlce),

T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (FLAIR). The goal is to map voxels into four
classes: enhancing tumor (ET), peritumoral edema (ED),
necrotic and non-enhancing tumor core (CoreT), and
background. According to the FETS challenge, these
1251 scans were aggregated from sites with varying
demography, device, and disease stage, making it a suitable
large-scale database for experimentation, besides the clinically
relevant goal of segmenting gliomas. To understand the
efficacy of IGTTA for cross-institutional domain adaptation,
patient-specific adaptation of models built on Site 1 as the
source domain (511 subjects) was attempted using individual
patient scans from the remaining 22 sites (740 subjects).

2) Baseline Models: The two-dimensional (2D) segmenta-
tion model was built using the AnamNet [27] architecture
utilizing all four contrasts and 90 middle slices from the
3-D MRI of the training subjects. The models were built
for 100 epochs with batch size = 24 and Adam optimizer
(learning rate = 0.01). The results were compared for
semantically meaningful tumor classes: Whole Tumor (WT):
ED + EnhT + CoreT, Enhancing tumor (ET), and Tumor Core
(TC): ED + CoreT, as proposed in [35].

C. Segmentation of Retinal Layers From OCT Images

1) Problem Set-up and Data-Sets: Finally, vendor-agnostic
segmentation of retinal layers from 2D OCT images is
considered. The 11 retinal layers under consideration and
their acronyms [10] are as follows: 1) vitreous background,
2) retinal nerve fiber layer (RNFL), 3) ganglion cell/inner
plexiform layer (GCIP), 4) Inner nuclear layer (INL), 5) Outer
plexiform layer (OPL), 6) Outer nuclear layer (ONL), 7) Inner
segment (IS), 8) Outer segment (OS), 9) Retinal pigment
epithelium (RPE), 10) Choroid background 11) other. Two
publicly available OCT datasets from two different scanners 1)
Heidelberg Spectralis scanner [36] and 2) Cirrus scanner [10],
were analyzed. The Spectralis dataset consists of 35 3-D
subject volumes with 49 slices (2D) of size 496 x 1024 per
volume, whereas the Cirrus dataset consists of six subjects
with eight slices of size 1024 x 512. The pre-processed and
standardized images along with manual annotations were made
available in the AE-SDA [10].

2) Baseline Models: The experimental set-up provided in
AE-SDA [10] was reproduced from their publicly available
code-base. The 2D segmentation backbone using residual U-
Net [37] was built on subject data from Spectralis data-set
and evaluated on 6 subject volumes from Cirrus data-sets (8
slices per volume). Multiple data augmentation strategies were
utilized during training - including gamma adjustment, flips,
Gaussian noise addition, etc [37]. The models were trained for
20 epochs, with batch size = 2 the Adam optimizer (learning
rate = 0.01).

VI. EXPERIMENTS AND RESULTS

A. SOTA Methods Comparison and Implementation
Details

The proposed IGTTA method was compared with following
six test-time adaptation methods, as discussed in Section II.
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TABLE IV
COVID-19 ANOMALY SEGMENTATION FROM CHEST CT IMAGES: MEAN AND STANDARD DEVIATIONS OF DICE SCORE AND ASSD
FOR NORMAL AND ABNORMAL LUNG REGIONS, EVALUATED ON 704 IMAGES FROM TARGET-DOMAIN. REPORTED RESULTS
ARE OBTAINED FROM 3 INDEPENDENT RUNS

(a) Comparisons of the proposed IGTTA with other test-time adaptation methods in literature with base model as AnamNet [27].

Dice Score 1 % 1 in dice of ASSD | in ASSD of
TTA Method Normal Abnormal abrTorm. class Normal Abnormal ibnorm. class
AnamNet [27] 1 o501 6005 | 0.730 & 0.025 NA 1.104 + 0217 | 13.432 + 2.458 NA
(Unadapted)
Tent(PS) [13] | 0.976 + 0.001 | 0.694 & 0.031 36 0.931 + 0.204 | 21.107 + 1.12 7.675
OSUDA(PS) [20] | 0.977 & 0.001 | 0.638 + 0.033 92 1.167 + 0204 | 19.611 + 1.12 6.179
"7 'SFDA [38] | 0951 £ 0019 | 0.608 &= 0072 | -122 | 2.031 £ 0964 | 25337 & 12.01 |  -11.905
TTA-SM [9] 0.950 + 0.011 | 0.627 + 0.067 -10.3 2.576 £ 0.628 | 33.753 + 9.105 20.321
" "TTA-DAE [17] | 0.973 £ 0.006 | 0.692 & 0007 |~ -38 | 1.508 £ 0.232 | 19.976 & 2.067 |  -6.544
IGTTA-VMrrp | 97g 1 0,007 | 0.758 + 0.038 2.8 0.833 + 0.313 | 8.512 + 3.585 4.92
(Proposed)

(b) Comparisons of the proposed IGTTA with other test-time adaptation methods in literature with base Model as MissFormer [32].

Dice Score 1 % 1 in dice of ASSD | in ASSD of
TTA Method Normal Abnormal abrTorm. class Normal Abnormal ibnorm. class
MissFormer [32] "1, 53 4 002 | 0473 + 0.006 NA 2795 + 0.368 | 39.683 + 2.813 NA
(Unadapted)
Tent(PS) [13] 0.953 &+ 0.013 | 0.532 + 0.065 5.8 1.298 + 0.289 | 32.319 + 0.804 7.365
OSUDA(PS) [20] | 0.954 4+ 0.013 | 0.534 £ 0.065 5.9 1301 £ 0.287 | 32.313 & 0.802 7.371
"7 'SFDA [38] | 0951 & 0.006 | 0.564 £ 0012 | 91 | 1259 4+ 0026 | 31.324 + 0415 | 8359
TTA-SM [9] 0.945 4 0.003 | 0.297 + 0.004 -17.6 1.216 4 0.121 | 34.799 4 0.700 4.885
" TTA-DAE [17] | 0953 + 0.011 | 0408 £0.108 |  -6.6 | 12224+ 0218 | 33.198 & 0288 | 6486
IGTTA-VMErD | 956 1 0013 | 0.575 + 0.002 10.2 1.162 + 0.026 | 30.857 & 0.274 8.826
(Proposed)

(c) Effect of the proposed IGTTA on 8 different architectures compared in [27]. In each row, bold signifies the best results obtained before
and after the proposed IGTTA-based adaptation. Best results are highlighted using box.

Base model - Dice Score 1 IGTTA-VMggp - Dice Score 1 Base model - ASSD | IGTTA-VMggrp - ASSD |

Architecture Normal Abnormal Normal AbNormal Normal Abnormal Normal AbNormal
UNet 0.949 4+ 0.006| 0.636 £+ 0.025 | 0.955 £ 0.005 | 0.663 + 0.024 |1.529 + 0.156]| 21.135+ 2.277 | 1.385 +0.076 | 18.308 +1.903
ENet 0.95 4+ 0.005 | 0.675 £ 0.016 | 0.953 + 0.002 | 0.688 + 0.019 | 1.609 +£0.377 | 19.735 £5.094 | 1.339 +0.082 17.141 +2.83

UNet++ | 0.957 + 0.006] 0.687 + 0.032 | 0.962 + 0.005 | 0.71 & 0.025 | 1.177 £0.121 | 15.688 +2.747 | 1.007 £0.067 | 12.37+ 1.619
SegNet  |0.943 + 0,008 0.609 + 0.022 | 0.953 + 0.001 | 0.658 + 0.005 | 1.976 +£0.101 | 27.624 £1.026 | 1.912 +£0.236 | 21.334 +3.816
AttUNet | 0.952 & 0.08 | 0.654 & 0.041 | 0.955 + 0.008 | 0.669 + 0.041 | 1.229+ 0.148 | 16.166- 3.278 | 1.139 £0.147 | 13.961+ 2.703
LEDNet | 0.93 + 0.007 | 0.615 + 0.032 | 0.932 + 0.007 | 0.63 + 0.035 |2.994 + 1.877| 22.3 + 1.194 | 2.994+ 0351 | 21.994 +1.745

MissFormer [32]]0.930 + 0.002[0.473 + 0.0006| 0.956 + 0.013 | 0.575 + 0.002 | 2.795+ 0.368 | 39.683 +2.813 | 1.162+ 0.026 | 30.857 +0.174

AnamNet [27] |0.968 + 0.005| 0.73 + 0.025 ] 0.978 + 0.007 ‘ ] 0.758 + 0.038 ‘ 1.104 + 0.217]13.432 + 2.458| 0.833 £0.313 ‘ ] 8.512+ 3.585

o Classic TTA method: a) Tent [13]. weights of adaptation by respective methods. These base
o« TTA with weight regularizer: OSUDA [20]. Tent (PS) models are explicitly stated in title of respective quantitative
and OSUDA (PS) adaptations are patient-specific to be comparison tables. For each of the SOTA method, best set
consistent with the proposed IGTTA. of adaptation parameters from respective works were used.
o« TTA with auxiliary networks a) TTA-DAE [17]: with For Tent [13], number of adaptation steps were chosen to be
auxiliary denoising auto-encoders b) AE-SDA: self- 10. For OSUDA [20], SFDA [8] and TTA-SM [9], number
domain adaptation with auto-encoders [10]. of adaptation steps were set to 200 following the respective
o« TTA wusing anatomical priors a) SFDA: source-free works, whereas for TTA-DAE [17] it was set to 150.
domain adaptation [8] b) TTA-SM: patient-specific
adaptation with shape moments [9]. 1) Implementation Details: The design choices of proposed
For all the three problems, patient-specific models {#7} approach in IGTTA include: 1) choice of neuromanifold
for individual subject data X were built using the for L;: voxel versus class-ratio manifold, and 2) choice
proposed IGTTA method and SOTA methods. To ensure fair of divergence function (Fisher-Rao distance versus KL-
comparison, same baseline models @ g g were used as starting  divergence) 3) number of adaptation steps. Variants of
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proposed approach based on combinations of neuromanifold
and divergence functions are referred to as 1) IGTTA-VMpggp:
FRD on voxel manifold 2) IGTTA-VMg: KL divergence
on voxel manifold 3) IGTTA-CRMggrp: FRD on class-ratio
manifold 4) IGTTA-CRMg: KL divergence on class-ratio
manifold. Across all experiments, we have chosen adaptation
steps as 10 for voxel-manifold based variants of proposed
method (IGTTA-VMpggp and IGTTA-VMg ). This is to have
lesser adaptation times and compare with Tent which uses
10 as the number of adaptation steps in their experiments. For
variants of proposed approach based on class-ratio manifold
(IGTTA-CRMpggrp and IGTTA-CRMg;), we have chosen
number of adaptation steps as 50 to still have 4 times lesser
adaptation steps compared to other methods.

For each of the three problems, best results of proposed
approach among the 4 IGTTA variants are shared. Detailed
discussion on impact of choice of neuromanifold, choice of
divergence function, comparisons of results across 4 variants,
adaptation dynamics are presented in ablation studies
(Section. VII). Additionally, a prescribed recipe to choose for
new set of problems is presented. As stated earlier, BatchNorm
parameters were adapted for CNN based architectures and
LayerNorm parameters were adapted for MissFormer models.
These parameters were adapted using Adam optimizer with
learning rate of Se-4 and initial decay rates for first & second
moments of gradient set to 0.99.

2) Comparison Metrics: The methods are compared quanti-
tatively using variety of metrics starting with Dice Similarity
score of adapted model’s prediction and ground truth
segmentation. Comparisons are also reported for surface
distance-based metrics 1) ASSD - Average symmetric surface
distance 2) HD - Hausdorff distance. It should be noted
that in MR brain tumor segmentation problem, Tumor core
(TC) and enhancing tumor (ET) regions are often smaller,
have inconsistent boundaries and hence calculating surface
distance based metrics can be erroneous and misleading.
Hence, Sensitivity as an additional metric is compared for
these classes, since we are interested in True Positives (TP)
performance of methods for successive evaluation by clinical
experts. It is pointed that dice score is nothing but fl-score,
hence all four parameters - TP, TN, FP, FN are covered by
these set of metrics. One of the biggest risks of adaptation,
is deterioration of adapted model compared to base model’s
performance, which indicates failure of adaptation procedure.
To capture these events, we also report number of patient-
wise adaptation failures that each of the methods attain across
problems. It is noted that for every experiment, we report mean
and standard deviations of results obtained from 3 independent
runs.

B. Summary of Results

1) IGTTA Outperforms Other Test-Time Adaptation Methods:
a) Segmentation of anomalies in COVID-19 CT images:
The proposed method achieved SOTA performance on all
metrics of interest for both CNN-based and transformer-based
segmentation models. Quantitative Comparisons with the other
methods are presented in Table. IVa and Table. IVb with
AnamNet and MissFormer as base models respectively.

Starting with AnamNet based pre-trained models, all the
comparison methods lead to deterioration in performance
(Table. IVa). Reasons for this deterioration include 1) high
variability in the degree of infection: methods which depend
on pre-determined class-ratios from training distribution like
SFDA [8] and TTA-SM [9] suffer when fraction of anomalous
region changes across subjects. 2) Variation in the imaging
properties of the nine subjects - TTA-DAE [17] which
learns auxiliary denoising auto-encoder on training distribution
suffers with shift in imaging distribution, thereby leading
to reduction in post-adaptation performance. 3) insufficient
regularization: Tent [13] suffers from over-eager adaptation
clearly highlighting the need for stronger regularization.
Though OSUDA [20] does have weight regularization,
it is clearly insufficient in individual patient-wise adaptation
setting, where full test-domain data is unavailable. The benefits
of functional regularization is clearly visible in proposed
method of IGTTA, which improves the SOTA baseline model
of AnamNet [27] by a significant margin of 2.8% in Dice score
of abnormal class. Additionally, it achieves lowest ASDD
metrics amongst all the metrics for both the classes.

Similarly, improved performance of the proposed method
is observed when using MissFormer [32] model as baseline
(Table. IVb). Firstly, baseline performance of unadapted model
in itself is lower compared to AnamNet [27] due to limited
training data and imbalance amongst segmentation classes.
This behaviour is also observed with other larger models
in Table IVc. Hence majority of adaptation methods lead
to improvement in performance over the baseline, except
TTA-SM [9] and TTA-DAE [17] for similar reasons stated
above. Tent [13], OSUDA [20] SFDA [8] achieve improved
performance compared to baseline, but proposed approach of
IGTAA outperform all of them by a significant margin. IGTTA
achieves 10.2% increase in dice score, while decreasing the
ASDD metric by almost 25% for the abnormal class compared
to the baseline.

b) Multi-Site MR Brain Tumor Segmentation: Results
are shared in Table. Va and Table. Vb for AnamNet and
MissFormer base models respectively. It is apparent that the
proposed IGTTA method significantly outperforms other TTA
methods on the task of adapting models built on site 1 data
(511 subjects) to other 22 target domain sites (740 subjects)
on all metrics of interest: 1) Dice Score 2) Hausdorff distance
(HD) on whole tumor 3) Sensitivity on other two classes 4)
Total number of failures post adaptation for both base-models.
In Table. Va, Compared to the unadapted AnamNet model,
IGTTA improves the dice score for all subtypes of tumor
tissues (WT, ET, TC) by atleast 29%.

Similarly, improved performance of the proposed method
is observed when using MissFormer [32] model as well
in Table. Vb. The proposed method again achieves best
performance on all metrics of interest across all tumor
tissue types. It is pointed that, MissFormer model has a
higher baseline performance compared to AnamNet, as this
problem has higher training data, which can be exploited
by a larger model. However, this poses a challenge for all
the comparison methods as they have more parameters to
adapt during test-time which can lead to reduced performance

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2025 at 05:25:07 UTC from IEEE Xplore. Restrictions apply.



RAVISHANKAR et al.: INFORMATION GEOMETRIC APPROACHES FOR PATIENT-SPECIFIC TTA 2561
TABLE V
MULTI-SITE BRAIN TUMOR SEGMENTATION ON MR IMAGES: MEAN AND STANDARD DEVIATIONS OF VARIOUS EVALUATION METRICS
FOR WT, ET, TC CLASSES EVALUATED ON OF 740 TARGET DOMAIN SUBJECTS FROM 22 TARGET SITES. REPORTED RESULTS ARE
OBTAINED FROM 3 INDEPENDENT RUNS
(a) Comparisons of the proposed IGTTA with other test-time adaptation methods in literature with base model as AnamNet [27].
Dice Score 1 # Failures Sensitivity 1 HD |
TTA Method Enhancing Tumor Whole on WT Enhancing Tumor Whole
Tumor (ET) Core (TC) Tumor (WT) Tumor (ET) Core (TC) Tumor (WT)
AnamNet [27] 0.339 + 0.015 | 0.353 & 0.010 | 0.357 4 0.087 NA 0.571 +0.014 | 0.516 4+ 0.005 | 23.866 + 10.561
(Unadapted)
Tent(PS) [13] 0.458 4+ 0.098 | 0.448 4 0.090 | 0.496 & 0.115 267 0.663 &+ 0.140 | 0.620 4 0.131 12.384 4 0.347
_ OSUDA(PS) [20] | 0.526 %0053 | 0.512 40053 | 0.600 0066 | 174 | 0752 & 0,095 | 0697 & 0085 | 11539 £ 0592
SFDA [38] 0.505 4 0.023 | 0.501 4 0.035 | 0.595 £ 0.046 140 0.718 & 0.073 | 0.661 £ 0.104 11.938 £ 0.451
__ TTASM (9] | 0635 % 0018 | 063240020 | 0717£0010 | 73 | 0810+ 0018 | 0704 %0023 | 12101 £ 0075 _
TTA-DAE [17] 0.621 4+ 0.015 | 0.620 & 0.010 | 0.701 £ 0.002 118 0.770 & 0.016 | 0.686 + 0.039 12.235 £ 0.098
IG'(l;)’l;z;;)ﬁil(;’;KL 0.644 + 0.014 | 0.642 £ 0.022 | 0.754 £ 0.009 26 0.830 & 0.007 | 0.719 + 0.002 10.1 £ 2.436

(b) Comparisons of the proposed IGTTA with other test-time adaptation methods in literature with base model as MissFormer [32].

all the target sites. It should be noted that both unregularized

Dice Score T # Failures Sensitivity T HD |
TTA Method Enhancing Tumor Whole on WT Enhancing Tumor Whole
Tumor (ET) Core (TC) Tumor (WT) Tumor (ET) Core (TC) Tumor (WT)
Mﬁﬁ;’(‘i‘;’:{ﬂgzl 0.586 £ 0.009 | 0.581 + 0.013 | 0.757 £ 0.017 NA 0.751 £ 0.014 | 0.658 + 0.012 | 14.375 + 1.958
Tent(PS) [13] 0.427 £ 0.024 | 0.354 £ 0.020 | 0.457 + 0.023 168 0.631 £ 0.002 | 0.593 + 0.013 | 13.435 + 1.029
| OSUDA(PS) [20] | 0429 £ 0021 | 035840018 | 0459 £0022 | 167 | 0640011 | 0601 0022 | 13419 & 1095
SFDA [38] 0.535 + 0.011 0.529 + 0.01 0.706 £ 0.008 151 0.719 £ 0.011 | 0.629 &£ 0.005 | 15.797 + 0.606
__ TTASM [9] | 0540 £0.002 | 0530 & 0.001 | 0.679 £ 0005 | 116 | 0.767 & 0.016 | 0673 £ 0.009 | 13965 + 0.198
TTA-DAE [17] 0.561 £ 0.009 | 0.557 £ 0.031 | 0.710 £ 0.006 103 0.793 £ 0.020 | 0.699 £ 0.031 12.478 £ 0.243
1 Promosed) " | 0:605 £ 0016 | 0.613 = 0.003 | 0.783 + 0021 52 0.818 + 0.013 | 0.737 4+ 0.004 | 9.261 + 0.434
. . L 50 ——— —
without careful adaptation, This is indeed the cases, where EEE Tent [13]
all the methods starting from MissFormer model as baseline, " Osuda [20]
suffer from performance deterioration owing to reasons E B IGTTA (prop.)
described earlier. Another thing to note is that, irrespective = "
of base model’s performance, IGTTA achieves similar post- E
adaptation performance in Tables. Va and Vb. This is a highly g i | 18 | [ I I‘ \|
encouraging result, which showcases power of IGTTA to & | | I | | II | | | || |
bridge tbe gap between 'base models of varying pgrformances. S 10 | 1 d | l I .
The site-wise adaptation performance is shown in Fig. 4 for g
one run of AnamNet, where IGTTA improves performance on & || | I I I | | I
g '
=

TTA (Tent [13]) and weight-regularized TTA (OSUDA [20])
deteriorate the performance on site 13.

c) Retinal layers segmentation on OCT images: As shown
in Fig. 6(a), compared to the no-adaptation case, IGTTA
achieves an overall Dice increase of 2.8% on the Cirrus dataset
with models trained on the Spectralis dataset). Improvements
over the AE-SDA method [10] are 0.8%. All methods based
on entropy minimization (IGTTA, Tent, and OSUDA) perform
satisfactorily because of the higher number of classes (11).
The proposed approach achieved marginally higher class-wise
performance for seven out of eight types of retinal layers.
A slight drop in performance was observed for the RPE labels.

2) IGTTA Achieves Patient Optimality: Patient optimality
refers to successful adaptation of a neural network that has
been trained on population data, to patient’s data during test-
time. This can be demonstrated by showing how proposed
method improves on every individual patient post-adaptation.

2 3456 7 8 910I11I121314151617 181920212223
Target Site

Fig. 4. Multi-site brain tumor segmentation from MR Images: Percentage
increase in WT Dice across different target Sites compared for proposed
IGTTA, Tent [13] and OSUDA [20], for one run of AnamNet model trained
on Site 1 and tested on 22 other sites as target for a total of 740 subjects.

a) For the chest CT segmentation problem, IGTTA
consistently improves anomaly segmentation across all nine
subjects across all runs and for all architectures. Fig. 5 shows
that for one run of adaptation with AnamNet as basemodel,
IGTTA obtains mean Dice score increase of 6.34%, with
maximum increase of 19.58% for Patient 7, followed by
13.86% and 11.21% increase on Patient 3 and Patient 2,
respectively. Interestingly, the proposed approach improves
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Fig. 5. Chest CT anomaly segmentation: Patient-wise comparisons of
Dice overlap for abnormal classes between the proposed approach and
AnamNet [27] on the test dataset.

on patients, where performance is low, and maintains the
same level in cases where it is already high. Patient 6 had
completely healthy lungs. The compared TTA methods led to
a deterioration in performance across subjects, with Tent being
a strong competitor with two failures out of nine subjects data.

Another way to measure patient-optimality is to ensure
model does not deteriorate in performance post-adaptation,
otherwise considered as adaptation failure.

b) In brain tumor segmentation problem (Table. Va and
Vb), all the comparison methods lead to higher number of
adaptation failures. For instance, Tent [13] achieves lesser WT
dice score post-adaptation on 267/740 cases (for AnamNet
base model) and 168/740 (for MissFormer base model),
capturing the issue of unconstrained adaptation. All the other
methods, also have very high number of failures, owing to
reasons like domain-shift, lack of sufficient regularization,
varying distribution of classes, etc. The proposed method
of IGTTA has least number of failures, highlighting the
power of functional regularization, which ensures adapted
model’s prediction are constrained from diverging from base
model. Note that this reduced number of failures is coupled
with improvement in the overall Dice scores of tumor
sub-tissues.

3) IGTTA Achieves Architectural-Agnostic Generalization
Improvement: As demonstrated earlier, on both CT and
MR segmentation problems, the proposed method of IGTTA
achieves highest adaptation performance using both AnamNet
and MissFormer based architectures. These two architectures
cover a reasonable spectrum of architectures observed in
medical imaging problems, with AnamNet being light-weight,
edge-device suitable, easy to train, suitable for less data
(CT problem). MissFormer [32] being a vision-transformer
based architecture has advantages of more parameters, richness
of representation, higher expected performance, better suited
for large data problems (MR problem). For the retinal
layer segmentation with OCT, we used residual U-Net
architecture as suggested in AE-SDA [10] method which is
SOTA for this problem, to allow fair comparison with other
methods. To further demonstrate the architectural-agnostic

generalization of proposed IGTTA, we used 7 other popular
segmentation architectures and share the adaptation results
in Table. IVc segmentation in Chest CT images. It is
clear that proposed method, improves on every segmentation
architecture. This is a significant result showing the universal
utility of IGTTA to improve any off-the-shelf pre-trained
model.

4) IGTTA has Competitive Adaptation Times: It is crucial
that patient-wise adaptation techniques have acceptable space
and time complexities. As noted earlier, IGTTA-VMpggp and
IGTTA-VMg are run for 10 adaptation steps and hence
have similar inference times to Tent [13]. The other two
variants require four times less adaptation steps, compared to
SFDA [8], TTA-SM [9] and OSUDA [20]. Additionally, the
proposed method is significantly faster than methods using
auxiliary networks which include TTA-DAE [17] and AE-
SDA [10]. In OCT segmentation problem, for every patient
data in Cirrus datasets (eight slices per volume), IGTTA
takes ~ 1.5 s compared to 11.43 s for AE-SDA, giving an
advantage of 7 times faster adaptation. All experiments were
conducted using PyTorch libraries on an NVIDIA Quadro RTX
A6000 GPU.

5) Qualitative Comparisons: : a) Figure 7 shows the
improvement due to proposed IGTTA across varying levels of
lung size and infections on selected slices from four different
test subjects. On Slice 23 (first row), Tent [13] erodes a part
of the anomaly in the left lung. IGTTA reduced only the false
positives at the top of the right lung. On Slice 316 (second
row), the proposed method completely erases all false positives
for anomalies, which is critical as this subject has fully healthy
lungs, while Tent magnifies them more. On Slice 198 (third
row), the proposed method has improved on false positives
and false negatives - by eroding false findings in both lungs,
while also correctly expanding the circular anomaly region in
the right lung against the slight under-segmentation achieved
by AnamNet. Slice 674 (last row) captures comparisons of
lung slices affected by severe infections.

b) Figure 8 depicts the results on selected slices from
varying target sites and subjects for brain tumor segmentation.
In the first row, the unadapted source domain model assigns
all tumor sub-tissues to the edema class. IGTTA faithfully
recovered all three tissues, whereas Tent and OSUDA failed
to enhance the tumor region. In the second row, perils of
unregularized and weight-regularized adaptation are shown,
where both Tent and OSUDA erase the predictions completely,
while proposed IGTTA achieves satisfactory performance
on all three classes. Similarly, the third row shows the
improvement obtained with proposed IGTTA over both the
unadapted and other TTA methods.

Figure 6(b) and 6(c) shows comparison of retinal layer
segmentation for baseline, proposed approach and AE-SDA
method [10] on two selected slices from Cirrus data-set.
In Fig. 6(b), the base-model produces segmentations with
holes, loss of continuity and label mismatches compared
to ground-truth. Both the proposed approach and AE-SDA
method [10] show improvements over the no-adaptation
output. Similarly, in a sample slice from the Cirrus
dataset (Fig. 6(c)), the base model demonstrates deteriorated
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o Target: Cirrus scanner data; Source: Spectralis scanner data
etina : -
Layers | yqape | 0t 131 05UDA 201 | o S0 L
RNFL | 0.754 | 0.796 0.796 0.780 0.798
GCIP | 0817 | 0.866 0.866 0.855 0.867

INL |0.752| 0.792 0.792 0.780 0.794
OPL | 0.644 | 0.679 0.679 0.672 0.683
ONL | 0.874 | 0.895 0.895 0.888 0.897

IS 0.860 | 0.875 0.875 0.87 0.875

oS 0.873 | 0.891 0.891 0.889 0.892
RPE | 0.842 | 0.838 0.838 0.842 0.837
Overall | 0.802 | 0.829 0.829 0.822 0.830

(a) Dice score comparison.

Fig. 6.

No adaitation No adailation

Input Image Input Image

e T e

Ground truth Ground truth

AE-SDA method [10]

Proiosed method Proiosed method

(b) Sample OCT Image 1 results.

AE-SDA method [10]

(c) Sample OCT Image 2 results.

Retinal layers segmentation from OCT Images: Quantitative comparisons of the proposed IGTTA method with other TTA methods. The

segmentation of two sample Cirrus data slices was presented with no adaptation and AE-SDA [10] methods.

Slice 23 Ground Truth

Slice 672 Ground Truth

UnAdapted

UnAdapted

Tent[13]

IGTTA(proposed)

Tent [13] IGTTA(proposed)

Fig. 7. Anomaly segmentation from Chest CT images: Qualitative comparisons of segmentations from the proposed method and other methods
on selected slices from test dataset. Images correspond to adaptation experiments using run 1 of AnamNet [27] as base model. Green: Lung region
(Normal); Red: Anomalies (Abnormal), Yellow boxes: Inaccurate segmented region.

segmentation performance. While the proposed approach filled
the holes and improved consistency across layers, the AE-
based method improved small misclassified patches, which
is also reflected in the quantitative comparisons (table of
Fig. 6(a)).

In summary, the presented work evaluates and establishes
the efficacy of the proposed framework of IGTTA in a variety

of patient-wise adaptation settings. These include 1) problems
containing varying degrees of infection, highly imbalanced
and fewer classes - Chest CT segmentation 2) larger domain
shift, multi-site adaptation problems - MR tumor segmentation
3) highly balanced and large number of classes (11) -
OCT retinal layer segmentation. These problems cover the
typical adaptation scenarios encountered in medical imaging
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Site 7; Subj 8; Ground Truth

Slice 52: T2-W

Unadapted
WT: 0.75 EnhT: 0.0 TC: 0.0

Site 6; Subj 11;
Slice 46: T2-W

Unadapted
WT: 0.69 EnhT: 0.61 TC: 0.68

Site 18; Subj 14; Ground Truth

Slice 26: FLAIR

Unadapted
WT: 0.60 EnhT: 0:93 TC: 0.96

Fig. 8.

Tent [13] OSUDA [20]
WT:0.91 EnhT:0.28 TC:0.54 WT:0.94 EnhT:0.42 TC:0.64

IGTTA (Proposed)
WT: 0.95 EnhT:0.71TC:0.82

OSUDA [20]
WT:0.14 EnhT:0.0 TC:0.0

Tent [13]
WT:0.0 EnhT:0.0 TC:0.0

IGTTA (Proposed)
WT:0.79 EnhT:0.76 TC:0.77

Tent [13]
WT:0.50 EnhT:0.88 TC:0.91
! ‘\
1

OSUDA [20]
WT:0.75 EnhT:0.94 TC:0.96

IGTTA (Proposed)
WT:0.85 EnhT:Q.94 TC:0.96

Brain tumor segmentation for multimodal MR images: Qualitative comparisons of the proposed method and other methods on selected

slices from different target sites for models trained on site 1. Images shown correspond to adaptation experiments using run 1 of AnamNet [27] as
base model. Yellow: enhancing tumor, Green: peritumoral edema, Red: the necrotic and non-enhancing tumor core. Dice comparisons for WT, ET,

and TC are also presented.

segmentation studies, demonstrating the utility of proposed
approach as a generic method.

The effectiveness of entropy based uncertainty minimization
(Tent) is a strong function of number of classes. Larger
the number of classes, more effective entropy minimization
becomes. This is because, reduced entropy measure on a
likelihood vector with larger number of classes, implies that
there is one class among the many that has the highest
likelihood mass, making it the likely/decisive winner. This
effect is observed in OCT problem (number of classes is 11),
where all the SOTA methods including Tent [13] benefit from
entropy/uncertainty minimization and need for regularization
is lessened. However, in problems like CT and MR, need
for functional regularization becomes much stronger. Both
un-regularized solution in Tent [13] and weight-regularizer
solution in OSUDA [20] suffer from risk of harmful adaptation
in patient-wise adaptation scenarios. Additionally, OSUDA is
effective only when entire target domain data is available,
which is not a practical scenario.

Our framework of IGTTA clearly benefits from interplay
of functional regularization and confidence maximization
reducing uncertainty. Methods that depend on class-ratio priors
like SFDA [10] and TTA-SM [9] reduce in effectiveness
whenever class-ratio distribution changes from source domain
to target domain. This was acutely noticed in CT problem
where degree of infection varied from subject to subject and
across domains. These methods are more suited for anatomy
segmentation than anomaly segmentation, where class-ratios
can be expected to be fairly stable across domains. Finally,
methods that learn additional neural networks during training
like TTA-DAE [17] suffer from shift in imaging distribution,
rendering the auxiliary networks less effective and often

detrimental. Also, these methods do not lend themselves to
off-the-shelf adaptation, as they rely on modifying training
procedure by learning extra networks. As noted in the
introduction section (Table. II), IGTTA addresses the major
gaps in SOTA methods leading to a generic, off-the-shelf,
regularized and patient-wise adaptation method suitable to a
spectrum of modalities and adaptation scenarios.

VIl. ABLATION STUDIES AND ANALYSIS

In this section, we discuss complementary benefits of variants
of the IGTTA framework and their suitability to different
adaptation scenarios. Tables. VI and VII compares results for
all variants of IGTTA for chest CT anomaly segmentation
and brain tumor segmentation in MR images respectively.
Firstly, it should be noted that even though the best performing
variant’s results were earlier shared for each problem, all the
variants outperform SOTA methods on all problems. Choice
of neuromanifold: The influencing factors are,

1) Extent of domain shift: The voxel manifold imposes
stronger functional regularization as it constrains every
voxel in the patient scan.This is useful when the domain
shift is not drastic like in the CT segmentation problem
(Table VI). The class-ratio manifold is a property derived
from the voxel manifold, is less constrained, and is
useful when the domain shifts are larger, as in the MR
segmentation problem. Further, the number of voxels in
CT volumes are much larger compared to MR or OCT
volumes, which means voxel manifold gets influenced
by more number of voxels in objective function.

It is pointed out that asymptotically, voxel manifold
based adaptations will converge to base model’s output
(eqn. 1), providing a safety net over harmful adaptation.
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TABLE VI
CHEST CT ANOMALY SEGMENTATION: COMPARISONS FOR
NEUROMANIFOLD TYPES AND CHOICE OF DIVERGENCE MEASURES
WITH ANAMNET [27] AS BASE MODEL

Variant Neu‘ro- Divergence Dice Dice
Manifold| Measure Abnormal Normal
IGTTA-VMgRrp Voxel |Fisher Rao.|0.758 + 0.038(0.978 + 0.007
IGTTA-VMK, Voxel KL Div. |0.753 £ 0.028 |0.977 &+ 0.001
IGTTA-CRMygrp | Shape |Fisher Rao.|0.751 4+ 0.028|0.971 &£ 0.003
IGTTA-CRMky, | Shape KL Div. |0.748 £ 0.028|0.973 + 0.002
TABLE VI

BRAIN TUMOR SEGMENTATION FROM MULTI-MODAL MR IMAGES:
COMPARISONS FOR NEUROMANIFOLD TYPES AND CHOICE OF
DIVERGENCE MEASURES WITH ANAMNET [27] AS BASE MODEL

Variant Neuro- | Divergence | Whole Tumor | # Failures
Manifold| Measure | Dice Score T | on WT
IGTTA-VMpggp | Voxel |Fisher Rao.|0.643 + 0.003| 19/740
IGTTA-VMky, Voxel KL Div. [0.652 £ 0.052| 21/740
IGTTA-CRMygp | Shape |Fisher Rao.|0.749 + 0.012| 24/740
IGTTA-CRMky, | Shape KL Div. [0.754 £ 0.009| 26/740

This is reflected in Table. VII, where voxel manifold
based methods have less number of adaptation failures
at the expense of lesser performance improvement.

2) Number of classes and imbalance of class-ratios: Since
class-ratio manifold constraints the distribution of class-
ratios, it can fluctuate a lot when total number of classes
is low and/or imbalance amongst class-ratios is high.
Hence, we observed that for CT problem, voxel manifold
was more suited and for other two problems class-ratio
manifold yielded better results.

3) Adaptation times: Generally, it is observed that a more
iterations are required to match the performance of
the class-ratio manifold with the results of the voxel
manifold (Fig. 9), roughly 2-3 times. This is because,
the class-ratio manifold based functional regularization
works only with class-ratio distribution and not all the
voxels and hence takes longer to stabilize.

Choice of divergence: As shown earlier, FRD and KL
divergence are equivalent, with KL being theoretically an
upper bound for FRD. In [22], it was observed that training
dynamics varied between the two divergence choices, which
is what we have observed with our experiments of test-
time adaptation also. Exploring theoretical underpinnings
behind the differences in their training/adaptation dynamics
are beyond the scope of this paper, will be taken for future
research.

Fig. 9 captures adaptation dynamics of all variants of
proposed approach along with Tent [13] and OSUDA [20]
providing empirical reasoning for observations. Evolution of
mean and standard deviation of Dice score for abnormal class
as a function of number of adaptation steps has been depicted.
These scores are obtained from group of subjects in CT data-
set evaluated using one run of AnamNet as base model. These
subjects had higher amount of infection/abnormal voxels,
making them suitable for this analysis. Firstly, as shown
in Fig. 9(a), Tent [13] starts deteriorating in performance
after initial few adaptation steps, clearly highlighting perils

of unconstrained adaptation. OSUDA’s weight regularization
is insufficient with performance dropping below base
model, later than Tent. Note that all proposed variants of
IGTTA provide better performance than unadapted model’s
performance. Secondly, variants based on class-ratio manifold
(CRM_KL and CRM_FRD), gradually increase with steps
(Fig. 9(a)), taking almost twice the adaptation steps to
reach performance of voxel manifold methods (VM_KL and
VM_FRD) at step 10. As noted earlier, with more steps
voxel manifold based methods asymptotically converge to base
model’s performance. In Fig. 9(b), it is noted that, Tent [13]
and OSUDA [20] have increasing standard deviation with
number of steps. In other words, performance of adaptation
of these methods vary highly with subjects. In contrast, all
variants of proposed approach have decreasing and nearly
flat standard deviation across subjects, making the proposed
approach reliable - which is another benefit of functional
regularization.

FRD gives exact geodesic distance on the neuromanifold,
hence it should be used if adaptation times are not a
constraint. Since optimizing on upper-bound can potentially
lead to faster convergence, if adaptation times are a concern,
it is recommended to use KL divergence. The recipe that
has yielded best results in faster adaptation times is as
follows: For lesser domain shifts, larger volumes and lesser
number of classes use combination of voxel manifold and
FRD/KL divergences (CT problem). For more number of
classes, larger domain shifts use class-ratio manifold with
KL divergence (MR and OCT problems), for a balance of
improved performance and satisfactory adaptation times.
Choice of confidence function and \: The proposed
framework of IGTTA has many components that come
together during adaptation - statistical neuro-manifold, choice
of functional regularizers and confidence functions. Hence, the
interplay amongst them has led to fairly robust performances
across different choices and parameters. For instance,
performance was noted to be fairly consistent amongst A
values in the range [0.5, 1], while slight drop (< 0.3% in
the CT problem) was observed for (A = 0.1 ), which is to be
expected.

To further understand the impact of different confidence
functions, we compute average expected calibration error
(ECE) in Tables VIII and IX. While metrics like Dice
score and surface distances measure performance of the
methods against ground-truth, ECE is a standard metric that
measures how well calibrated the adapted models are. For
our computations, we used number of calibration bins = 10,
and we report average expected calibration error across all the
classes. We chose CT and OCT problems, as they cover two
ends of spectrum in terms of number of classes (CT = 3,
OCT = 11). As shown in Table VIII, all the confidence
functions have comparable results on both Dice score and
ECE (since only 3 classes), including the proposed Margin-
based confidence function. It is interesting to note that on
the OCT problem (Table IX), overall ECE across confidence
functions is significantly lower (since there are 11 classes) and
margin based confidence function, achieves meagre decrease
over other functions. The reasons for similar performances
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Fig. 9. Adaptation dynamics of discussed methods with varying adaptation steps: using run 1 of AnamNet as base model on selected group of

subjects from COVID-19 CT segmentation dataset.

TABLE VIII
CHEST CT ANOMALY SEGMENTATION: DICE SCORES AND ECE FOR
IGTTA-VMgg STUDYING THE IMPACT OF Jgonr LOSS WITH
ANAMNET [27] AS BASE MODEL

Dice Score T

Choice of ECE |
Leon s functions Abnormal Normal (3 classes)
Soft-max 0.758 + 0.038(0.978 + 0.007| 0.475
entropy Lsme
Generalized 1, ;\; | (1790973 + 0.003| 0479
cross-entropy {gce
Margin £,argin [0.759 £ 0.012[0.978 + 0.005| 0475

TABLE IX
RETINAL LAYERS SEGMENTATION FROM OCT IMAGES: AVERAGE DICE
SCORES AND ECE FOR IGTTA-CRMg STUDYING THE IMPACT OF
lconf LOSS WITH RESIDUAL UNET [10] As BASE MODEL

Choice of . ECE |
Leon s functions Dice Score T (11 classes)
Soft-max 0.830 = 0.013 | 0.036
entropy Lsme
Generalized 1) 05 | 0017 | 0,037
cross-entropy {gce
Margin £argin | 0.830 £ 0.025 0.034

of these confidence functions and how to optimally select
the best iterate of adapted model based on uncertainty
will be explored in future work. In summary, the proposed
approach performs consistently across different choices of
confidence loss functions (including the proposed £,,4r¢in) and
A values and produces improved results on all three problems.
Robustness to hyper-parameter tuning is another salient feature
of the proposed approach.

VIII. DISCUSSION AND CONCLUSION

Traditionally, generalization has been targeted as a training
time goal, where different algorithmic strategies are utilized to
ensure that the performance on data with distribution shift is
acceptable. However, TTA treats generalization as an inference
time goal and promises a path towards precision health. As a

recent area of research, one of the bigger unsolved and less
addressed problem is to ensure that the adapted model does
not deteriorate in performance owing to over-eager adaptation.

The aim of this study was to ensure that sufficient
algorithmic caution is exercised in patient-specific adaptation.
An intuitive and practical methodology for robust TTA
grounded in the theoretical framework of information
geometry was presented. Extensive experiments on a variety of
clinically relevant and challenging problems demonstrate the
promise of IGTTA as a solution for achieving the dual goal of
patient optimality and generalization. It was demonstrated that
IGTTA does not require any additional information, is fast, and
can be applied to any off-the-shelf model irrespective of the
training procedure and architecture.

The functional regularization provided by the proposed
IGTTA makes it a generic framework and other methods
like TTA-SM [9] that use anatomical priors become special
case of the same. Importantly, information geometric methods
have been shown to provide effective representative learning
[39], by exploiting structure of the data. The improved
performance in adaptation observed in this study can
be attributed to information geometric methods providing
compact functional space based on the structure of test data
for updating weights, thus making it work universally across
architectures.

The max margin loss in this study contributes to the
practicality of IGTTA based test-time adaptation (TTA) of
deep-learning models for semantic segmentation. The max
margin loss aims to improve the confidence calibration of
the model, which is crucial in medical imaging applications,
where accurate uncertainty estimation can significantly impact
clinical decisions. This work provided the theoretical under-
pinnings of employing max margin loss to lower the Expected
Calibration Error (ECE). The ablation studies (Table IX)
provided experimental validation that max margin loss
contributes to reduction in the calibration error, thus making
the adapted model’s predictions more reliable. Future research
will be devoted to uncertainty-aware test-time adaptation,
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where early stopping and selection of right hyper-parameters
can be attempted in addition to reducing the calibration error.

There are a few limitations of IGTTA and other TTA
methods that provide scope for future work. One of the
unaddressed problems in this study is determining when and
how much to adapt. The proposed IGTTA is a conservative
framework that intentionally inhibits functional divergence,
thereby limiting the extent of possible improvement, unlike
unregularized versions, such as Tent. It will be useful to
identify candidates for adaptation and control the amount of
adaptation in a principled manner. Another direction is to
reduce the dependencies on the hyperparameters, some form
of parameter-free adaptation framework is ideal. Encouraged
by the success of proposed IGTTA in this study, extending it
to other medical image analysis tasks, such as classification
and image regression, will be taken as the next step.

The code utilized to generate the results in this study
is shared here: https://github.com/hariharanrav/IGTTA_TMI/
tree/main. Additional results are also presented in the same
link.
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