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Abstract— The test-time adaptation (TTA) of deep-
learning-based semantic segmentation models, specific to
individual patient data, was addressed in this study. The
existing TTA methods in medical imaging are often uncon-
strained, require anatomical prior information or additional
neural networks built during training phase, making them
less practical, and prone to performance deterioration. In
this study, a novel framework based on information geo-
metric principles was proposed to achieve generic, off-the-
shelf, regularized patient-specific adaptation of models dur-
ing test-time. By considering the pre-trained model and the
adapted models as part of statistical neuromanifolds, test-
time adaptation was treated as constrained functional regu-
larization using information geometric measures, leading to
improved generalization and patient optimality. The efficacy
of the proposed approach was shown on three challenging
problems: a) improving generalization of state-of-the-art
models for segmenting COVID-19 anomalies in Computed
Tomography (CT) images b) cross-institutional brain tumor
segmentation from magnetic resonance (MR) images, c)
segmentation of retinal layers in Optical Coherence To-
mography (OCT) images. Further, it was demonstrated that
robust patient-specific adaptation can be achieved without
adding significant computational burden, making it first of
its kind based on information geometric principles.

Index Terms— Deep learning, Information geometry,
Medical imaging, Semantic segmentation, Patient-specific
adaptation, Generalization.

I. INTRODUCTION

DEEP learning models have achieved state-of-the-art
(SOTA) results in medical imaging applications and

resulted in the adoption of artificial intelligence (AI) models
for many radiological workflows [1]. Despite their success,
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these models often demonstrate a considerable drop in per-
formance after deployment in real-world applications [2]. The
generalization of deep-learning models, that is, performance
on unseen data, remains one of the biggest challenges to over-
come [3]. Especially in medical imaging, this is compounded
by potential “distribution-shift” on unseen data due to changes
in demography, subject variability, acquisition hardware, and
protocols [4]. Another potential impediment towards utilizing
AI models is the lack of “patient-optimality.” Despite the
high average performance, deep learning models are prone to
failures on “individual” cases with minor input modulations
than the training data [4]. This was also consistently observed
across the experiments conducted in this study. Solving this
problem is critical in healthcare because this variance in
performance will increase the burden on care-giving experts
and reduce their trust in AI-based applications.

Sustaining performance on every patient data is a challenge
for the current AI methods. AI models that provide ”person-
alised” healthcare, tailored to individual patients, are seen as
the next step in medical imaging evolution [5]. The need and
potential of such patient-specific models have been identified
in the National Science and Technology Council’s medical
imaging roadmap [6]. This study proposes ways to improve
the generalization of deep-learning-based medical imaging
segmentation models by personalizing them to individual
patients during testing. It develops a mathematical framework
based on information geometry that simultaneously addresses
generalization and personalization, advancing the increased
use of AI models in radiological workflows.

II. RELATED WORK

A. Model Adaptation paradigms
Consider the class of semantic segmentation problems that

map N-D medical images (Xi ∈ X ) into multiclass pixel-wise
maps (Yi ∈ Y). Feed-forward neural networks f parameterized
by θ are utilized to obtain the mappings fθ : X → Y . These
parameters are learned via an empirical risk minimization
(ERM) process that involves optimizing the risk JERM(θ) over
the source domain data DS = {XS ,YS}. Common choices
for loss JERM(θ) include binary cross-entropy, Dice loss, or
variants. The set of neural network weights obtained at the
end of this training procedure is denoted as θERM. The target-
domain input data is denoted by a collection of N subject data
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TABLE I: Model adaptation paradigms and problem of interest.

Type Data required Comments
Fine-tuning {XT , YT } Ground-truth required
Unsupervised domain
adaptation

{XS , YS}, {XT } Source domain data required

Source free domain
adaptation

{XT } Entire target domain data re-
quired

Patient-specific
adaptation

X∗ Only subject data required

as XT = {X∗
1 , X

∗
2 , ...X

∗
N}. In a traditional machine learning

setting, inference on a new sample X∗ ∈ DT is obtained
using θERM. To address the loss of performance in DT , θERM
is adapted to the data from DT . Table I summarizes the various
model-adaptation paradigms available in the literature.

Fine-tuning methods [7] address post-deployment perfor-
mance drops by collecting ground-truth annotations YT =
{Y ∗

1 , Y
∗
2 , · · · , Y ∗

N} along with XT and modifying the weights
of the pre-trained models using supervised loss (Table I).
While fine-tuning promises the best adaptation performance,
these methods are impractical because expert annotation is
expensive and model adaptation cycles take a longer time.

To overcome the dependence on expert annotation for model
fine-tuning, “unsupervised domain-adaptation” techniques [8]
have been proposed. Owing to privacy issues, it is imprac-
tical to make source data available at every target site. This
constraint has given rise to the field of “source-free domain
adaptation” [9], where source data is not required. Although
the dependence on source data and target domain annotation
has been relaxed, these adaptation methods require access to
the entirety of the target domain data (Table I). Similar to
fine-tuning methods, the accumulation of a sufficient amount
of target domain data leads to longer model update cycles.

In this study, the problem of generalization was addressed
by the “patient-specific adaptation” of pre-trained models. As
depicted in Fig. 1, the performance of a model gets tailored to
individual test subject (X∗) and not the entire target-domain
data, giving rise to patient-specific models θ∗. Although this
setting is more challenging than full-domain adaptation [10]–
[12], patient-wise adaptation is more practical and serves the
goal of precision medicine and patient-optimality [5].

Fig. 1: Patient-specific test-time adaptation framework.

B. Test-time adaptation (TTA) methods
Test time adaptation (TTA) methods have recently demon-

strated a significant impact on computer vision problems.
Significant works include test-time training [13], where an
auxiliary self-supervised task learned during training is repli-
cated on test data to drive weight updates. In reference
[14], a full test-time adaptation setting was proposed, where
entropy minimization (Tent) was shown to effectively improve

classification performance. Following Tent [14], efficient TTA
without forgetting [15] and robust TTA using sharpness-
aware-minimizers [16] achieved SOTA results on distribution-
shifted datasets. A comprehensive survey of TTA methods
was presented in reference [17]. Owing to their promise, TTA
methods have recently been used for semantic segmentation
in medical imaging, which fall into following three major
subcategories.

1) Learning auxiliary networks during training: Autoencoders
(AE-SDA) were used in [11] for patient-wise self-domain
adaptation for retinal layers segmentation from OCT images.
In reference [18] (TTA-DAE), the authors used a denoising
auto-encoder (DAE) and adapted the input normalization sub-
network during test time. The reference [12] proposed on-
the-fly test-time adaptation (OF-DPG) without weight modi-
fication. A domain prior generator (DPG) is pre-trained from
multiple domains (requires access to data from all domains)
to generate “domain code” for the segmentation network. The
downside in this class of approaches used in AE-SDA [11],
TTA-DAE [18], OF-DPG [12] and their variants is that they
modify the training procedure, making them unsuitable for
off-the-shelf adaptation.

2) Utilizing anatomy priors: Another collection of works [9],
[10] utilize invariance of anatomical priors (relative distribu-
tion of sub-anatomies in prostrate, heart, etc) across domains
to drive model adaptation. In the reference [9], class-ratio
priors from standard anatomical references were utilized for
model adaptation for full target domain adaptation (SF-UDA).
Patient-specific adaptation with the same anatomical priors
along with additional shape moments (TTA-SM) has been
presented in [10]. Anatomical priors are limited to anatomy
segmentation and not pathology segmentation. For instance,
the ratio of healthy and non-healthy regions in CT images
varies with lung infection severity. Additionally, anatomical
priors may differ across subjects, which can affect these
methods, making these methods have limited utility in real-
time.

3) Regularization: The unconstrained model adaptation on
target domain patient data can lead to performance deteriora-
tion. To address this, additional constraints have been proposed
to control weight perturbations. A group of methods attempt
regularization on batch-normalization statistics [19], [20] using
KL divergence and mean square error (MSE), respectively.
The work in [21] proposed constraining batch-normalization
scaling and shifting parameters (OSUDA) to be consistent
between the pre-trained and adapted models. Major issues with
these methods are that they attempt “weight regularization”
and some of them are not patient-specific methods.

Table II presents the salient features of these studies. In
short, gaps in existing methods include one of - 1) requirement
of entire target domain data – not being patient-specific, 2)
dependence on anatomical prior making them unsuitable for
pathology/varying anatomy, 3) modifying training procedures
by learning auxiliary networks, making them unsuitable for
off-the-shelf adaptation, and 4) lack of regularization leading
to unconstrained updates. In this study, information geometric
approaches were presented to specifically address these gaps.

Information geometry enables the application of differential
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Fig. 2: Curvilinear geometry of test-time neuromanifold: func-
tional regularization versus Euclidean weight regularization.

geometry tools for analyzing probability distributions [22]. An
early application of information geometry in DL led to the
popular natural gradient method [23], which used the Fisher
information metric on statistical neuromanifolds parameterized
by network weights [23]. Recently, information geometric
approaches have been proposed for shape clustering [24],
image segmentation [25], learning under noisy labels [26] and
out-of-domain detection [27]. To the best of our knowledge,
this work is the first attempt to apply information geometric
approaches for model adaptation.

The major contributions of this study are as follows.

1) proposed a novel framework of IGTTA: based on in-
formation geometric (IG) principles to achieve patient-
specific, generic, off-the-shelf, test-time adaptation
(TTA) of semantic segmentation models in medical
imaging.

2) developed a novel composite loss function for joint con-
fidence maximization and functional regularization on
statistical neuromanifolds using Fisher-Rao distance and

TABLE II: Summary of related methods.

Method Patient-
specific

Anatomical
prior reqd.

Regularization Off-the-shelf
adaptation

Tent [14] ✔ No None ✔
AE-SDA [11] ✔ No None ✘
TTA-DAE [18] ✔ No None ✘
OF-DPG [12] ✔ No None ✘
SF-UDA [9] ✘ Yes Class Ratio ✘
TTA-SM [10] ✔ Yes Class Ratio ✘
OSUDA [21] ✘ No Weight ✔
IGTTA
(Proposed)

✔ No Functional ✔

other divergences to avoid performance deterioration.
3) established theoretical connections between Fisher-

Rao distance and KL divergence within information-
geometric framework and also study impact on perfor-
mance and adaptation times.

4) demonstration of efficacy of proposed IGTTA on three
challenging medical imaging segmentation problems: i)
Chest CT anomaly segmentation in COVID-19 subjects
(at least 4% improvement over SOTA methods across
CNN and transformer-based architectures); ii) multi-site
tumor segmentation in Brain MR images (> 3 − 7%
improvement over other TTA methods across architec-
tures), and iii) OCT retinal layers segmentation (2.8%
improvement over baseline).

5) carefully curated ablation studies on design choices of
the approach and comparisons with SOTA TTA methods.

III. FORMULATION AND MOTIVATION

A. Label-free surrogate objective for specialization
To obtain the patient-specific adapted model θ∗ from θERM

for individual subject data X∗, as true segmentation map Y ∗ is
not available during test time, a surrogate two-part composite
loss function Gθ(X

∗,θERM) is proposed, which requires only
the pretrained model’s weights and the new sample.

Gθ(X
∗,θERM) = L1(X

∗,θ) + λL2(X
∗,θ,θERM). (1)

L1(X
∗,θ) is a term for improving pixel-wise confidence of

adapted model’s predictions, and L2(X
∗,θ,θERM) is a term

that inhibits model collapse, ensuring divergence between pre-
trained model and adapted model is limited.

The intuition is to drive model weights to produce more con-
fident voxel-level predictions while ensuring that the adapted
model does not deviate from the pretrained model. The patient-
specific model θ∗ can be obtained by solving,

θ∗ = argmin
θ

Gθ(X
∗,θERM). (2)

B. Motivation for Information Geometric approaches
The major challenge in specifying Gθ(X

∗,θERM) lies in the
design of constraining objective L2. However, the constraints
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Fig. 3: Performance change from baseline in segmenting anomalies from target-domain Chest CT images for various degrees
of uniformly sampled random weight perturbations of the state-of-the-art model [28]. Each simulation contained 1000 random
perturbations to the learnable affine parameters of all the batch normalization layers. Color (blue to brown) and size (small to
large) capture the range of performance reduction in increasing order. Negative: Dice decreases; Positive: Dice increases.
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on the Euclidean geometry (Fig. 2) of weights space of the
form ∥θERM − θ∗∥p ≤ β might seem natural [19]–[21], the
loss surface for target domain patient data may not be stable
for even small β. To understand the robustness of the weight
regularizations, a simple experiment of perturbing weights of
the SOTA method [28] for segmenting anomalous regions
from Chest CT images was conducted. The performance
drop from the baseline for uniformly sampled random weight
perturbations for various values of β is shown in Fig. 3. It is
interesting to note that even for smaller weight perturbations of
relative magnitude ≤ 0.1, there is a mean performance drop
of 2.32%, with a maximum decrease of up to 69.5% dice-
overlap. Indeed, there are a few perturbations that increase
the performance, which are useful models, and locating them
is the goal of TTA. For slightly higher perturbations sampled
from | δθθ | ∼ U(0, 0.15) and | δθθ | ∼ U(0, 0.20), the problem is
acute with more frequent failures (more brown in Fig. 3) as
well larger mean decrease.

In summary, the loss-surface around θERM may not be flat
enough for target domain subject data, potentially rendering
weight regularization ineffective. Simply, weight regulariza-
tion may not guarantee functional regularization, where the
updated model can produce diverging outputs from the pre-
trained model. This is observed in the experiments reported
in the paper (Section IV) where the OSUDA approach [21]
deteriorates the performance of many subjects.

In this study, an information geometric approach for func-
tional regularization is proposed as the choice for L2. This
design does not require additional priors regarding the target
domain or learning auxiliary networks from the source domain,
making the approach more practical, robust, and generic.

IV. INFORMATION GEOMETRIC TEST-TIME ADAPTATION

A. Geometry of test-time neuromanifold
Consider a statistical manifold M of the probability dis-

tributions parameterized by weights of the neural network.
When these probability distributions are derived as predictions
of different neural networks on test-time subject data X∗

corresponding to varying weights θ, M is defined as the test-
time neuromanifold. Note that the pre-trained model θERM and
the optimal patient-specific model θ∗ are points on M among
many other plausible neural networks.

M def
= {pθ = fθ(X

∗) | θ = {θ1, θ2, ...θn} ∈ Θ ⊂ Rn}. (3)

Here θ is the vector of all the weights of the neural network
which is made up of scalar weights θ1, θ2, ... θn. Fig. 2 depicts
test-time neuromanifold for current problem of adaptation,
which is a curvilinear manifold with network weights as
coordinates. If M satisfies certain regularity constraints and is
smoothly parameterized by θ (shown in [22], [23], [26]), one
can obtain the Fisher information matrix (FIM): R(θ) which
can be used to define a Riemannian metric on the statistical
neuromanifold. Proceeding with R(θ) as metric tensor, the
Fisher-Rao distance between two neural networks on M, θ
and θ′ is defined as,

dFR(pθ, pθ′)
def
= inf

γ

∫ 1

0

√
dθ(t)

dt

⊤
R(θ)

dθ(t)

dt
dt. (4)

In Eq. (4), γ : [0, 1] → θ represents a curve or a path between
arbitrary pair of weights θ and θ′, such that γ(0) = θ and
γ(1) = θ′. Hence, the Fisher-Rao distance (FRD) between pθ
and pθ′ is the geodesic distance between θ and θ′ using the
FIM metric tensor R(θ) [22], obtained as the infimum across
different γ values (Fig. 2). While the Fisher–Rao distance for
arbitrary probability distributions is difficult to obtain, closed-
form expressions exist for common distributions, such as the
exponential family and discrete distributions [26].

Without loss of generality, let us consider mapping one pixel
of X∗ to one of K segmentation classes. Here, fθ(X

∗)[j]
corresponds to the soft-max probabilities of jth pixel of
interest; hence, pθ is essentially a probability simplex in K−1
dimensions. For such probability simplexes ∆K−1, Fisher-Rao
distance (FRD) between two models θ and θ′ has been derived
using spherical re-parameterizations [26], [27] as

dFR(pθ, pθ′) = 2 arccos

(
K∑
i=1

√
fθ(X∗)[j]i · fθ′ (X∗)[j]i

)
, (5)

Note that this definition of a test-time neuromanifold is
unique and differs from other applications of information
geometry in deep learning. In the natural gradient method
[29], the neuromanifold is defined based on the distribution
of predictions of training data for varying weights. In out-of-
distribution detection [27], the neuromanifold corresponds to
the predictions on samples from in-domain and out-of-domain
data, but for a fixed pretrained model.

Relating FRD to other divergences: Recently, there have
been efforts linking Fisher Rao distance (FRD) to other
popular divergences. In [29], authors relate KL divergence and
FRD on a neuromanifold described by softmax probabilities
on two different inputs but same model. It is reiterated that
neuromanifolds described in this paper are fundamentally
different, where two points on the manifold are obtained via
two distributions of softmax probabilities on same input X∗

but two different models θ and θ′. A theorem establishing the
relationship between two divergences for these manifolds is
given below, modifying the result in [29].

Theorem 1: The FRD between two soft-max predictions
pθ = fθ(X

∗) and pθ′ = fθ′(X∗) given in eqn. (5) is related
to KL divergence by,

1− cos(dFR(pθ, pθ′)/2) <=
1

2
dKL(pθ, pθ′), (6)

Proof: Starting from Hellinger distance [29] between pθ
and p′θ defined as,

H(pθ, pθ′)
def
=

√
2

(
1−

K∑
i=1

√
fθ(X∗)[j]i · fθ′ (X∗)[j]i)

)1/2

(7)

Using eqn. (5) in eqn. (7),

H(pθ, pθ′) =
√
2

(
1− cos

(
dFR(pθ, pθ′

2

))1/2

(8)

Denoting KL divergence as dKL(pθ, pθ′), and noting that
H(pθ, pθ′)

2
<= dKL(pθ, pθ′), theorem 1 is readily obtained.

This result establishes that KL divergence is an approxi-
mation and an upper bound for exact geodesic distance given
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by FRD. As noted in [29], despite their relationship, FRD
and KL divergences can behave differently in optimization
procedures. Empirical results and adaptation dynamics using
these two divergences are discussed in Section. VII.

B. Design of L2 in IGTTA: Functional regularization
The aim of this work is to define divergences that ensure that

patient-specific model θ∗ does not deviate much from θERM

and utilize them in an adaptation procedure for semantic
segmentation problems. Thus, the single-pixel definition of
FRD in Eq. (4) is expanded to cover the entire volume of
predictions, using two possible aggregation strategies.

1) Voxel Manifold Regularizer - IGTTA-VM: The first aggre-
gation strategy is to accumulate dFR(pθ, pθERM

) over all
voxels in X∗ in the newly obtained patient data volume X∗.

L2(X
∗,θ,θERM) =

1

|X∗|

|X∗|∑
j=1

dFR(pθ[j], pθERM
[j]). (9)

2) Class-ratio manifold Regularizer - IGTTA-CRM: In this
aggregation strategy, the class ratio estimates for K classes
are computed per slice and aggregated over all slices in the
volume. Denoting class ratio estimate of sth slice as CR[s]
and for total number of S slices, L2 is defined as,

L2(X
∗,θ,θERM) =

1

S

S∑
s=1

dFR(CRθ[s], CRθERM
[s]) (10)

Note that CR[s] is again a ∆K−1-simplex. Therefore, the
definition of Eq. (4) holds. While the Fisher–Rao distance is
a divergence measure, other common divergences, such as KL
divergences, are also explored and compared in experiments.

Intuitively, the voxel manifold regularizer constrains the per-
pixel functional divergence of θ∗ from θERM , whereas the
class-ratio manifold regularizer ensures that the distribution of
the class types per slice does not diverge. These two manifolds
represent examples of the proposed approach. More advanced
regularizers can be derived by using the same framework to
impose spatial constraints.

C. Design of L1: Confidence Maximization
Recently, several studies established empirical correlations

between classification accuracy and confidence in predictions
[10], [14], [21]. Inspired by these, this study proposes mini-
mizing the average pixel-wise uncertainty during the special-
ization procedure as a choice for L1. The average pixel-wise
prediction confidence L1 is defined as the average of ℓconf
over all pixels of X∗.

L1(X
∗,θ) =

1

|X∗|

|X∗|∑
j=1

ℓconf (fθ(X
∗)[j]), (11)

Table III lists the choices of (ℓconf ). In addition, c denotes
the winning class c = argmax {fθ(X∗)[j]}.

• Soft-max entropy (ℓent) [14] - measures uncertainty in the
prediction vector. Entropy will be zero if the prediction
for the winning class c is 1. If the predictions for all
classes are equal, the entropy will be maximum.

• Generalized cross entropy (ℓgce) [30] - another way of
measuring uncertainty. As q → 0, ℓgce approaches ℓent
and as q → 1, it approaches mean absolute error loss.
This study is the first attempt to utilize ℓgce in medical
imaging applications.

• Margin loss (ℓmarg) - Proposed in this study is a simple
loss function that measures difference between winning
class prediction value and next best prediction.

TABLE III: List of objective functions that measure uncertainty
or confidence in a vector of k-way predictions.

Confidence Loss
Functions : ℓconf

Formulae

Soft-max
entropy [14]: ℓent

−
k−1∑
r=0

pr(j,θ) log (pr(j,θ))

Generalized
cross-entropy [30]: ℓgce

q−1(1− pc(j,θ)), q ∈ [0, 1]

Margin (proposed): ℓmarg −(pc(j,θ)−maxr ̸=c pr(j,θ))

Recently, there have been works that explored margin-
loss based training paradigms for improved calibration and
generalization [31], [32]. These works are inherently training-
time methodologies where the aim is to achieve a balance be-
tween performance and calibration. In this work, margin-based
confidence maximization is proposed for test-time adaptation,
which has not been explored in prior works in general or for
medical image segmentation.

D. Algorithmic procedure for IGTTA

By using the definitions of L1 and L2, the specification
of the label-free surrogate loss Gθ(.) in Eq. (1) is complete.
To obtain θ∗ from θERM customized for X∗, an iterative
optimization procedure was proposed, similar to the standard
learning procedures for training neural networks. The gra-
dients computed using Gθ(X

∗,θERM) are backpropagated to
update the model weights for a predetermined number of
steps (typically 10, with λ = 1 in Eq. (1)). To establish
architecture-agnostic effectiveness of proposed framework, we
demonstrate results using SOTA medical imaging segmenta-
tion architectures that are a) CNN-based : AnamNet [28],
residual U-Net [11], etc and b) vision-transformer based:
MissFormer [33]. In all the adaptations performed in this
work starting from CNN-based architectures, learnable affine
parameters of BatchNorm layers (shift and scale) were updated
along with the usage of subject-level statistics (mean and
standard deviation). This is similar to the results of references
[10], [14], [21], where updating these limited the number of
parameters has been demonstrated to handle co-variate shift. In
experiments involving adaptations of vision transformer based
architecture: MissFormer [33], we update the affine parameters
of LayerNorm layers.

V. EXAMPLE PROBLEMS AND DATA-SETS

In this study, three segmentation problems were investigated
to show the generic applicability of proposed IGTTA to
multiple modalities (CT, MR, and OCT), showing utility for
both anatomy and pathology segmentation, and robustness to
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the number of classes (3 to 11). Furthermore, they cover
the common domain adaptation scenarios in medical imag-
ing because of 1) covariate shift across multiple sites and
demography, 2) Anatomy/Pathology sub-type differences, and
3) variability due to scanner-types.

A. Segmentation of anomalies in COVID-19 CT images
1) Problem set-up and data-sets: The first problem is seg-

menting Chest CT images obtained from COVID-19 patients
into three classes: background, healthy lung regions, and
anomalies. Common anomalies observed in chest CT scans
of COVID-19 patients include ground-glass opacities (GGO),
consolidation, and pleural effusion [28].

The axial chest CT images utilized in this work were
obtained from two publicly available open-source datasets:1)
Dataset I - Italian Society of Medical and Interventional
Radiology [34] and 2) Dataset II - radiopedia [35]. Dataset I
consists of 100 slices from approximately 40 patient CT scans,
and Dataset II contains 829 slices obtained from 9 subjects.

2) Baseline Models: To study the benefits of the pro-
posed adaptation scheme, models built using Dataset I were
evaluated on Dataset II. The light-weight CNN architecture
called “AnamNet” proposed in [28] has reported state-of-the-
art (SOTA) results for this problem, while training on 270
augmented images from Dataset I and testing on 704 slices
from Dataset II. Firstly, 90 slices with significant lung regions
were selected out of 100 training slices and then augmentations
included horizontal and vertical flip leading to a total of 270
slices. In this study, the same experimental setup was used.
In addition to AnamNet, seven other architectures reported in
[28] were also utilized.

B. Multi-Site Brain Tumor Segmentation on MR images
1) Problem set-up and data-sets: The Federated Tumor Seg-

mentation challenge (FETS) [36] involves cross-institutional,
multi-contrast preoperative MRI scans of the brain, containing
heterogeneous tumors, namely gliomas. Aggregated from 23
different sites, FETS data contained a total of 1251 patient
scans, with each scan containing four contrasts: T1-weighted
(T1), T1-contrast enhanced (T1ce), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (FLAIR). The goal is to
map voxels into four classes: enhancing tumor (ET), peritu-
moral edema (ED), necrotic and non-enhancing tumor core
(CoreT), and background. According to the FETS challenge,
these 1251 scans were aggregated from sites with varying
demography, device, and disease stage, making it a suitable
large-scale database for experimentation, besides the clini-
cally relevant goal of segmenting gliomas. To understand the
efficacy of IGTTA for cross-institutional domain adaptation,
patient-specific adaptation of models built on Site 1 as the
source domain (511 subjects) was attempted using individual
patient scans from the remaining 22 sites (740 subjects).

2) Baseline Models: The two-dimensional (2D) segmenta-
tion model was built using the AnamNet [28] architecture
utilizing all four contrasts and 90 middle slices from the 3-D
MRI of the training subjects. The models were built for 100
epochs with batch size = 24 and Adam optimizer (learning

rate = 0.01). The results were compared for semantically
meaningful tumor classes: Whole Tumor (WT): ED + EnhT
+ CoreT, Enhancing tumor (ET), and Tumor Core (TC): ED
+ CoreT, as proposed in [36].

C. Segmentation of retinal layers from OCT images

1) Problem set-up and data-sets: Finally, vendor-agnostic
segmentation of retinal layers from 2D OCT images is con-
sidered. The 11 retinal layers under consideration and their
acronyms [11] are as follows: 1) vitreous background, 2)
retinal nerve fiber layer (RNFL), 3) ganglion cell/inner plex-
iform layer (GCIP), 4) Inner nuclear layer (INL), 5) Outer
plexiform layer (OPL), 6) Outer nuclear layer (ONL), 7) Inner
segment (IS), 8) Outer segment (OS), 9) Retinal pigment
epithelium (RPE), 10) Choroid background 11) other. Two
publicly available OCT datasets from two different scanners
1) Heidelberg Spectralis scanner [37] and 2) Cirrus scanner
[11], were analyzed. The Spectralis dataset consists of 35 3-D
subject volumes with 49 slices (2D) of size 496 × 1024 per
volume, whereas the Cirrus dataset consists of six subjects
with eight slices of size 1024 × 512. The pre-processed and
standardized images along with manual annotations were made
available in the AE-SDA [11].

2) Baseline Models: The experimental set-up provided in
AE-SDA [11] was reproduced from their publicly available
code-base. The 2D segmentation backbone using residual U-
Net [38] was built on subject data from Spectralis data-set
and evaluated on 6 subject volumes from Cirrus data-sets (8
slices per volume). Multiple data augmentation strategies were
utilized during training - including gamma adjustment, flips,
Gaussian noise addition, etc [38]. The models were trained for
20 epochs, with batch size = 2 the Adam optimizer (learning
rate = 0.01).

VI. EXPERIMENTS AND RESULTS

A. SOTA methods comparison and implementation
details

The proposed IGTTA method was compared with following
six test-time adaptation methods, as discussed in Section II.

• Classic TTA method: a) Tent [14].
• TTA with weight regularizer: OSUDA [21]. Tent (PS)

and OSUDA (PS) adaptations are patient-specific to be
consistent with the proposed IGTTA.

• TTA with auxiliary networks a) TTA-DAE [18] : with
auxiliary denoising auto-encoders b) AE-SDA: self-
domain adaptation with auto-encoders [11].

• TTA using anatomical priors a) SFDA: source-free do-
main adaptation [9] b) TTA-SM: patient-specific adapta-
tion with shape moments [10].

For all the three problems, patient-specific models {θ∗
i }

for individual subject data X∗
i were built using the proposed

IGTTA method and SOTA methods. To ensure fair com-
parison, same baseline models θERM were used as starting
weights of adaptation by respective methods. These base
models are explicitly stated in title of respective quantitative
comparison tables. For each of the SOTA method, best set
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of adaptation parameters from respective works were used.
For Tent [14], number of adaptation steps were chosen to be
10. For OSUDA [21], SFDA [9] and TTA-SM [10], number
of adaptation steps were set to 200 following the respective
works, whereas for TTA-DAE [18] it was set to 150.

Implementation details: The design choices of proposed
approach in IGTTA include: 1) choice of neuromanifold for
L2: voxel versus class-ratio manifold, and 2) choice of di-
vergence function (Fisher-Rao distance versus KL-divergence)
3) number of adaptation steps. Variants of proposed approach
based on combinations of neuromanifold and divergence func-
tions are referred to as 1) IGTTA-VMFRD: FRD on voxel
manifold 2) IGTTA-VMKL: KL divergence on voxel manifold
3) IGTTA-CRMFRD: FRD on class-ratio manifold 4) IGTTA-

CRMKL: KL divergence on class-ratio manifold. Across all
experiments, we have chosen adaptation steps as 10 for voxel-
manifold based variants of proposed method (IGTTA-VMFRD

and IGTTA-VMKL). This is to have lesser adaptation times
and compare with Tent which uses 10 as the number of
adaptation steps in their experiments. For variants of proposed
approach based on class-ratio manifold (IGTTA-CRMFRD

and IGTTA-CRMKL), we have chosen number of adaptation
steps as 50 to still have 4 times lesser adaptation steps
compared to other methods.

For each of the three problems, best results of proposed
approach among the 4 IGTTA variants are shared. Detailed
discussion on impact of choice of neuromanifold, choice of
divergence function, comparisons of results across 4 variants,

TABLE IV: COVID-19 anomaly segmentation from Chest CT images: Mean and standard deviations of Dice score and ASSD
for normal and abnormal lung regions, evaluated on 704 images from target-domain. Reported results are obtained from 3
independent runs.

(a) Comparisons of the proposed IGTTA with other test-time adaptation methods in literature with base model as AnamNet [28].

TTA Method
Dice Score ↑ % ↑ in dice of

abnorm. class
ASSD ↓ ↓ in ASSD of

abnorm. classNormal Abnormal Normal Abnormal
AnamNet [28]
(Unadapted) 0.968 ± 0.005 0.730 ± 0.025 NA 1.104 ± 0.217 13.432 ± 2.458 NA

Tent(PS) [14] 0.976 ± 0.001 0.694 ± 0.031 -3.6 0.931 ± 0.204 21.107 ± 1.12 -7.675
OSUDA(PS) [21] 0.977 ± 0.001 0.638 ± 0.033 -9.2 1.167 ± 0.204 19.611 ± 1.12 -6.179

SFDA [39] 0.951 ± 0.019 0.608 ± 0.072 -12.2 2.031 ± 0.964 25.337 ± 12.01 -11.905
TTA-SM [10] 0.950 ± 0.011 0.627 ± 0.067 -10.3 2.576 ± 0.628 33.753 ± 9.105 -20.321

TTA-DAE [18] 0.973 ± 0.006 0.692 ± 0.007 -3.8 1.508 ± 0.232 19.976 ± 2.067 -6.544
IGTTA-VMFRD

(Proposed) 0.978 ± 0.007 0.758 ± 0.038 2.8 0.833 ± 0.313 8.512 ± 3.585 4.92

(b) Comparisons of the proposed IGTTA with other test-time adaptation methods in literature with base Model as MissFormer [33].

TTA Method
Dice Score ↑ % ↑ in dice of

abnorm. class
ASSD ↓ ↓ in ASSD of

abnorm. classNormal Abnormal Normal Abnormal
MissFormer [33]

(Unadapted) 0.930 ± 0.002 0.473 ± 0.006 NA 2.795 ± 0.368 39.683 ± 2.813 NA

Tent(PS) [14] 0.953 ± 0.013 0.532 ± 0.065 5.8 1.298 ± 0.289 32.319 ± 0.804 7.365
OSUDA(PS) [21] 0.954 ± 0.013 0.534 ± 0.065 5.9 1.301 ± 0.287 32.313 ± 0.802 7.371

SFDA [39] 0.951 ± 0.006 0.564 ± 0.012 9.1 1.259 ± 0.026 31.324 ± 0.415 8.359
TTA-SM [10] 0.945 ± 0.003 0.297 ± 0.004 -17.6 1.216 ± 0.121 34.799 ± 0.700 4.885

TTA-DAE [18] 0.953 ± 0.011 0.408 ± 0.108 -6.6 1.222 ± 0.218 33.198 ± 0.288 6.486
IGTTA-VMFRD

(Proposed) 0.956 ± 0.013 0.575 ± 0.002 10.2 1.162 ± 0.026 30.857 ± 0.274 8.826

(c) Effect of the proposed IGTTA on 8 different architectures compared in [28]. In each row, bold signifies the best results obtained before
and after the proposed IGTTA-based adaptation. Best results are highlighted using box.

Architecture
Base model - Dice Score ↑ IGTTA-VMFRD - Dice Score ↑ Base model - ASSD ↓ IGTTA-VMFRD - ASSD ↓
Normal Abnormal Normal AbNormal Normal Abnormal Normal AbNormal

UNet 0.949 ± 0.006 0.636 ± 0.025 0.955 ± 0.005 0.663 ± 0.024 1.529 ± 0.156 21.135± 2.277 1.385 ±0.076 18.308 ±1.903
ENet 0.95 ± 0.005 0.675 ± 0.016 0.953 ± 0.002 0.688 ± 0.019 1.609 ±0.377 19.735 ±5.094 1.339 ±0.082 17.141 ±2.83

UNet++ 0.957 ± 0.006 0.687 ± 0.032 0.962 ± 0.005 0.71 ± 0.025 1.177 ±0.121 15.688 ±2.747 1.007 ±0.067 12.37± 1.619
SegNet 0.943 ± 0.008 0.609 ± 0.022 0.953 ± 0.001 0.658 ± 0.005 1.976 ±0.101 27.624 ±1.026 1.912 ±0.236 21.334 ±3.816

AttUNet 0.952 ± 0.08 0.654 ± 0.041 0.955 ± 0.008 0.669 ± 0.041 1.229± 0.148 16.166± 3.278 1.139 ±0.147 13.961± 2.703
LEDNet 0.93 ± 0.007 0.615 ± 0.032 0.932 ± 0.007 0.63 ± 0.035 2.994 ± 1.877 22.3 ± 1.194 2.994± 0.351 21.994 ±1.745

MissFormer [33] 0.930 ± 0.002 0.473 ± 0.0006 0.956 ± 0.013 0.575 ± 0.002 2.795± 0.368 39.683 ±2.813 1.162± 0.026 30.857 ±0.174

AnamNet [28] 0.968 ± 0.005 0.73 ± 0.025 0.978 ± 0.007 0.758 ± 0.038 1.104 ± 0.217 13.432 ± 2.458 0.833 ±0.313 8.512± 3.585
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adaptation dynamics are presented in ablation studies (Section.
VII). Additionally, a prescribed recipe to choose for new
set of problems is presented. As stated earlier, BatchNorm
parameters were adapted for CNN based arhcitectures and
LayerNorm parameters were adapted for MissFormer models.
These parameters were adapted using Adam optimizer with
learning rate of 5e-4 and initial decay rates for first & second
moments of gradient set to 0.99.

Comparison Metrics: The methods are compared quanti-
tatively using variety of metrics starting with Dice Similarity
score of adapted model’s prediction and ground truth segmen-
tation. Comparisons are also reported for surface distance-
based metrics 1) ASSD - Average symmetric surface distance
2) HD - Hausdorff distance. It should be noted that in MR
brain tumor segmentation problem, Tumor core (TC) and
enhancing tumor (ET) regions are often smaller, have inconsis-
tent boundaries and hence calculating surface distance based
metrics can be erroneous and misleading. Hence, Sensitivity
as an additional metric is compared for these classes, since we
are interested in True Positives (TP) performance of methods
for successive evaluation by clinical experts. It is pointed that
dice score is nothing but f1-score, hence all four parameters
- TP, TN, FP, FN are covered by these set of metrics. One
of the biggest risks of adaptation, is deterioration of adapted
model compared to base model’s performance, which indicates
failure of adaptation procedure. To capture these events, we
also report number of patient-wise adaptation failures that each
of the methods attain across problems. It is noted that for every
experiment, we report mean and standard deviations of results

obtained from 3 independent runs.

B. Summary of Results
1. IGTTA outperforms other test-time adaptation methods:

a) Segmentation of anomalies in COVID-19 CT images:
The proposed method achieved SOTA performance on all
metrics of interest for both CNN-based and transformer-based
segmentation models. Quantitative Comparisons with the other
methods are presented in Table. IVa and Table. IVb with
AnamNet and MissFormer as base models respectively.

Starting with AnamNet based pre-trained models, all the
comparison methods lead to deterioration in performance
(Table. IVa). Reasons for this deterioration include 1) high
variability in the degree of infection: methods which de-
pend on pre-determined class-ratios from training distribution
like SFDA [9] and TTA-SM [10] suffer when fraction of
anomalous region changes across subjects. 2) Variation in the
imaging properties of the nine subjects - TTA-DAE [18] which
learns auxiliary denoising auto-encoder on training distribution
suffers with shift in imaging distribution, thereby leading to
reduction in post-adaptation performance. 3) insufficient regu-
larization: Tent [14] suffers from over-eager adaptation clearly
highlighting the need for stronger regularization. Though
OSUDA [21] does have weight regularization, it is clearly
insufficient in individual patient-wise adaptation setting, where
full test-domain data is unavailable. The benefits of functional
regularization is clearly visible in proposed method of IGTTA,
which improves the SOTA baseline model of AnamNet [28]
by a significant margin of 2.8% in Dice score of abnormal

TABLE V: Multi-Site Brain Tumor Segmentation on MR images: Mean and standard deviations of various evaluation metrics
for WT, ET, TC classes evaluated on of 740 target domain subjects from 22 target sites. Reported results are obtained from 3
independent runs.

(a) Comparisons of the proposed IGTTA with other test-time adaptation methods in literature with base model as AnamNet [28].

TTA Method
Dice Score ↑ # Failures

on WT
Sensitivity ↑ HD ↓

Enhancing
Tumor (ET)

Tumor
Core (TC)

Whole
Tumor (WT)

Enhancing
Tumor (ET)

Tumor
Core (TC)

Whole
Tumor (WT)

AnamNet [28]
(Unadapted) 0.339 ± 0.015 0.353 ± 0.010 0.357 ± 0.087 NA 0.571 ± 0.014 0.516 ± 0.005 23.866 ± 10.561

Tent(PS) [14] 0.458 ± 0.098 0.448 ± 0.090 0.496 ± 0.115 267 0.663 ± 0.140 0.620 ± 0.131 12.384 ± 0.347
OSUDA(PS) [21] 0.526 ± 0.053 0.512 ± 0.053 0.600 ± 0.066 174 0.752 ± 0.095 0.697 ± 0.085 11.539 ± 0.592

SFDA [39] 0.505 ± 0.023 0.501 ± 0.035 0.595 ± 0.046 140 0.718 ± 0.073 0.661 ± 0.104 11.938 ± 0.451
TTA-SM [10] 0.635 ± 0.018 0.632 ± 0.020 0.717 ± 0.010 73 0.810 ± 0.018 0.704 ± 0.023 12.101 ± 0.075

TTA-DAE [18] 0.621 ± 0.015 0.620 ± 0.010 0.701 ± 0.002 118 0.770 ± 0.016 0.686 ± 0.039 12.235 ± 0.098
IGTTA-CRMKL

(Proposed) 0.644 ± 0.014 0.642 ± 0.022 0.754 ± 0.009 26 0.830 ± 0.007 0.719 ± 0.002 10.1 ± 2.436

(b) Comparisons of the proposed IGTTA with other test-time adaptation methods in literature with base model as MissFormer [33].

TTA Method
Dice Score ↑ # Failures

on WT
Sensitivity ↑ HD ↓

Enhancing
Tumor (ET)

Tumor
Core (TC)

Whole
Tumor (WT)

Enhancing
Tumor (ET)

Tumor
Core (TC)

Whole
Tumor (WT)

MissFormer [33]
(Unadapted) 0.586 ± 0.009 0.581 ± 0.013 0.757 ± 0.017 NA 0.751 ± 0.014 0.658 ± 0.012 14.375 ± 1.958

Tent(PS) [14] 0.427 ± 0.024 0.354 ± 0.020 0.457 ± 0.023 168 0.631 ± 0.002 0.593 ± 0.013 13.435 ± 1.029
OSUDA(PS) [21] 0.429 ± 0.021 0.358 ± 0.018 0.459 ± 0.022 167 0.64 ± 0.011 0.601 ± 0.022 13.419 ± 1.095

SFDA [39] 0.535 ± 0.011 0.529 ± 0.01 0.706 ± 0.008 151 0.719 ± 0.011 0.629 ± 0.005 15.797 ± 0.606
TTA-SM [10] 0.540 ± 0.002 0.530 ± 0.001 0.679 ± 0.005 116 0.767 ± 0.016 0.673 ± 0.009 13.965 ± 0.198

TTA-DAE [18] 0.561 ± 0.009 0.557 ± 0.031 0.710 ± 0.006 103 0.793 ± 0.020 0.699 ± 0.031 12.478 ± 0.243
IGTTA-CRMKL

(Proposed) 0.605 ± 0.016 0.613 ± 0.003 0.783 ± 0.021 52 0.818 ± 0.013 0.737 ± 0.004 9.261 ± 0.434
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class. Additionally, it achieves lowest ASDD metrics amongst
all the metrics for both the classes.

Similarly, improved performance of the proposed method
is observed when using MissFormer [33] model as baseline
(Table. IVb). Firstly, baseline performance of unadpated model
in itself is lower compared to AnamNet [28] due to limited
training data and imbalance amongst segmentation classes.
This behaviour is also observed with other larger models
in Table IVc. Hence majority of adaptation methods lead
to improvement in performance over the baseline, except
TTA-SM [10] and TTA-DAE [18] for similar reasons stated
above. Tent [14], OSUDA [40] SFDA [9] achieve improved
performance compared to baseline, but proposed approach of
IGTAA outperform all of them by a significant margin. IGTTA
achieves 10.2% increase in dice score, while decreasing the
ASDD metric by almost 25% for the abnormal class compared
to the baseline.

b) Multi-Site MR Brain Tumor Segmentation: Results
are shared in Table. Va and Table. Vb for AnamNet and
MissFormer base models respectively. It is apparent that the
proposed IGTTA method significantly outperforms other TTA
methods on the task of adapting models built on site 1 data
(511 subjects) to other 22 target domain sites (740 subjects)
on all metrics of interest: 1) Dice Score 2) Hausdorff distance
(HD) on whole tumor 3) Sensitivity on other two classes 4)
Total number of failures post adaptation for both base-models.
In Table. Va, Compared to the unadapted AnamNet model,
IGTTA improves the dice score for all subtypes of tumor
tissues (WT, ET, TC) by atleast 29%.

Similarly, improved performance of the proposed method is
observed when using MissFormer [33] model as well in Table.
Vb. The proposed method again achieves best performance on
all metrics of interest across all tumor tissue types. It is pointed
that, MissFormer model has a higher baseline performance
compared to AnamNet, as this problem has higher training
data, which can be exploited by a larger model. However, this
poses a challenge for all the comparison methods as they have
more parameters to adapt during test-time which can lead to
reduced performance without careful adaptation, This is indeed
the cases, where all the methods starting from MissFormer
model as baseline, suffer from performance deterioration ow-
ing to reasons described earlier. Another thing to note is that,
irrespective of base model’s performance, IGTTA achieves
similar post-adaptation performance in Tables. Va and Vb.
This is a highly encouraging result, which showcases power
of IGTTA to bridge the gap between base models of varying
performances.

The site-wise adaptation performance is shown in Fig. 4 for
one run of AnamNet, where IGTTA improves performance on
all the target sites. It should be noted that both unregularized
TTA (Tent [14]) and weight-regularized TTA (OSUDA [21])
deteriorate the performance on site 13.

c) Retinal layers segmentation on OCT images: As shown
in Fig. 6(a), compared to the no-adaptation case, IGTTA
achieves an overall Dice increase of 2.8% on the Cirrus dataset
with models trained on the Spectralis dataset). Improvements
over the AE-SDA method [11] are 0.8%. All methods based
on entropy minimization (IGTTA, Tent, and OSUDA) perform

Fig. 4: Multi-site brain tumor segmentation from MR Images:
Percentage increase in WT Dice across different target Sites
compared for proposed IGTTA, Tent [14] and OSUDA [21],
for one run of AnamNet model trained on Site 1 and tested
on 22 other sites as target for a total of 740 subjects.

satisfactorily because of the higher number of classes (11).
The proposed approach achieved marginally higher class-wise
performance for seven out of eight types of retinal layers. A
slight drop in performance was observed for the RPE labels.

Fig. 5: Chest CT anomaly segmentation: Patient-wise com-
parisons of Dice overlap for abnormal classes between the
proposed approach and AnamNet [28] on the test dataset.

2. IGTTA achieves patient optimality: Patient optimality
refers to successful adaptation of a neural network that has
been trained on population data, to patient’s data during test-
time. This can be demonstrated by showing how proposed
method improves on every individual patient post-adaptation.
a) For the chest CT segmentation problem, IGTTA consis-
tently improves anomaly segmentation across all nine subjects
across all runs and for all architectures. Fig. 5 shows that for
one run of adaptation with AnamNet as basemodel, IGTTA
obtains mean Dice score increase of 6.34%, with maximum
increase of 19.58% for Patient 7, followed by 13.86% and
11.21% increase on Patient 3 and Patient 2, respectively.
Interestingly, the proposed approach improves on patients,
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Retinal
Layers

Target: Cirrus scanner data; Source: Spectralis scanner data
No

adapt Tent [14] OSUDA [21] AE-SDA
method [11]

IGTTA-CRMKL
Method

RNFL 0.754 0.796 0.796 0.780 0.798
GCIP 0.817 0.866 0.866 0.855 0.867
INL 0.752 0.792 0.792 0.780 0.794
OPL 0.644 0.679 0.679 0.672 0.683
ONL 0.874 0.895 0.895 0.888 0.897

IS 0.860 0.875 0.875 0.87 0.875
OS 0.873 0.891 0.891 0.889 0.892

RPE 0.842 0.838 0.838 0.842 0.837

Overall 0.802 0.829 0.829 0.822 0.830

(a) Dice score comparison. (b) Sample OCT Image 1 results. (c) Sample OCT Image 2 results.

Fig. 6: Retinal layers segmentation from OCT Images: Quantitative comparisons of the proposed IGTTA method with other
TTA methods. The segmentation of two sample Cirrus data slices was presented with no adaptation and AE-SDA [11] methods.

where performance is low, and maintains the same level in
cases where it is already high. Patient 6 had completely healthy
lungs. The compared TTA methods led to a deterioration
in performance across subjects, with Tent being a strong
competitor with two failures out of nine subjects data.

Another way to measure patient-optimality is to ensure
model does not deteriorate in performance post-adaptation,
otherwise considered as adaptation failure.

b) In brain tumor segmentation problem (Table. Va and
Vb), all the comparison methods lead to higher number of
adaptation failures. For instance, Tent [14] achieves lesser
WT dice score post-adaptation on 267/740 cases (for Anam-
Net base model) and 168/740 (for MissFormer base model),
capturing the issue of unconstrained adaptation. All the other
methods, also have very high number of failures, owing to
reasons like domain-shift, lack of sufficient regularization,
varying distribution of classes, etc. The proposed method of
IGTTA has least number of failures, highlighting the power
of functional regularization, which ensures adapted model’s
prediction are constrained from diverging from base model.
Note that this reduced number of failures is coupled with
improvement in the overall Dice scores of tumor sub-tissues.
3. IGTTA achieves architectural-agnostic generalization
improvement: As demonstrated earlier, on both CT and
MR segmentation problems, the proposed method of IGTTA
achieves highest adaptation performance using both AnamNet
and MissFormer based architectures. These two architectures
cover a reasonable spectrum of architectures observed in
medical imaging problems, with AnamNet being light-weight,
edge-device suitable, easy to train, suitable for less data (CT
problem). MissFormer [33] being a vision-transformer based
architecture has advantages of more parameters, richness of
representation, higher expected performance, better suited for
large data problems (MR problem). For the retinal layer
segmentation with OCT, we used residual U-Net archiecture
as suggested in AE-SDA [11] method which is SOTA for this
problem, to allow fair comparison with other methods. To
further demonstrate the architectural-agnostic genaralization
of proposed IGTTA, we used 7 other popular segmentation
architectures and share the adaptation results in Table. IVc
segmentation in Chest CT images. It is clear that proposed
method, improves on every segmentation architecture. This is

a significant result showing the universal utility of IGTTA to
improve any off-the-shelf pre-trained model.

4. IGTTA has competitive adaptation times: It is crucial
that patient-wise adaptation techniques have acceptable space
and time complexities. As noted earlier, IGTTA-VMFRD and
IGTTA-VMKL are run for 10 adaptation steps and hence
have similar inference times to Tent [14]. The other two
variants require four times less adaptation steps, compared
to SFDA [9], TTA-SM [10] and OSUDA [40]. Additionally,
the proposed method is significantly faster than methods using
auxiliary networks which include TTA-DAE [18] and AE-SDA
[11]. In OCT segmentation problem, for every patient data in
Cirrus datasets (eight slices per volume), IGTTA takes ≈ 1.5
s compared to 11.43 s for AE-SDA, giving an advantage of 7
times faster adaptation. All experiments were conducted using
PyTorch libraries on an NVIDIA Quadro RTX A6000 GPU.

5. Qualitative Comparisons: a) Figure 7 shows the im-
provement due to proposed IGTTA across varying levels of
lung size and infections on selected slices from four different
test subjects. On Slice 23 (first row), Tent [14] erodes a part
of the anomaly in the left lung. IGTTA reduced only the false
positives at the top of the right lung. On Slice 316 (second
row), the proposed method completely erases all false positives
for anomalies, which is critical as this subject has fully healthy
lungs, while Tent magnifies them more. On Slice 198 (third
row), the proposed method has improved on false positives
and false negatives - by eroding false findings in both lungs,
while also correctly expanding the circular anomaly region in
the right lung against the slight under-segmentation achieved
by AnamNet. Slice 674 (last row) captures comparisons of
lung slices affected by severe infections.

b) Figure 8 depicts the results on selected slices from
varying target sites and subjects for brain tumor segmentation.
In the first row, the unadapted source domain model assigns
all tumor sub-tissues to the edema class. IGTTA faithfully
recovered all three tissues, whereas Tent and OSUDA failed
to enhance the tumor region. In the second row, perils of
unregularized and weight-regularized adaptation are shown,
where both Tent and OSUDA erase the predictions completely,
while proposed IGTTA achieves satisfactory performance on
all three classes. Similarly, the third row shows the improve-
ment obtained with proposed IGTTA over both the unadapted
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and other TTA methods.
Figure 6(b) and 6(c) shows comparison of retinal layer

segmentation for baseline, proposed approach and AE-SDA
method [11] on two selected slices from Cirrus data-set. In
Fig. 6(b), the base-model produces segmentations with holes,
loss of continuity and label mismatches compared to ground-
truth. Both the proposed approach and AE-SDA method [11]
show improvements over the no-adaptation output. Similarly,
in a sample slice from the Cirrus dataset (Fig. 6(c)), the base
model demonstrates deteriorated segmentation performance.
While the proposed approach filled the holes and improved
consistency across layers, the AE-based method improved
small misclassified patches, which is also reflected in the
quantitative comparisons (table of Fig. 6(a)).

In summary, the presented work evaluates and establishes
the efficacy of the proposed framework of IGTTA in a variety
of patient-wise adaptation settings. These include 1) problems
containing varying degrees of infection, highly imbalanced and
fewer classes - Chest CT segmentation 2) larger domain shift,
multi-site adaptation problems - MR tumor segmentation 3)
highly balanced and large number of classes (11) - OCT retinal
layer segmentation. These problems cover the typical adapta-

tion scenarios encountered in medical imaging segmentation
studies, demonstrating the utility of proposed approach as a
generic method.

The effectiveness of entropy based uncertainty minimization
(Tent) is a strong function of number of classes. Larger
the number of classes, more effective entropy minimization
becomes. This is because, reduced entropy measure on a
likelihood vector with larger number of classes, implies that
there is one class among the many that has the highest
likelihood mass, making it the likely/decisive winner. This
effect is observed in OCT problem (number of classes is 11),
where all the SOTA methods including Tent [14] benefit from
entropy/uncertainty minimization and need for regularization
is lessened. However, in problems like CT and MR, need
for functional regularization becomes much stronger. Both
un-regularized solution in Tent [14] and weight-regularizer
solution in OSUDA [40] suffer from risk of harmful adaptation
in patient-wise adaptation scenarios. Additionally, OSUDA is
effective only when entire target domain data is available,
which is not a practical scenario.

Our framework of IGTTA clearly benefits from interplay of
functional regularization and confidence maximization reduc-

Fig. 7: Anomaly segmentation from Chest CT images: Qualitative comparisons of segmentations from the proposed method
and other methods on selected slices from test dataset. Images correspond to adaptation experiments using run 1 of AnamNet
[28] as base model. Green: Lung region (Normal); Red: Anomalies (Abnormal), Yellow boxes: Inaccurate segmented region.
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Fig. 8: Brain tumor segmentation for multimodal MR images: Qualitative comparisons of the proposed method and other
methods on selected slices from different target sites for models trained on site 1. Images shown correspond to adaptation
experiments using run 1 of AnamNet [28] as base model. Yellow: enhancing tumor, Green: peritumoral edema, Red: the
necrotic and non-enhancing tumor core. Dice comparisons for WT, ET, and TC are also presented.

ing uncertainty. Methods that depend on class-ratio priors like
SFDA [11] and TTA-SM [10] reduce in effectiveness when-
ever class-ratio distribution changes from source domain to
target domain. This was acutely noticed in CT problem where
degree of infection varied from subject to subject and across
domains. These methods are more suited for anatomy segmen-
tation than anomaly segmentation, where class-ratios can be
expected to be fairly stable across domains. Finally, methods
that learn additional neural networks during training like TTA-
DAE [18] suffer from shift in imaging distribution, rendering
the auxiliary networks less effective and often detrimental.
Also, these methods do not lend themselves to off-the-shelf
adaptation, as they rely on modifying training procedure by
learning extra networks. As noted in the introduction section
(Table. II), IGTTA addresses the major gaps in SOTA methods
leading to a generic, off-the-shelf, regularized and patient-wise
adaptation method suitable to a spectrum of modalities and
adaptation scenarios.

VII. ABLATION STUDIES AND ANALYSIS

In this section, we discuss complementary benefits of variants
of the IGTTA framework and their suitability to different
adaptation scenarios. Tables. VI and VII compares results for
all variants of IGTTA for chest CT anomaly segmentation
and brain tumor segmentation in MR images respectively.
Firstly, it should be noted that even though the best performing
variant’s results were earlier shared for each problem, all the
variants outperform SOTA methods on all problems. Choice
of neuromanifold: The influencing factors are,

1) Extent of domain shift: The voxel manifold imposes
stronger functional regularization as it constrains every

voxel in the patient scan.This is useful when the domain
shift is not drastic like in the CT segmentation problem
(Table VI). The class-ratio manifold is a property derived
from the voxel manifold, is less constrained, and is
useful when the domain shifts are larger, as in the MR
segmentation problem. Further, the number of voxels in
CT volumes are much larger compared to MR or OCT
volumes, which means voxel manifold gets influenced
by more number of voxels in objective function.
It is pointed out that asymptotically, voxel manifold
based adaptations will converge to base model’s output
(eqn. 1), providing a safety net over harmful adaptation.
This is reflected in Table. VII, where voxel manifold
based methods have less number of adaptation failures
at the expense of lesser performance improvement.

2) Number of classes and imbalance of class-ratios: Since
class-ratio manifold constraints the distribution of class-
ratios, it can fluctuate a lot when total number of classes
is low and/or imbalance amongst class-ratios is high.
Hence, we observed that for CT problem, voxel manifold
was more suited and for other two problems class-ratio
manifold yielded better results.

3) Adaptation times: Generally, it is observed that a more
iterations are required to match the performance of
the class-ratio manifold with the results of the voxel
manifold (Fig. 9), roughly 2-3 times. This is because,
the class-ratio manifold based functional regularization
works only with class-ratio distribution and not all the
voxels and hence takes longer to stabilize.

Choice of divergence: As shown earlier, FRD and KL di-
vergence are equivalent, with KL being theoretically an upper
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(a) Evolution of Mean of Dice Score (b) Evolution of Standard deviation of Dice Score

Fig. 9: Adaptation dynamics of discussed methods with varying adaptation steps: using run 1 of AnamNet as base model on
selected group of subjects from COVID-19 CT segmentation dataset.

TABLE VI: Chest CT anomaly segmentation: Comparisons for
neuromanifold types and choice of divergence measures with
AnamNet [28] as base model.

Variant Neuro-
Manifold

Divergence
Measure

Dice
Abnormal

Dice
Normal

IGTTA-VMFRD Voxel Fisher Rao. 0.758 ± 0.038 0.978 ± 0.007
IGTTA-VMKL Voxel KL Div. 0.753 ± 0.028 0.977 ± 0.001

IGTTA-CRMFRD Shape Fisher Rao. 0.751 ± 0.028 0.971 ± 0.003
IGTTA-CRMKL Shape KL Div. 0.748 ± 0.028 0.973 ± 0.002

TABLE VII: Brain tumor segmentation from multi-modal MR
images: Comparisons for neuromanifold types and choice of
divergence measures with AnamNet [28] as base model.

Variant Neuro-
Manifold

Divergence
Measure

Whole Tumor
Dice Score ↑

# Failures
on WT

IGTTA-VMFRD Voxel Fisher Rao. 0.643 ± 0.003 19/740
IGTTA-VMKL Voxel KL Div. 0.652 ± 0.052 21/740

IGTTA-CRMFRD Shape Fisher Rao. 0.749 ± 0.012 24/740
IGTTA-CRMKL Shape KL Div. 0.754 ± 0.009 26/740

bound for FRD. In [23], it was observed that training dynamics
varied between the two divergence choices, which is what we
have observed with our experiments of test-time adaptation
also. Exploring theoretical underpinnings behind the differ-
ences in their training/adaptation dynamics are beyond the
scope of this paper, will be taken for future research.

Fig. 9 captures adaptation dynamics of all variants of
proposed approach along with Tent [14] and OSUDA [21]
providing empirical reasoning for observations. Evolution of
mean and standard deviation of Dice score for abnormal class
as a function of number of adaptation steps has been depicted.
These scores are obtained from group of subjects in CT data-
set evaluated using one run of AnamNet as base model. These
subjects had higher amount of infection/abnormal voxels,
making them suitable for this analysis. Firstly, as shown
in Fig. 9(a), Tent [14] starts deteriorating in performance

after initial few adaptation steps, clearly highlighting perils
of unconstrained adaptation. OSUDA’s weight regularization
is insufficient with performance dropping below base model,
later than Tent. Note that all proposed variants of IGTTA pro-
vide better performance than unadapted model’s performance.
Secondly, variants based on class-ratio manifold (CRM KL
and CRM FRD), gradually increase with steps (Fig. 9(a)),
taking almost twice the adaptation steps to reach performance
of voxel manifold methods (VM KL and VM FRD) at step 10.
As noted earlier, with more steps voxel manifold based meth-
ods asymptotically converge to base model’s performance.
In Fig. 9(b), it is noted that, Tent [14] and OSUDA [21]
have increasing standard deviation with number of steps. In
other words, performance of adaptation of these methods vary
highly with subjects. In contrast, all variants of proposed
approach have decreasing and nearly flat standard deviation
across subjects, making the proposed approach reliable - which
is another benefit of functional regularization.

FRD gives exact geodesic distance on the neuromanifold,
hence it should be used if adaptation times are not a constraint.
Since optimizing on upper-bound can potentially lead to faster
convergence, if adaptation times are a concern, it is recom-
mended to use KL divergence. The recipe that has yielded
best results in faster adaptation times is as follows: For lesser
domain shifts, larger volumes and lesser number of classes
use combination of voxel manifold and FRD/KL divergences
(CT problem). For more number of classes, larger domain
shifts use class-ratio manifold with KL divergence (MR and
OCT problems), for a balance of improved performance and
satisfactory adaptation times.
Choice of confidence function and λ: The proposed frame-
work of IGTTA has many components that come together dur-
ing adaptation - statistical neuro-manifold, choice of functional
regularizers and confidence functions. Hence, the interplay
amongst them has led to fairly robust performances across
different choices and parameters. For instance, performance
was noted to be fairly consistent amongst λ values in the range
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TABLE VIII: Chest CT anomaly segmentation: Dice scores
and ECE for IGTTA-VMKL studying the impact of lconf loss
with AnamNet [28] as base model.

Choice of
ℓconf functions

Dice Score ↑ ECE ↓
(3 classes)Abnormal Normal

Soft-max
entropy ℓsme

0.758 ± 0.038 0.978 ± 0.007 0.475

Generalized
cross-entropy ℓgce

0.747 ± 0.029 0.973 ± 0.003 0.479

Margin ℓmargin 0.759 ± 0.012 0.978 ± 0.005 0.475

TABLE IX: Retinal Layers segmentation from OCT images:
Average Dice scores and ECE for IGTTA-CRMKL studying
the impact of lconf loss with residual UNet [11] as base model.

Choice of
ℓconf functions Dice Score ↑ ECE ↓

(11 classes)
Soft-max

entropy ℓsme
0.830 ± 0.013 0.036

Generalized
cross-entropy ℓgce

0.829 ± 0.017 0.037

Margin ℓmargin 0.830 ± 0.025 0.034

[0.5, 1], while slight drop (< 0.3% in the CT problem) was
observed for (λ = 0.1 ), which is to be expected.

To further understand the impact of different confidence
functions, we compute average expected calibration error
(ECE) in Tables VIII and IX. While metrics like Dice score
and surface distances measure performance of the methods
against ground-truth, ECE is a standard metric that measures
how well calibrated the adapted models are. For our com-
putations, we used number of calibration bins = 10, and
we report average expected calibration error across all the
classes. We chose CT and OCT problems, as they cover
two ends of spectrum in terms of number of classes (CT
=3, OCT =11). As shown in Table VIII, all the confidence
functions have comparable results on both Dice score and
ECE (since only 3 classes), including the proposed Margin-
based confidence function. It is interesting to note that on
the OCT problem (Table IX), overall ECE across confidence
functions is significantly lower (since there are 11 classes) and
margin based confidence function, achieves meagre decrease
over other functions. The reasons for similar performances of
these confidence functions and how to optimally select the
best iterate of adapted model based on uncertainty will be
explored in future work. In summary, the proposed approach
performs consistently across different choices of confidence
loss functions (including the proposed ℓmargin) and λ values
and produces improved results on all three problems. Robust-
ness to hyper-parameter tuning is another salient feature of the
proposed approach.

VIII. DISCUSSION AND CONCLUSION

Traditionally, generalization has been targeted as a training
time goal, where different algorithmic strategies are utilized to
ensure that the performance on data with distribution shift is
acceptable. However, TTA treats generalization as an inference
time goal and promises a path towards precision health. As a
recent area of research, one of the bigger unsolved and less

addressed problem is to ensure that the adapted model does
not deteriorate in performance owing to over-eager adaptation.

The aim of this study was to ensure that sufficient algo-
rithmic caution is exercised in patient-specific adaptation. An
intuitive and practical methodology for robust TTA grounded
in the theoretical framework of information geometry was
presented. Extensive experiments on a variety of clinically
relevant and challenging problems demonstrate the promise
of IGTTA as a solution for achieving the dual goal of patient
optimality and generalization. It was demonstrated that IGTTA
does not require any additional information, is fast, and can be
applied to any off-the-shelf model irrespective of the training
procedure and architecture.

The functional regularization provided by the proposed
IGTTA makes it a generic framework and other methods like
TTA-SM [10] that use anatomical priors become special case
of the same. Importantly, information geometric methods have
been shown to provide effective representative learning [41],
by exploiting structure of the data. The improved performance
in adaptation observed in this study can be attributed to
information geometric methods providing compact functional
space based on the structure of test data for updating weights,
thus making it work universally across architectures.

The max margin loss in this study contributes to the
practicality of IGTTA based test-time adaptation (TTA) of
deep-learning models for semantic segmentation. The max
margin loss aims to improve the confidence calibration of
the model, which is crucial in medical imaging applications,
where accurate uncertainty estimation can significantly im-
pact clinical decisions. This work provided the theoretical
underpinnings of employing max margin loss to lower the
Expected Calibration Error (ECE). The ablation studies (Table
IX) provided experimental validation that max margin loss
contributes to reduction in the calibration error, thus making
the adapted model’s predictions more reliable. Future research
will be devoted to uncertainty-aware test-time adaptation,
where early stopping and selection of right hyper-parameters
can be attempted in addition to reducing the calibration error.

There are a few limitations of IGTTA and other TTA
methods that provide scope for future work. One of the
unaddressed problems in this study is determining when and
how much to adapt. The proposed IGTTA is a conservative
framework that intentionally inhibits functional divergence,
thereby limiting the extent of possible improvement, unlike
unregularized versions, such as Tent. It will be useful to
identify candidates for adaptation and control the amount of
adaptation in a principled manner. Another direction is to
reduce the dependencies on the hyperparameters, some form
of parameter-free adaptation framework is ideal. Encouraged
by the success of proposed IGTTA in this study, extending it
to other medical image analysis tasks, such as classification
and image regression, will be taken as the next step.

The code utilized to generate the results in this study
is shared here: https://github.com/hariharanrav/
IGTTA_TMI/tree/main. Additional results are also pre-
sented in the same link.

https://github.com/hariharanrav/IGTTA_TMI/tree/main
https://github.com/hariharanrav/IGTTA_TMI/tree/main
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