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Abstract. Photoacoustic tomography tends to be an
ill-conditioned problem with noisy limited data requiring
imposition of regularization constraints, such as standard
Tikhonov (ST) or total variation (TV), to reconstruct mean-
ingful initial pressure rise distribution from the tomographic
acoustic measurements acquired at the boundary of the tis-
sue. However, these regularization schemes do not account
for nonuniform sensitivity arising due to limited detector
placement at the boundary of tissue as well as other system
parameters. For the first time, two regularization schemes
were developed within the Tikhonov framework to address
these issues in photoacoustic imaging. The model resolu-
tion, based on spatially varying regularization, and fidelity-
embedded regularization, based on orthogonality between
the columns of system matrix, were introduced. These were
systematically evaluated with the help of numerical and
in-vivo mice data. It was shown that the performance of
the proposed spatially varying regularization schemes were
superior (with at least 2 dB or 1.58 times improvement in
the signal-to-noise ratio) compared to ST-/TV-based regu-
larization schemes. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JBO.23.10.100502]
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Photoacoustic tomography (PAT) has the ability to provide opti-
cal contrast at ultrasonic resolution deep inside biological
tissue.1 PAT uses a nanosecond laser pulse to irradiate the tissue
under investigation; the transient light is absorbed by different
tissue chromophores, resulting in a small rise in temperature in
the tissue.2 The temperature rise generates a pressure wave [also

called photoacoustic (PA) waves] due to thermoelastic expan-
sion. The generated PAwaves will propagate through the tissue
and are measured using broadband ultrasound transducers
placed outside the biological tissues.1,2 These acoustic measure-
ments are used to estimate the initial pressure rise inside the
tissue by solving an acoustic inverse problem.2 The inversion
can be performed using analytical- and model-based methods.3,4

Model-based reconstruction involves inverting a model
matrix that is generated either using impulse response or discre-
tizing the solution of wave equation and is known to perform
better than analytical schemes in irregular geometry and limited
data scenarios.3,4 Inversion in limited data scenarios is difficult
due to the ill-conditioned nature of the problem.4,5 Therefore
typically, prior statistics about the image is applied in the
form of regularization during the inversion.4,6

Another perspective of regularization lies in its ability to
define resolution characteristics in the imaging domain.7,8

The resolution characteristics are heavily influenced by factors,
such as ultrasound transducer sensitivity field, depth-dependent
fluence, bandwidth of the detector, and detector position. This
work attempts to use the concept of model-based regularization,
which is spatially dependent, to mitigate the nonuniform reso-
lution effects arising in PA imaging. The hypothesis is that the
nonuniform resolution in the imaging domain can be captured
using model resolution. Two regularization schemes within
the standard Tikhonov (ST) regularization framework, which
use model (system matrix) characteristics, were proposed here.
The first one is fidelity-embedded regularization (FER), based
on the correlation between the columns of the model matrix,
which was proven to be effective in solving inverse problem
in electrical impedance tomography.9 The second regularization
scheme is based on model-resolution matrix, which provides
the spatially variant characteristics of the model, that is proven
to provide superior results compared to other regularization
schemes in diffuse optical tomography.8 The performance of
the regularization schemes are compared with ST-5 and total
variation (TV)10-based schemes using numerical simulations
and in-vivo experimental data.

The impulse response of every pixel in the imaging domain
was used to build the system matrix to model PA wave propa-
gation as described in Refs. 4 and 11, which was computed by
open-source MATLAB k-wave toolbox.12 The forward model in
PAT can be expressed using a linear system of equations4 as

EQ-TARGET;temp:intralink-;e001;326;280Ax ¼ b: (1)

The dimension of the system (model) matrix A is m × n (here, it
is 30720 × 40401) with x being the column vector containing
unknown initial pressure and b being the measured acoustic data.

Estimation of x given a b, especially in these limited data
cases, requires application of regularization with Tikhonov regu-
larization being the standard one. The cost function (ΓTikh) for
the Tikhonov regularization scheme is

EQ-TARGET;temp:intralink-;e002;326;178ΓTikh ¼ min
x
ðkAx − bk22 þ λkRxk22Þ; (2)

where λ is a regularization parameter providing the balance
between residue of the linear equations and expected initial pres-
sure distribution ðxÞ. The regularization matrix R can include
prior characteristics of the solution space. A closed-form solu-
tion for the minimization of Eq. (2) can be written as

EQ-TARGET;temp:intralink-;e003;326;92xTik ¼ ðATAþ λRTRÞ−1ATb: (3)
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Note that the regularization matrix for the zeroth-order Tikhonov
(also known as ST) method is an identity matrix, i.e., R ¼ I.

The proposed FER method incorporates correlations among
the column vectors of the system matrix as a regularization
matrix during the inversion.9 The correlation between the col-
umns of system matrix decreases rapidly as distance between
the pixel increases. If two pixels are far from each other, the
corresponding columns of system matrix ðAk;AlÞ are nearly
orthogonal. The orthogonal structure gives rise to a weighted
backprojected formula that computes the local ensemble aver-
age of initial pressure rise at each pixel, which is given as

EQ-TARGET;temp:intralink-;e004;63;631xFERk ¼
�X

l
jhAk;Alij

�
−1
hAk; bi; (4)

where h·i represents the dot product and xFERk is the weighted
average initial pressure rise at the k’th pixel. In a matrix
form, to be used in Eq. (3), the R is a diagonal matrix with
k’th element being

EQ-TARGET;temp:intralink-;e005;63;551ðRFERÞkk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l

jhAk;Alij
r

: (5)

A small modification to the solution by scaling the solution byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2FER

p
with λFER being the regularization parameter in

FER, for ensuring that x being nonzero leads to9

EQ-TARGET;temp:intralink-;e006;63;478xFER ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2FER

q
ðATAþ λFERRT

FERRFERÞ−1ATb: (6)

Note that, when columns of the system matrix are entirely
orthogonal to each other, then FER method will result in ST
formulation and when λFER approaches to large value, the sol-
ution will be equivalent to filtered backprojection. Thus the ST
becomes a special case of FER.

The proposed model-resolution-based regularization (MRR)
involves building the model-resolution matrix13 from ST case
and then deriving a new form of regularization to mitigate
the resolution variations arising in the imaging domain. It is
defined as8,13

EQ-TARGET;temp:intralink-;e007;63;338M ¼ ðATAþ λIÞ−1ATA: (7)

Each row of M provides the blur (point spread function) asso-
ciated with corresponding pixel. The closer the M is to identity
matrix leads to improved resolution in the reconstructed image.
The MRR is applied via utilizing a diagonal matrix (RMRR) with
entries being

EQ-TARGET;temp:intralink-;e008;63;259ðRMRRÞii ¼
Mii

max½diagðMÞ� ; for i ¼ 1;2; : : : ; n; (8)

where Mii is the diagonal entries of M [Eq. (7)]. The normali-
zation used in Eq. (8) minimizes the effect of λ in Eq. (7) while
computing the diagonal values of model-resolution matrix
[ðRMRRÞii] in Eq. (8). Thus the solution in this case will be

EQ-TARGET;temp:intralink-;e009;63;177xMRR ¼ ðATAþ μRMRRÞ−1ATb: (9)

In an ideal case, RMRR will be an identity matrix, resulting in ST
formulation [given in Eq. (3)]. However, in reality, RMRR will
capture the nonuniformity among spatial locations to provide
model-aware regularization. Note that regularization matrices
utilized in both FER and MRR are only model (system matrix
and/or regularization parameter) dependent and do not depend
on projection data or noise level in the data, thus providing regu-
larization purely that is model dependent.

FER and MRR methods are compared with ST and TV regu-
larization methods, the TV method used here was described in
Refs. 10 and 14. The efficacy of the different methods described
above was quantified by computing root-mean-square error
(RMSE) and peak signal-to-noise ratio (PSNR) of the recon-
structed images in numerical experiments and signal-to-noise
ratio (SNR) in the in-vivo case.15

Numerical Derenzo phantom (unipolar in nature, having “0”
for the background and “1” for the objects) with initial pressure
rise of 1 kPa and a realistic numerical breast phantom created
from contrast-enhanced magnetic resonance imaging16 were con-
sidered for comparing the quantitative accuracy of reconstruction
methods. In-vivo experimental data from mouse brain region are
considered to validate the proposed methods. The details about
the experimental setup and data acquisition are given in Ref. 17.

Numerical data were generated using a fine grid having a size
of 50.1 × 50.1 mm (discretized to 1002 × 1002) pixels, and the
imaging region was 20.1 × 20.1 mm with a grid size of
402 × 402 pixels. The acoustic data were generated on a 402 ×
402 grid using an open-source k-wave toolbox.12 The collected
data were reconstructed on a 201 × 201 grid to avoid inverse
crime. Sixty point detectors having 70% bandwidth and a center
frequency of 2.25 MHz are placed equidistantly on a circle of
radius 22 mm from the center of the imaging region. The data
were sampled at 50 ns with the total time samples being 512.
The medium was assumed to be acoustically homogeneous,
having speed of sound as 1500 m∕s, with no absorption and
dispersion. Gaussian noise was added to the in-silico forward
data to result in data SNR being, 20, 30, and 40 dB.

The reconstruction results using different algorithms pertain-
ing to Derenzo phantom [Fig. 1(m)] were presented in Fig. 1.
Figure 1(a) shows the reconstruction results using the ST
scheme with data having SNR of 40 dB. Figures 1(b) and 1(c)
correspond to the reconstruction results with the ST regulariza-
tion by having an SNR of 30 and 20 dB, respectively.
Figures 1(d)–1(f) represent the reconstruction performance of
Derenzo phantom with TV-based reconstruction for simulated
data having SNR of 40, 30, and 20 dB, respectively.
Reconstruction results pertaining to the proposed FER-based
formulation for 40-, 30-, and 20-dB SNR in data were provided
in Figs. 1(g)–1(i), respectively. Lastly, the reconstruction
results with proposed MRR-based reconstructions for numerical
data having SNR of 40, 30, and 20 dB were shown in
Figs. 1(j)–1(l), respectively. As shown, the performance of
MRR [Fig. 1(l)] and FER [Fig. 1(i)] methods in the 20-dB
SNR case is superior when compared with the ST- [Fig. 1(c)]
and TV-based schemes [Figs. 1(f) and 1(e)]. Spurious background
artifacts tend to arise with TV-based reconstruction as indicated
by red arrows in Figs. 1(f) and 1(e). Importantly, the proposed
MRR scheme is able to reconstruct images with uniform resolu-
tion across the entire imaging domain [indicated by red arrow in
Fig. 1(j)]; the background has been recovered more accurately
with MRR compared to other reconstruction methods. The
measured RMSE and PSNR from the different reconstructions
using the Derenzo phantom were given in Figs. 1(n) and 1(o),
respectively. RMSE and PSNR metrics indicate that the recon-
structed images using FER and MRR provide more accurate
solutions compared to ST- and TV-based regularization.

Since the Derenzo phantom is unipolar in nature, the efficacy
of the different methods using a realistic breast phantom case
[Fig. 2(m)] was investigated and the results were presented in
Fig. 2 (which are similar to results presented in Fig. 1). The
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results demonstrate that fibrous regions were reconstructed bet-
ter using the proposed MRR scheme than the ST- and TV-type
regularizations [Figs. 2(c) and 2(f)], where the noise seems to be
amplified. Reconstructions pertaining to FER method with
simulated data having SNR of 30 and 20 dB [Figs. 2(h) and
2(i)] were seen to have reduced background artifacts compared
to other reconstruction methods as indicated by the red arrow
showing its ability in providing robust reconstructions. Uniform
resolution across the imaging domain was achieved using the
MRR scheme [same is indicated by arrows in Figs. 2(j) and
2(k)]. Similar to previous case, it is clear that the proposed
spatial varying regularization schemes, i.e., FER and MRR,
outperform ST- and TV-based methods. The reconstructed initial
pressure values did not reach to the expected value due to
various approximations imposed while performing image
reconstruction. The speed of sound was kept constant and the
medium was assumed to be homogeneous; the detectors used
here were point detectors. Along with these approximations,
only a limited number of detectors (60 in here) were considered.
Note that utilization of large number of tomographic detector posi-
tions will result in more uniform resolution characteristics in the
image domain and even the reconstruction accuracy will be high.
Since the objective of this work was to demonstrate the potential
of the proposed MRR algorithm in mitigating the nonuniform

resolution characteristics issue arising in limited detector position
case, the case of many detector positions was not considered here.

The central row of model-resolution matrix [computed using
corresponding R instead of I in Eq. (7)] pertaining to ST, FER,
and MRR methods was shown in Figs. 3(a)–3(c), respectively.
The central pixel (having highest value) in Fig. 3 represents
the row being plotted, and rest pixels correspond to the
off-diagonal elements. Ideally, one would expect to see an
impulse (center pixel value being 1 and rest pixels being 0).
From Fig. 3, it is evident that the off-diagonal elements are
closer to zero in case of MRR than Tikhonov and FER.
Further kdiagðIÞ − diagðMresÞk2 was calculated for each method
and found to be 199.81, 199.31, and 173.1 for ST, FER, and
MRR, respectively (ideal value being zero). The values of the
norm indicate that MRR inversion would result in more resolved
solution compared to other methods.

Reconstruction using the in-vivo experimental data using ST,
TV, FER, and MRR schemes was shown in Figs. 4(a)–4(d),
respectively. The structures shown by the red arrow in
Figs. 4(c) and 4(d) were well reconstructed. The computed
SNR values (in dB) for each method were shown correspond-
ingly below each reconstructed image. From the reconstruction
results in Fig. 4 and SNR values, it is evident that using spatially
variant regularization, such as FER and MRR, could potentially

Fig. 1 Comparison of the performance of different reconstruction methods using Derenzo (unipolar) phan-
tom. Images reconstructed with ST regularization scheme are given in the first column with SNR of data
being (a) 40, (b) 30, and (c) 20 dB, TV regularization scheme in second column with SNR of data being
(d) 40, (e) 30, and (f) 20 dB. Correspondingly, the proposed schemes, FER andMRR, results are presented
in third and fourth columns, respectively. Original Derenzo phantom is shown in (m). RMSE and PSNR
(in dB) pertaining to results presented from (a) to (l) are shown in (n) and (o), respectively.

Fig. 2 Same effort as Fig. 1 using realistic breast phantom given in (m).

Journal of Biomedical Optics 100502-3 October 2018 • Vol. 23(10)

JBO Letters



enable generation of accurate image representation. Note that
the SNR was reported in the dB scale, the improvement is atleast
a factor of 1.58 in this in-vivo case using the proposed methods.
The computational time for FER, MRR, Tikhonov, and TV is
0.41, 0.38, 0.37, and 9.52 s, respectively, by having the system
matrix inversion precomputed. The parameters used for the dif-
ferent reconstructions are 10−2 (20 dB), 10−3 (30 dB), and 10−4

(40 dB) for Tikhonov, 10−3 (20 dB), 10−3 (30 dB), and 10−4

(40 dB) for FER, and 10−2 (20 dB), 10−4 (30 dB), 10−4

(40 dB), and μ ¼ 0.01 for MRR, which were set to result in
best figure of merit values. The reconstruction parameters, i.e.,
λ and μ, will affect the reconstructed image quality. It is also
important to note that automatically choosing multiple parameters
will tend to be computationally expensive. Therefore, in this work,
these parameters were chosen empirically to result in best possible
reconstructions. λ is the regularization parameter, which provides a
balance between the residual and the expected initial pressure dis-
tribution. The parameter μ provides weight to the normalized spa-
tially varying regularization, which is fixed for all noise cases and
phantoms. Higher value of μ will suppress the effect of spatially
varying regularization. The value of μ is kept as low as possible to
provide the best reconstruction. Moreover, these parameters
largely depend on the absolute values in the system matrix.

Most regularization schemes present in the literature have
limitation in terms of handling spatially varying sensitivity of
PA imaging arising due to placement of limited acoustic
detectors at the boundary of tissue. In this work, for the first
time, spatially varying regularization schemes were proposed
to address this issue pertaining to nonuniform resolution char-
acteristics arising in the imaging domain. The proposed regulari-
zation schemes were deployed in Tikhonov regularization
framework with ST being a special case, making them univer-
sally appealing. The results presented in this letter indicate that
these model-based regularization schemes were able to outper-
form ST- and TV-based regularization as they were encapsulat-
ing the spatially varying sensitivity of the imaging domain.
The MRR was found to generate improved reconstructions
(see Figs. 1 and 2, PSNR improvement being as high as 44%)
and provides homogeneous resolution characteristics across the
imaging domain. The performance of proposed FER relied heavily
on the detector positions and the independent nature of the
data-collection strategy employed, as the detector positioning
will reflect the orthogonality in the columns of system matrix.

Typically, FER provides accurate solution with less parameter
tuning though the PSNR of FER method is less than the MRR
method. Therefore, FER is recommended for fast imaging scenar-
ios. When computing time is not a constraint and more accurate
reconstruction is desired, then MRR is a preferred reconstruction
method. Note that the quantitative results (SNR, PSNR, and
RMSE) clearly demonstrate the robust nature of proposed FER
compared to other standard reconstruction methods, such as ST
or TV, with more than 2 dB improvement in the case of in-vivo
mice brain data. The standard model-based reconstruction in PAT
is based on TV,18 this work with spatially varying regularization
was found to outperform standard model-based (Tikhonov/TV)
reconstruction. The developed code along with data generation
was made available as an open source19 for enthusiastic users.
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Fig. 3 Row corresponding to central pixel in the model-resolution
matrix for (a) ST, (b) FER, and (c) MRR.

Fig. 4 Reconstructed images of in-vivo mice brain data using (a) ST,
(b) TV, (c) proposed FER, and (d) proposed MRR. The corresponding
SNR (in dB) values of reconstructed images are given below.
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