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Abstract. A computationally efficient approach that com-
putes the optimal regularization parameter for the
Tikhonov-minimization scheme is developed for photo-
acoustic imaging. This approach is based on the least
squares-QR decomposition which is a well-known dimen-
sionality reduction technique for a large system of equa-
tions. It is shown that the proposed framework is effective
in terms of quantitative and qualitative reconstructions of
initial pressure distribution enabled via finding an optimal
regularization parameter. The computational efficiency and
performance of the proposed method are shown using a
test case of numerical blood vessel phantom, where the
initial pressure is exactly known for quantitative compari-
son. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JBO.18.8.080501]

Keywords: photoacoustic tomography; image reconstruction;
regularization.

Paper 130412LR received Jun. 14, 2013; revised manuscript received
Jul. 4, 2013; accepted for publication Jul. 9, 2013; published online Jul.
31, 2013.

Photoacoustic (PA) imaging is an emerging, noninvasive, in
vivo biomedical imaging modality.1,2 A nanosecond laser
pulse is generally used to irradiate biological tissue, resulting
in a temperature rise from optical absorption and subsequently
producing pressure waves due to thermoelastic expansion.2 The
pressure waves are then acquired using a wide-band ultrasonic
transducer at various locations around the surface of the tissue.
A reconstruction algorithm is deployed that maps the initial
pressure rise (proportional to the absorbed optical energy den-
sity) within the tissue from the recorded PA signals.3

Several PA image reconstruction algorithms were proposed
in the literature,4,5 including analytical algorithms in the form of

filtered back projection (BP) or algorithm based on Fourier
transform. Their limitations include the requirement of large
amount of data and are limited in terms of quantitative
estimation.6–8 To overcome this limitation, various iterative
image reconstruction algorithms have been proposed6–8 to
improve the quantative accuracy of the reconstructed images,
at the same time being computationally efficient. Moreover, in
case of full-view data sets, the least squares QR (LSQR)-based
reconstruction scheme was used, which indirectly provides
regularized solution with an added advantage of being highly
efficient.7 The limited-view data is reconstructed using a stan-
dard Tikhonov regularization, which is time consuming and
requires an explicit regularization parameter.5–8

In this letter, we propose a Tikhonov regularization frame-
work based on LSQR decomposition, where Q and R represent
an orthogonal and upper triangular matrices, respectively,
which uses Lanczos bidiagonalization to provide dimensionality
reduction to the system of equations in the case of limited-view
data set. This is further used to carry out a simplex method-
based optimization procedure to find the optimal regulariza-
tion parameter. The performance of the proposed method is
compared with the generalized cross validation (GCV)9 and
L-curve9 methods, along with the analytical methods, such as
BP4 and k-wave-based time-reversal reconstruction10 using a
numerical blood vessel network phantom.

The system matrix approach has been adopted here to
describe the PA data collection process, which can be repre-
sented by a Toeplitz matrix of a time-varying causal system.
The image (dimension of n × n) is converted into a long vector
by stacking all columns one below the other, represented by x
(dimension of n2 × 1). The system matrix (A) has a dimension
of m × n2. Here, each column of A represents the impulse
response corresponding to each pixel in the image. Moreover,
the time-varying data is stacked to result in a long vector having
dimensions m × 1 (which makes the number of rows of A to be
m). In order to improve the computation time for building the
system matrix, the system response was measured only once
for the corner pixel [making xðcorner pixelÞ ¼ 1 and the rest
of the entries were made zero], which forms the first column
entry of A. The rest of the columns (n2 − 1) are filled by using
shifting and attenuation properties of the PA signal. This
approach assumes that the medium has homogeneous ultra-
sound properties.

The system response for the corner pixel is recorded using
k-wave MATLAB toolbox,10 which simulates the PA wave proro-
gation in two dimension. The simulation geometry had a
computational grid of 701 × 701 pixels (0.1 mm∕pixel). Forty
detectors were placed in a circular fashion of 34-mm radius.
Each detector was assumed to be a point detector with a fre-
quency response of 2.25 MHz as center frequency and 70%
bandwidth. The imaging region was restricted to 201 × 201

pixels located at the center, resulting in n2 ¼ 40; 401. A time
step of 50 ns having 1000 time steps was used in recording
each signal (making m ¼ 40; 000). The simulations assumed a
sound speed of 1500 m∕s.

In summary, the forward model of PA imaging can be
written as

Ax ¼ b; (1)
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where x is a long column vector (unknown, representing the ini-
tial pressure rise, p0) and b is a measurement vector. The simple
BP (analytical) image reconstruction scheme becomes4

x ¼ ATb; (2)

where T represents the transpose of the matrix. As it is noniter-
ative, this method is computationally efficient but known to pro-
vide only qualitative results.4

Both BP and time-reversal methods are analytical in nature
but lack the quantitative nature of the results.5 In cases of limited
data, typically a model-based reconstruction is employed which
relies on minimizing the data-model misfit along with a regu-
larization function, therefore the objective (cost) function in
this case can be written as

Ω ¼ kAx − bk22 þ λkxk22; (3)

where λ is the regularization parameter. The l2-norm is repre-
sented by k:k22. The function Ω is minimized with respect to x,
leading to a direct solution

x ¼ ðATAþ λIÞ−1ATb: (4)

The GCV method9 is the most popular automated approach
for estimating the optimal regularization parameter λopt using
following function

GðλÞ ¼
PrankðAÞ

i¼1

�
HT

i b
σ2iþλ2

�
2

�PrankðAÞ
i¼1

1
σ2iþλ2

�
2
; (5)

where the SVD of A ¼ HΣGT where, Σ is a diagonal matrix
containing singular values (σ). The left and right orthogonal
matrices are given by H and G, respectively. The L-curve is
another popular scheme for estimating the optimal regulariza-
tion parameter.9 The corner of L-curve gives the optimal regu-
larization value, and as with GCV method, it does not require
any prior information. The LSQR method is one of the variants
of the conjugate gradient method used to solve a large system of
equations. One of the main contributions of this letter is to use
the LSQR-type algorithm to optimally determine the regulariza-
tion parameter in PA image reconstruction. This is accomplished
by using a Lanczos bidiagonalization of the system matrix (A).
The left and right Lanczos matrices along with the bidiagonal
matrix are related to the system matrix as shown below:11,12

Ukþ1ðβ0e1Þ ¼ b; AVk ¼ Ukþ1Bk; (6)

ATUkþ1 ¼ VkBT
k þ αkþ1vkþ1eTkþ1; (7)

where B represents the lower bidiagonal matrix, and U and V
represent the left and right orthogonal Lanczos matrices, respec-
tively. The unit vector of dimension k × 1 is represented by ek
(¼ 1 at the k’th row and 0 elsewhere). Note that the dimensions
of Uk and Vk are (m × k) and (n2 × k), with k representing the
number of iterations in the bidiagonalization procedure. Finally,
ui and vi represent the left and right Lanczos vectors. The Bk is
the bidiagonal matrix having α1; : : : ; αk in the main diagonal

and β1; : : : ; βk in the lower subdiagonal of the matrix with a
dimension of [ðkþ 1Þ × k].

Now the Tikhonov minimization update for the equation for
the LSQR-type method12 is given by [which is equivalent to
Eq. (4)]:

xk ¼ ðBT
kBk þ λIÞ−1β0BT

k e1: (8)

Here β0 is the l2-norm of b. Once, xk (reduced x) is esti-
mated then the initial pressure can be obtained using the relation
p0 ¼ x ¼ Vkxk.

Determination of the optimal number of Lanczos iterations
(kopt) and optimal regularization parameter λopt is given in
Algorithm 1. The advantage of LSQR-type method in finding
the initial pressure rise distribution p0 lies in its dimensionality
reduction capability which makes the update as xk [Eq. (8)] with
k ≪ n2. The major role in the entire optimization procedure is
characterized by k (number of Lanczos bidiagonalization). This
factor determines the size of the bidiagonal matrix, Bk [dimen-
sion of ðkþ 1Þ × k].11,12 In this work, the optimal number
of Lanczos iterations turned out to be 25 obtained using
Algorithm 1, making kopt ¼ 25. The optimal λ is searched
within the specified bound (λlim) and is set to 1000. A gra-
dient-free simplex method type algorithm is used due to its
computational efficiency to compute the optimal regularization
parameter (λopt).

12 The λopt is found corresponding to k ¼ 25

is chosen for LSQR method. Using these in Eq. (8) gave xk

and subsequently p0 (x).
A Linux workstation with Intel Xeon Dual Quad Core

2.33 GHz processor having 64 GB memory was used in all
computations carried out in this work.

In order to show the effectiveness of the proposed method, a
numerical blood vessel phantom was chosen. Note that measur-
ing actual p0 in the experimental phantom case is extremely
challenging, which makes the comparison of performance of
the methods discussed here difficult. Figure 1(a) shows the
blood vessel network used as a numerical phantom with a maxi-
mum initial pressure rise of 1 kPa. The k-wave tool box10 was
used to generate the simulated PA data with 40 detectors around
the object of interest. Subsequently, the simulated data had
a signal-to-noise-ratio of 40 dB (1% noise) to mimic the real

Algorithm 1 Algorithm for determining optimal number of Lanczos
iterations and optimal regularization.

• Input: Lanczos Bidiagonal Matrix Bk ; Vk (k ¼ 1;2; : : : ;50);
b; β0; A; λlim.

• Output: Optimal number of Lanczos iterations: kopt and optimal
regularization parameter: λopt

• for k ¼ 1;2; : : : ;50 do Steps 1–3

1. Estimate the optimal λ for the given kðλoptk Þ
Simplex method is used to find λoptk in the range of [0 λlim],
with x ¼ Vk � xk, found using Eq. (8).

2. Compute xk with λ ¼ λoptk using Eq. (8). x ¼ Vkxk

3. Estimate resk ¼ ��b − A � x��22
kopt ¼ index of minimal value of resk and λopt ¼ λoptkopt
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experimental situation. The reconstruction results obtained
using various methods are shown in Fig. 1(b)–1(f). The pro-
posed method’s result is shown in Fig. 1(f), with the value
obtained for λopt shown in the parenthesis at the top of the
image. Figure 1(g) shows the one-dimensional cross-sectional
plot for the reconstructed PA image using GCV, L-curve, and
LSQR-based methods as well as target image [along the dotted
line in Fig. 1(a)], quantitatively showing an improvement of at
least 10 times in the recovered p0. As seen from Fig. 1, the per-
formance of LSQR-type method is superior in terms of quanti-
tation compared to their counterparts. The total computational
time recorded for all reconstruction methods shown in Fig. 1
are 129.8, 1.3, 7516.5, 7130.7, 444.9 s, respectively (system
matrix building time = 181 s). A speed up factor of 17 was
achieved by the proposed method compared to GCV method.
The results indicate that among the model-based methods,
the proposed method (LSQR) is the most efficient and promis-
ing technique for real-time imaging.

It is important to note that the LSQR (without explicit
regularization) has been extensively used in full-view data
cases (where m ≫ n2) and shown to be effective in quantita-
tion.6–8 In limited data cases (where m ≪ n2), the Tikhonov
minimization scheme is more effective with the important
condition of finding an optimal regularization parameter.
This work addresses this problem of finding an optimal regu-
larization parameter automatically without prior information
with an added advantage of reducing the dimensionality of
the problem, making it a highly computationally efficient
method.
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Fig. 1 (a) Numerical blood vessel phantom is used for the study (dimensions are in measured in millimeters). (b–f) Reconstructed photoacoustic images
using k-wave interpolated, backprojection, reconstructions using λ [Eq. (4)] obtained by GCV [Eq. (5)], L-curve and LSQR [Eq. (8)] methods, respec-
tively. (g) One-dimensional cross-sectional plot for the results presented in (a),(d),(e), and (f) along the dotted line shown in (a).
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