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The sparse estimation methods that utilize the lp-norm, with p being between 0 and 1, have shown better utility
in providing optimal solutions to the inverse problem in diffuse optical tomography. These lp-norm-based
regularizations make the optimization function nonconvex, and algorithms that implement lp-normminimization
utilize approximations to the original lp-norm function. In this work, three such typical methods for
implementing the lp-norm were considered, namely, iteratively reweighted l1-minimization (IRL1), iteratively
reweighted least squares (IRLS), and the iteratively thresholding method (ITM). These methods were deployed
for performing diffuse optical tomographic image reconstruction, and a systematic comparison with the help
of three numerical and gelatin phantom cases was executed. The results indicate that these three methods
in the implementation of lp-minimization yields similar results, with IRL1 fairing marginally in cases considered
here in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic
images. © 2014 Optical Society of America

OCIS codes: (170.0110) Imaging systems; (170.3010) Image reconstruction techniques; (170.3660) Light
propagation in tissues; (170.3880) Medical and biological imaging.
http://dx.doi.org/10.1364/JOSAA.31.000852

1. INTRODUCTION
Near-infrared (NIR) diffuse optical tomography is one of the
emerging imaging modalities, whose major applications in-
clude breast cancer imaging [1,2] and brain function assay
[1,3]. The interrogating medium in the diffuse optical tomo-
graphy is NIR light in the spectral range of 600–1000 nm. A
finite set of boundary measurements are acquired in NIR
tomography, which in turn gets used to reconstruct the inter-
nal distribution of optical properties [4]. The NIR light is
delivered through optical fibers, and the transmitted light is
collected typically through the same fibers, which are in con-
tact with the surface (boundary) of the tissue. The distribution
of optical properties of the tissue are reconstructed using this
measured boundary data with the help of model-based itera-
tive algorithms [4].

The inverse problem encountered in diffuse optical tomog-
raphy is underdetermined and ill-posed due to the limited
availability of boundary data and diffusive nature of NIR light
propagation [1,4]. To overcome this problem, the estimation
of optical properties involves a regularization scheme to ob-
tain a unique solution. Several penalty methods [5–7] have
been used to alleviate the effect of ill-posedness in the image-
reconstruction procedure. The Tikhonov-type (quadratic
norm; l2-norm-based) regularization is widely used, as it
promotes smooth solutions and thereby suppresses the high-
frequency components resulting in blobby reconstructed
images [6,8].

Apart from the l2-norm-based regularization schemes,
the l1-norm-based (absolute value) regularization schemes
were also extensively studied [8–14], as they impose a sparsity

constraint on the solution, which enables the recovery
of sharp features embedded in the image. Both l2 and
l1-norm-based regularization functional in the minimization
scheme results in convex optimization, where direct inversion
methods are available to perform the diffuse optical image
reconstruction [8–10,14]. Recently, nonconvex-based regulari-
zation schemes [8,15] (lp-norm with 0 < p < 1) have also
been used in the image-reconstruction framework of diffuse
optical tomography to further enhance the sparsity by re-
weighting procedures, iterative in nature. The lp-norm-based
regularization scheme, introduced in the time-domain diffuse
optical tomography [15], was shown to be more effective than
the conventional l1-norm regularization. The nonconvex min-
imization problems such as those with the lp (0 < p < 1)
penalties have been receiving lot of attention in the recent
past, mainly because of the need for much weaker incoher-
ence conditions among the measurements and its robust-
ness to data noise [16,17] along with promotion of sparser
solutions compared to l1-norm regularization. As a result,
the lp-regularization serves as a better choice compared to
the widely used l1-regularization to obtain sparse solu-
tions [18].

In the literature [15], application of lp-norm-based regulari-
zation is achieved using various methods and a close compre-
hensive comparison of these implementations is nonexistent
for diffuse optical tomography. Such a study is essential to
know the effective utility of the existing methods as well as
for better implementation of lp-norm based regulariza-
tion schemes in diffuse optical tomography. The existing
lp-regularization algorithms can be divided mainly into three
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types [18]: iteratively reweighted least squares (IRLS)
minimization [17], iteratively reweighted l1 (IRL1) minimiza-
tion [19], and the iteratively thresholding method (ITM) [18].
As the name suggests, the first two methods essentially solve a
series of weighted l2 and l1-optimization problems, and
the ITM makes use of a threshold function to optimize the
lp-regularization problem. Most methods proposed in the
literature for diffuse optical tomographic imaging focused
on comparing reconstruction results obtained using lp-
norm-based regularization (when 0 ≤ p ≤ 1) with l2∕1-norm-
based regularization, specifically comparing nonconvex
regularization (nontraditional) schemes versus convex
regularization (traditional) schemes [8,15].

Inspired by the recent progress in lp-regularization
schemes [17,18], this paper aims at performing a sys-
tematic comparison of these lp (0 < p < 1) minimization
algorithms—IRLS, IRL1, and ITM—for diffuse optical tomo-
graphic imaging. This comparison included numerical and ex-
perimental phantom cases, where the test cases involving
resolving power, ability to recover sharp edges, robustness
against noise levels, and finally a multilayered breast mimick-
ing experimental-gelatin phantom case were considered. Fur-
ther, a model function-based choice was adopted in all three
lp-regularization algorithms to determine the regularization
parameter for an unbiased comparison of the algorithms
[20]. The model function-based approach was proposed for
a general lp-minimization framework for bioluminescence
tomography (BLT) [20] and was shown to be computationally
efficient and superior compared to the traditional methods.
The reconstruction results using different lp-algorithms
were compared quantitatively via use of both mean value
of the region of interest (ROI) and Pearson correlation
(PC) as the figures of merit. The discussion in this study
was limited to a 2D continuous wave (CW) case, where only
the amplitude of the light is collected at the boundary, and, in
turn, the unknown optical absorption coefficient distribution
is recovered.

2. NIR DIFFUSE OPTICAL TOMOGRAPHY:
FORWARD PROBLEM
CW NIR light propagation in thick biological tissues such as
the breast and brain can be modeled using diffusion equation
(DE) [4], which can be written as

−∇ · �D�r�∇Φ�r�� � μa�r�Φ�r� � Qo�r�; (1)

where the optical diffusion and absorption coefficients are
given by D�r� and μa�r�, respectively. The CW light source,
represented by Qo�r�, is modeled as isotropic. The photon
density at a given position r is represented by Φ�r�. The dif-
fusion coefficient is defined as D�r� � �1∕3�μa�r� � μ0s�r���,
where μ0s�r� was the reduced optical scattering coefficient.
In the present work, μ0s is assumed to be known and remains
constant throughout the domain. The finite element method
(FEM) is used to solve Eq. (1) to generate the modeled data
for a given distribution of the absorption coefficient μa�r� [21].
Under the Rytov approximation, the modeled data becomes
the natural logarithm of the intensity (A), ln�A�. In this work,
the Robin (or Type III) boundary condition is incorporated
to account for the refractive-index mismatch at the boundary
[4]. This forward model is used repeatedly in an iterative

framework to estimate the optical properties of the tissue
under investigation [4,21].

3. NIR DIFFUSE OPTICAL TOMOGRAPHY:
INVERSE PROBLEM
The objective of the inverse problem is to recover the optical
absorption coefficient (μa) image (distribution) from the CW
boundary measurements using a model-based approach. This
is accomplished by matching the experimental measurements
(y) with the model-based ones (G�μa�) iteratively in the least
squares sense over the range of μa. The objective function, in
this case, becomes

Ω�μa� � ‖y − G�μa�‖22: (2)

The function G�μa� can be expanded using a Taylor series
expansion around μa0 (initial guess) as

G�μa� � G�μa0� � JΔμa � �Δμa�THΔμa � � � � (3)

with J � �∂G�μa�∕∂μa� as the Jacobian [dimension: M × N , M
represents the number of measurements and N the
number of FEM nodes (unknowns)], and H represents the
Hessian (second-order derivative). The Δμa is the update
given as μa − μa0. Linearizing the above equation leads to a
cost function [5]:

Ω�Δμa� � ‖δ − JΔμa‖22; (4)

with δ � y − G�μa� being the data-model misfit. In order to
obtain a stable solution while minimizing Eq. (4), a regulari-
zation term (also known as penalty term) involving the un-
known Δμa is added to the cost function. The generalized
lp-regularization framework for Eq. (4) can be written as

Ω0�Δμa� � ‖δ − JΔμa‖22 � λ‖Δμa‖pp: (5)

In this work, only cases 0 < p < 1 are considered. Note that
Jacobian (J) is typically computed using the adjoint method
[22], which is known to be a computationally efficient
technique. The updated equation provides a direct esti-
mation of Δμa; after computation, it is added to the current
μa, resulting in a new estimate of μa. This process is re-
peated until the difference in ‖δ‖22 in successive iterations
becomes less than 2%. The subsequent subsections intro-
duce the mathematical/computational framework for the
lp-regularization algorithms with 0 < p < 1 that were con-
sidered in this work.

A. Iteratively Reweighted ℓ1 Minimization
This involves solving a series of l1-minimization problems to
approximate the optimal solution of the lp-minimization
problem, popularly known as the reweighted scheme. The
lp-minimization problem defined in Eq. (5) with 0 < p < 1
is solved using a reweighted l1-minimization algorithm, and
the equivalent update equation can be written as [18,19]

Δμ�k�1�
a � arg min

Δμa

�
‖δ − JΔμa‖22 �

XN
i�1

w�i��k�1�jΔμa�i�j
�
;

(6)
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where w�k�1� is the weight assigned to the unknown para-
meter (Δμa) at the �k� 1�th iteration given as

w�i��k�1� � λ � p

�jΔμa�i��k�j � ϵk�1−p
; (7)

in here λ represents the regularization parameter with
0 < p < 1, and 0 < ϵk ≪ 1 is a small perturbation parameter
to prevent division by zeros, and ϵk is usually a sequence of
positive real numbers that decay to zero with iterations
to improve the accuracy of the solution [19]. Note that
setting a value of p � 1 results in a conventional l1-norm
minimization with uniform weights dictated by λ. Since
Eq. (6) is a weighted l1-minimization problem, there exists
many convex minimization schemes such as the iterative
shrinkage thresholding (IST) [23], gradient projection (GP)
[24], split augmented Lagrangian shrinkage algorithm
(SALSA) [25,26], and many more to solve this weighted
l1-minimization problem. As l1-minimization function does
not have a closed-form solution, an iterative technique is
adopted.

In this work, Eq. (6) is solved using SALSA, as it is known to
have better convergence speed compared to all other
l1-norm-based algorithms [25]. The minimization scheme de-
ployed in SALSA makes use of a variable splitting, which is
achieved using an alternating direction method of multipliers
(ADMM). The detailed description of the algorithm is given in
[25,26]. The original SALSA was proposed for solving only the
l1-minimization problems, since Eq. (6) involves solving a
weighted l1-minimization, we modified the existing SALSA
to solve a nonconvex lp-minimization problem. The main
change in the algorithm involves calculating the weight up-
dates [Eq. (7)] from the previous iteration. The modified
weighted SALSA used to solve the IRL1 minimization scheme
is given in Algorithm 1.

Algorithm 1. Iteratively Reweighted ℓ1 Minimization

Algorithm Using Weighted SALSA

INPUT: J, δ, p, λ, α, Tol, Nit and sequence of positive numbers ϵk such
that limk→∞ϵk � 0.
OUTPUT: Δμa
Initialize: d � 0 and k � 1
1. Δμa � JTδ, r1 � �JΔμa − δ� and F � JTJ� αI
2. w � ��λ � p�∕��jΔμaj � ϵk�1−p�� [Using Eq. (7)]
3. v � soft�Δμa � d; �0.5 �w�∕α� − d

4. Δμa � F−1�JTδ� αv�
5. d � Δμa − v

6. STOP if k � Nit or ‖r�k�1� − r�k�‖2 ≤ Tol; otherwise set k � k� 1,
Go TO Step 2

The inputs to Algorithm 1 are Jacobian (J) matrix, δ,
0 < p < 1, regularization parameter (λ) for l1-update,
regularization parameter (α) for l2-update, Tol, indicates
the absolute tolerance between consecutive residuals (r) of
the solution �Δμa�, maximum number of iterations (Nit),
and ϵk represents the sequence of decaying positive numbers.
Note that the value of α dictates the l2-weight update and
0 < α < maxeig�JTJ�, where maxeig represents the maximum
Eigen value of JTJ. This value was set to 0.1 in all cases.

The ADMM parameter (d) has a similar size of Δμa, which
is initialized to the zero vector, and the initial guess for the
algorithm is obtained using Step 1 in the algorithm. To over-
come the nondifferentiability nature of the l1-norm, a soft-
threshold operation is used in Step 2. The soft-threshold
represents the maximum absolute value amongst Δμa � d

and �0.5 �w�∕α. Step 3 involves obtaining the update by solv-
ing normal equations, and finally Step 4 updates the ADMM
parameter (d).

It is evident from Algorithm 1 that the crucial parameters
that decide the sparsity level in the solution (Δμa) are the
regularization parameter (λ) for l1-update and the value of
p in the lp-norm. These parameters will be optimally chosen
to reconstruct Δμa using a model function-based approach to
determine the regularization parameter λ and the data-model
misfit function [Eq. (2)] to decide the optimal p-value
(discussed subsequently).

B. Iteratively Reweighted Least Squares Minimization
This scheme is similar to IRL1, except the approximation uses
l2-minimization as opposed to l1-minimization. Specifically, it
involves deriving the iterative weights and thereafter using the
weights to solve a sequence of weighted l2-minimization prob-
lems. The equivalent unconstrained objective function can be
approximated as

ΩIRLS�Δμa� � arg min
Δμa

�
λ
XN
i�1

�Δμa�i�2 � ϵ�p2 � 1
2
‖δ − JΔμa‖22

�
:

(8)

The first-order necessary condition is used to find the mini-
mizer of the above function, given as

XN
i�1

�
λ � p � Δμa�i�
�ϵ� Δμa�i�2�1−

p

2

�
� JT�JΔμa − δ� � 0: (9)

The corresponding iterative scheme of the above equation as
suggested in [27] is given as

XN
i�1

�
λ � p � Δμa�i��k�1�

�ϵ� �Δμa�i��k��2�1−
p

2

�
� JT�JΔμ�k�1�

a − δ� � 0; (10)

or equivalently the normal equations can be written as,

�
JTJ� diag

�
λ � p

�ϵ� �Δμa�i��k��2�1−
p

2

��
Δμ�k�1�

a � JTδ: (11)

The above normal equation represents the weighted l2-
minimization scheme, it is worth noting that when p � 2
and ϵ � 0, the above expression reduces to the traditional
l2 minimization scheme without any weights. Hence the
nonconvex lp-penalty (0 < p < 1) function is approximated
by a quadratic penalty term in Eq. (8). Similar to IRL1,
IRLS also chooses a sequence of positive numbers ϵk such
that limk→∞ϵk � 0 to improve the numerical accuracy. The
corresponding IRLS algorithm is summarized in Algorithm 2
[18].
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Algorithm 2. Iteratively Reweighted Least Squares

Minimization Algorithm

INPUT: J, δ, p, λ, Tol, Nit and sequence of positive numbers ϵk such
that limk→∞ϵk � 0.
OUTPUT: Δμa
Initialize: k � 1, Δμ�1�a � JTδ and r1 � �JΔμ�1�a − δ�
1. Solve the following weighted-normal equation:

�
JTJ� diag

�
λ � p

�ϵk � �Δμa�i��k��2�1−
p

2

��
Δμa � JTδ

2. Update Δμ�k�a with Δμa
3. STOP if k � Nit or ‖r�k�1� − r�k�‖2 ≤ Tol; otherwise set k � k� 1,

Go TO Step 1

One of the main advantages of IRLS lies with the existence
of a closed-form solution to solve the minimization function
defined by the normal equations [Eq. (11)]. On the other hand,
since the lp-penalty (0 < p < 1) function is approximated by
the l2-norm, the output of IRLS can contain few entries with
large magnitudes and many entries with very small magni-
tudes. In other words, the solution given by IRLS could be con-
sidered as approximation to the solution obtained by IRL1.
Note that the crucial parameters that dictate the sparsity level
in the IRLS minimization algorithm are the regularization
parameter (λ) and the value of p in the lp-norm.

C. Iteratively Thresholding Method
This method relies on minimizing the given objective function
that could be approximated by a thresholding function [18,28].
The general penalized regularization problem can be defined
as

ΩITM�Δμa� � arg min
Δμa

�
1
2
‖δ − JΔμa‖22 � P�Δμa; λ�

�
; (12)

where P�Δμa; λ� is a penalty function. In order to minimize
Eq. (12), an auxiliary variable z is introduced, making it
equivalent to

Ω0
ITM�Δμa; z� �

1
2
‖δ − JΔμa‖22 � P�Δμa; λ�

� 1
2
�Δμa − z�T �I − JTJ��Δμa − z�: (13)

It was shown in [28] that if J has been scaled properly such
that ‖J‖2 < 1, where ‖J‖2 represents the largest singular value
of J, then I − JTJ is a positive definite matrix. In this work, this
condition was ensured by normalizing the columns of the J
matrix with respect to its Euclidean length (l2)-norm. As a
result, minimizing Ω0

ITM�Δμa; z� over �Δμa; z� is equivalent to
minimizing ΩITM�Δμa� over Δμa. Now the iterative update
scheme for Δμa is given as

Δμ�k�1�
a � arg min

Δμa

�
1
2
‖Δμa − ��I − JTJ�z�k� � JTδ�‖22

� P�Δμa; λ�
�
: (14)

Now with the knowledge of Δμ�k�1�
a minimizing over

Ω0
ITM�Δμ�k�1�

a ; z� results in z�k�1� � Δμ�k�1�
a . Finally the itera-

tive update equation in terms of Δμ�k�1�
a and Δμ�k�a is expressed

in a compact form [18] as follows:

Δμ�k�1�
a � Γ��l − JTJ�Δμ�k�a � JTδ; λ�; (15)

where Γ represents the thresholding function corresponding
to a penalty function (P�Δμa; λ�). For the penalty function,
P�Δμa; λ� � λ‖Δμa‖pp, the corresponding threshold function
can be written as (see [28] for more details)

Γlp�Δμa;λ� �
�
0; for Δμa ≤ τ�λ�
sgn�Δμa�max�θ∶g�θ� � jΔμaj�; for Δμa > τ�λ� ;

(16)

where τ�λ� � λ�1∕�2−p���2 − p��p∕�1 − p�1−p��1∕�2−p�� is called the
threshold parameter, which is a function of regularization
parameter (λ) and the value of p. Moreover, τ�λ� is the function
that constrains the level of sparsity in the solution and has to
be appropriately chosen. Note g�θ; λ� � θ� λpθ�p−1�, and
it attains its optimal (minimum) τ�λ� at θ0 � λ�1∕�2−p��

�p�1 − p���1∕�2−p�� [28]. As a result, given any Δμa > τ�λ�, the ex-
pression g�θ� � t has one and only one root bounded in
�θ0;�∞�, since g�θ� is a strictly increasing function [28],
and the root is found using Newton’s method.

In order to improve the convergence property of the ITM
algorithm, the following updating scheme was proposed:

Δμ�k�1�
a � Γlp

��I − ‖J‖−22 JTJ�Δμ�k�a � ‖J‖−22 JTδ; λ‖J‖−22 �: (17)

The corresponding ITM is summarized in Algorithm 3.

Algorithm 3. Iteratively Thresholding Method

INPUT: J, δ, p, λ, Tol, Nit.
OUTPUT: Δμa
Initialize: k � 1, Δμ�1�a � JTδ and r1 � �JΔμ�1�a − δ�
1. Solve the following update equation:

Δμa � Γlp
��I − ‖J‖−22 JTJ�Δμ�k�a � ‖J‖−22 JTδ; λ‖J‖−22 �

2. Update Δμ�k�a with Δμa
3. STOP if k � Nit or ‖r�k�1� − r�k�‖2 ≤ Tol; otherwise set k � k� 1,

Go TO Step 1

The IRL1 and IRLS have close similarities because they
approximate the nonconvex lp-norm (0 < p < 1) with the
l1 and l2-norm, which involves a series of reweighted l1

and l2-minimization problems, respectively. On the other
hand, ITM does not derive iterative weights; instead, it solves
the minimization problem using a threshold function.

D. Optimal Selection of Regularization Parameter (λ)
The outcome (solution) of IRL1, IRLS, and ITM algorithms de-
pends essentially on the choice of regularization parameter
(λ). In order to have an unbiased comparison of these three
algorithms, we adopted the well-known Morozov discrepancy
principle, which uses the model function approach [20]. This
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approach was well studied in the image-reconstruction frame-
work for a generalized lp-regularization problem in multi-
spectral BLT [20]; hence it is only briefly reviewed here.

The generalized objective function for the lp-regularization
framework as a function of λ is defined as

F�λ� � ‖δ − JΔμa�λ�‖22 � λ‖Δμa�λ�‖pp: (18)

The iterative update scheme for determining the λ, based on
the model function [20,29], is given as

λk�1 �
Ck

σ ~m − b
− Tk; (19)

where k denotes the iteration number, σ > 1, ~m �
F�λk� − λkF

0�λk� is the tangent at the point (λk, F�λk�),
b � ‖δ‖22, and F 0�λk� � ‖Δμa�λk�‖

p
p
. The relation among the

model function parameters is given by [29]

Ck � −
�b − F�λk��2

F 0�λk�
; Tk �

b − F�λk�
F 0�λk� − λk

: (20)

For all three algorithms, we set the initial guess for regulari-
zation parameter λ0 � 0.5jJTδj∞ and σ � 1.01. The steps in-
volved in this adaptive choice of regularization parameter
(λ) are given in Algorithm 4.

Algorithm 4. Adaptive Estimation of Regularization

Parameter (λ)

INPUT: Tol, σ � 1.01 and Nit.
OUTPUT: Δμa
Initialize: k � 0 and λ0 � 0.5jJTδj∞
1. Solve Eq. (18) for
Δμa�λk� using Algorithm 1 for IRL1 (or)
Δμa�λk� using Algorithm 2 for IRLS (or)
Δμa�λk� using Algorithm 3 for ITM

2. Evaluate F�λk� and F 0�λk�
3. Update Ck, Tk and ~m using Eq. (20)
4. Update λk�1 using Eq. (19)
5. STOP if k � Nit or ‖λk�1 − λk‖ ≤ Tol; otherwise set k � k� 1,

Go TO Step 1

As mentioned earlier, the p-value in the lp penalty function
also contributes in deciding the sparsity level apart from the
regularization parameter (λ). As a result, the value of p was
increased in the steps of 0.05 (0 < p ≤ 1), and then a plot
of p versus ‖y − G�μa�rec��‖2 was considered to choose the
p that resulted in a minimum value of ‖y − G�μa�rec��‖2. Note
that G�μa�rec�� represents the model data computed with the
reconstructed absorption coefficient distribution that uses op-
timal λ (achieved through Algorithm 4).

All methods were implemented with the help of MATLAB-
based open-source NIR light propagation computational
framework (NIRFAST) [21]. These algorithms are also avail-
able as open-source for the interested users [30]. The recon-
structions were performed on a Linux workstation that had
2.4 GHz Intel Quadcore processor along with 8 GB RAM.
The details of quantitative analysis of simulation and experi-
mental studies performed as part of this work is presented in
the following sections.

E. Quantitative Analysis
The PC was used as a figure of merit to evaluate the recon-
structions obtained from different algorithms that were
presented. The PC essentially measures the degree of corre-
lation between the target (μtargeta ) and reconstructed (μrecona )
absorption coefficient distribution having a range of values
from −1 to 1 and is widely used to evaluate reconstructed
images in the emission tomography [31]. This measure essen-
tially describes the detectability of the structures in the target
image and is defined as [31]

PC�μtargeta ; μrecona � � COV�μtargeta ; μrecona �
σ�μtargeta �σ�μrecona � ; (21)

where COV and σ represent the covariance and standard
deviation, respectively.

The other metric used to quantify the accuracy of the con-
trast recovered in the ROI is the mean value in the ROI. Closer
the mean value in the ROI to the expected value indicates the
better quantitative accuracy (contrast recovery) of the recon-
structed algorithms.

4. SIMULATION AND EXPERIMENTAL
EVALUATION
A. Numerical Experimental Data
In order to evaluate different characteristics of the recon-
structed images using the three nonconvex algorithms pre-
sented, numerical experiments involving three different
targets were conducted. In these numerical experiments, the
imaging domain was considered to be in a circular shape hav-
ing a radius of 43 mm. The source-detector fibers were placed
on the boundary. The data-collection setup had 16 fibers
arranged in an equispaced fashion along the boundary of the
imaging domain, when one fiber acted as a source, and the
rest acted as detectors, resulting in 240 (16 × 15) measure-
ment points [32]. All sources were positioned at one mean-free
transport length inside the boundary and were modeled as
having a Gaussian profile with an FWHM of 3 mm to mimic
the experimental conditions [32]. The background optical
properties, absorption coefficient (μa), and reduced scattering
coefficient (μ0s) of the imaging domain were set to 0.01 mm−1

and 1.00 mm−1, respectively. The refractive index of the
imaging domain is set to be 1.33. The experimental data
[y � ln�I�] was generated using a fine FEM mesh having
10,249 nodes (corresponding to 20,160 linear triangular ele-
ments), whereas the reconstruction was performed on a
coarse FEM mesh with 1933 nodes (corresponding to 3726
triangular elements).

Initial numerical experiment consisting of two circular ab-
sorbing targets mimicking the tumor region was considered.
The targets were circular in shape with a radius of 2.5 mm, had
a contrast of 2∶1 compared to the background, and were sep-
arated by a distance of 10 mm. These two targets were cen-
tered around (25, 7.5) and (25, −7.5). The tumor optical
properties were set to μa � 0.02 mm−1 and μ0s � 1 mm−1,
whose μa distribution is given in Fig. 1 (first column). The nu-
merically generated data was added with 1% (typical experi-
mental case) and 5% (for noise-tolerance evaluation) normally
distributed Gaussian noise.

Next, similar to an earlier case (Fig. 1), two rectangular
targets were placed close to the center of the imaging domain
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in order to test the ability to recover sharp features. The
rectangles were of size 9 × 4 mm placed at (0, 10) and (0,
−10); these targets had similar optical properties as in the ear-
lier case. The numerically generated data had 1% normally dis-
tributed Gaussian noise, and the expected target distribution
is as given in Fig. 2 (first column).

The third numerical test problem had a rectangular
absorber placed horizontally of size 6 × 15 mm. The absorber
had similar optical properties as mentioned earlier. The
numerically generated data had 1% normally distributed
Gaussian noise, and the expected target distribution is as
given in Fig. 3 (first column). In all these cases, the numerical
data was calibrated to remove biases introduced due to irregu-
larities in modeling source-detectors [32].

B. Gelatin Phantom Data
In order to further effectively assess the reconstruction
performance of different nonconvex algorithms, an experi-
mental gelatin phantom data set was considered. In this case,
a multilayered gelatin phantom of diameter 86 mm and height
25 mm was fabricated with heated mixtures of water (80%)
and gelatin (20%). India ink was used for absorption and
for scattering TiO2 (titanium oxide powder) to obtain different

optical properties [33]. Three distinct layers of gelatin
were constructed by repeatedly hardening gel solutions to
contain different amounts of ink and TiO2 for varying optical
absorption and scattering, respectively. To mimic a tumor, a
cylindrical hole of diameter 16 mm and height 24 mm was
filled with intralipid liquid [6]. The phantom’s optical
properties were estimated for 785 nm wavelength. The
expected 2D cross section of the phantom is shown in
the top left corner of Fig. 4(a). The region labeled as “0”
represents the fatty layer with μa � 0.0065 mm−1 and
μ0s � 0.65 mm−1. The region labeled as “1” represents the
fibro-glandular layer with μa � 0.01 mm−1 and μ0s � 1.0 mm−1.
Finally, the region labeled as “2” represents the tumor region
with μa � 0.02 mm−1 and μ0s � 1.2 mm−1 as the optical proper-
ties. The data collection setup had 16 fibers arranged in a cir-
cular fashion along the boundary of the imaging domain,
where, when one fiber acted as a source, and the rest acted
as detectors, resulting in 240 (16 × 15) measurement points
[6]. This data was calibrated using a reference homogenous
phantom to obtain the initial guess for optical properties
(here, μa) [32]. For the reconstruction, an FEM mesh of
1785 nodes corresponding to 3418 linear triangular elements
was used.

Fig. 1. (a) Reconstructed μa images using IRL1, IRLS, and ITM algorithms in the numerical experiment with 1% and 5% noisy data collected using
the target distribution (given in the first column). The first and second rows show the reconstructed images obtained for the 1% and 5% noisy data,
respectively. The reconstruction methods used are given at the top of each reconstructed image. The optimal value of p and optimal regularization
parameter (λ) are also indicated at the bottom of each reconstructed image. The 1D cross-sectional profile along the dashed line of the target
distribution for reconstructed μa images for 1% and 5% noisy cases are given in (b) and (c), respectively.
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5. RESULTS
The results pertaining to the evaluation of resolving power of
the three algorithms with two circular absorbing targets that
are placed close to each other are given in Fig. 1(a) for the
data noise level of 1% and 5% in the first and second rows,
respectively. The target distribution is given in the first
column. The algorithm used for performing the reconstruction
was indicated on top of each reconstructed image in Fig. 1(a).
The optimal p-value of the lp-norm and the regularization
parameter (λ) were also indicated at the bottom of each recon-
structed image in Fig. 1(a). Figures 1(b) and 1(c) are the 1D
cross-sectional plots of the reconstructed images correspond-
ing to 1% and 5% noisy data cases. It is evident from these re-
sults that visually the IRL1 reconstruction result is more
appealing compared to others, and the ITM is effective in
reducing the boundary artifacts. The optimal p in the lp-norm
that was utilized was similar for all three cases (range 0.4–0.5).
The quantitative comparison of these reconstructed results
presented in Fig. 1(a) for the data noise level of 1% and 5%
averaged over 10 trials, and the corresponding mean and stan-
dard deviation is given in Tables 1 (PC) and 2 (mean μa value
in the ROI).

Similar to the earlier case, two rectangular structures were
placed close to each other around the center of the imaging
domain (where the sensitivity is poor); the reconstruction re-
sults are given in Fig. 2(a). The 1D cross-sectional plots along
the dotted line of the target image are given in Fig. 2(b). In
terms of shape recovery, the IRL1 performance is marginally
superior compared with the others. The quantitative compari-
son of these reconstructed results presented in Fig. 2 are given
in Tables 1 and 2.

The reconstruction results pertaining to rectangular struc-
ture placed horizontally close to the boundary of the imaging
domain were presented in Fig. 3(a) for varying values of p.
The 1D cross-sectional plots of the reconstructed results

Fig. 2. (a) Reconstructed μa images using IRL1, IRLS, and ITM algorithms in the numerical experiment with 1% noisy data collected using the
target distribution, which is rectangular in shape and placed close to the center of the imaging domain (given in the first column). The second, third,
and fourth columns show the reconstructed images obtained for the 1% noisy data. The reconstruction methods used are given at the top of each
reconstructed image. The optimal value of p and optimal regularization parameter (λ) are also indicated at the bottom of each reconstructed image.
The 1D cross-sectional profile along the dashed line of the target distribution for reconstructed μa images is given in (b).

Table 1. Pearson Correlation of the Reconstructed

Optical Properties for the Results Presented

in This Worka

Figure IRL1 IRLS ITM

Fig. 1 (1%) 0.788	 0.0127 0.344	 0.0152 0.759	 0.0111
Fig. 1 (5%) 0.247	 0.0115 0.085	 0.0094 0.223	 0.0132
Fig. 3 0.650 0.569 0.644
Fig. 4 0.645 0.396 0.6182
Fig. 5 0.479 0.3201 0.488

aThe standard deviations observed among the reconstructed μa
distributions as in Fig. 1 using 10 realizations of the noisy data (with
fixed noise levels of 1% and 5%) are given in the first and second rows.

Table 2. Mean Reconstructed μa in the Region of

Interest [Target(s)] for the Results Presented

in This Worka

Figure IRL1 IRLS ITM

Fig. 1 (1%) 0.0153	 0.00092 0.0142	 0.00051 0.0148	 0.00072
Fig. 1 (5%) 0.0148	 0.00095 0.0128	 0.00065 0.0135	 0.00069
Fig. 3 0.0170 0.0151 0.0160
Fig. 4 0.0173 0.0162 0.0168
Fig. 5 0.0196 0.0168 0.0174

aThe standard deviations observed among the reconstructed μa
distributions as in Fig. 1 using 10 realizations of the noisy data (with fixed
noise levels of 1% and 5%) are given in the first and second rows.
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along the dotted line given in the target image are presented in
Fig. 3(b). The corresponding quantitative metrics are also re-
ported in Tables 1 and 2.The different p-values considered for
reconstruction are shown in the first, second, and third rows
of Fig. 3(a). Note that the last but one column in Fig. 3 indi-
cates the reconstruction obtained for optimized p-value. The
reconstruction obtained from IRLS reveals that the target is
shrunk compared to the results obtained from IRL1 and
ITM, with IRL1 fairing marginally compared to ITM.

Finally, the reconstruction results obtained for the case of
experimental gelatin phantom data are given in Fig. 4. The cor-
responding quantitative metrics are given in Tables 1 and 2.
These results indicate that the IRL1 is marginally superior
in terms of tumor-shaped recovery visually compared to other
methods, while ITM tries to suppress the background artifacts
considerably compared to IRL1 and IRLS. Even though the PC
values are slightly higher for the ITM, the quantitative accu-

racy (indicated by the mean value of the target) is higher
for the IRL1. It is important to note that the experimental
phantom considered here represents a layered tissue model
with varying optical properties mimicking a typical breast,
which indicates a less sparse solution, where one can expect
the ITM to perform well.

To drive the point of existence of optimal p for the lp-norm
deployment, the p (0 < p ≤ 1) was varied in steps of 0.05, and
the corresponding data-model misfit function (‖y − G�μa�‖22)
was plotted for the IRLS, IRL1, and ITM for the target case of
Fig. 1 with 5% noise in the data. The same is given in Fig. 5(a),
which clearly shows that there exists a minima for such func-
tional, and an optimal p can be easily determined. Note that
this approach was adapted for all cases that were presented in
this work. The G�μa� here represents the reconstructed μa
obtained with corresponding p coupled with the optimal
regularization parameter (λ) obtained using Algorithm 4.

Fig. 3. (a) Reconstructed μa images using IRL1, IRLS, and ITM algorithms in the numerical experiment with 1% noisy data collected using the
target distribution, which is rectangular in shape, placed horizontally close to the boundary of the imaging domain (given in the first column) for
varying values of p (given below each reconstructed image). The first, second, and third rows show the reconstructed images obtained for the 1%
noisy data using IRL1, IRLS, and ITM, respectively. The 1D cross-sectional profile along the dashed line of the target distribution for reconstructed
μa images for the optimized p-value (last but one column) is given in (b).
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For completeness, the corresponding mean squared error
values for the reconstructed μa are plotted in Fig. 5(b).

6. DISCUSSION
The usage of l1-norm-based image reconstruction has been
well studied in diffuse optical tomographic imaging [8–14,34],
which is the tightest convex envelope for the NP hard l0-norm
(ideal norm for recovering the sparsest solution). It has been
shown in various contexts [16,17], that for this convex
surrogate for a Gaussian sensing matrices, the minimum num-
ber of measurements (m) required is [16]

m > Ck logβ�n�; (22)

where the value of β depends on the sensing matrix, C repre-
sents the coherence property of the sensing matrix, k is the
sparsity of the solution, and n is the size of the unknown sig-
nal. The inverse problem encountered in diffuse optical
tomography is typically underdetermined; as a result, one
expects to have an image-reconstruction framework that
can perform well even in the case of less data. To address
this need, a class of nonconvex algorithms based on lp-
minimization (0 < p < 1) was proposed. The minimum
number of measurements (m) required to solve the inverse
problem with a nonconvex penalty is [16]

m ≥ C1k� pk log�n�; (23)

where C1 is a constant that depends on the sensing matrix
(Jacobian). Note that, as the value of p (0 < p < 1) decreases,
the second term in the above equation almost disappears, and
the required number of measurements (m) only grows linearly
with the sparsity level (k, number of nonzeros) in the solution.
Hence nonconvex algorithms require lesser measurements

Fig. 4. (a) Comparison of reconstructed μa images obtained for the case of experimental gelatin phantom, mimicking a typical breast, using IRL1,
IRLS, and ITM algorithms. (b) Similar to Fig. 2, the 1D cross-section of the reconstructed results along the dotted line of the target image.

Fig. 5. (a) Plot showing the variation of p in the lp-norm (0 < p ≤ 1)
in steps of 0.05 versus the data model misfit function, ‖y − G�μa�‖22 for
IRLS, IRL1, and ITM algorithms corresponding to the case of Fig. 1(a)
(5% noise). The optimal value of p is the one that results in minimum
value of the data model misfit (y axis). (b) Similar to (a), except the
y axis gives the mean squared error, where the error is defined as
reconstructed μa minus expected μa.

860 J. Opt. Soc. Am. A / Vol. 31, No. 4 / April 2014 C. B. Shaw and P. K. Yalavarthy



compared to the typical l1-norm [16]. As the inverse problem
encountered in diffuse optical tomography is already severely
underdetermined, we can expect the lp-norm to work well in
these scenarios; the same has been shown in [8].

To effectively utilize the lp-norm, the determination of op-
timal regularization parameter is essential, and we have pro-
vided a scheme for determining the same. More importantly,
we have developed a computationally efficient scheme for
implementing the scheme, via modified SALSA (weighted
SALSA). Note that Step 3 of Algorithm 1 (soft thresholding)
is equivalent of the gradient of the l1-norm, and this approach
is known as analysis prior (where the w vector appears only
in the gradient term). On the other hand, if one has to multiply
the weight matrix in Steps 1, 3, and 4 of Algorithm 1, the re-
sulting problem is known as synthesis prior. It was shown
that the analysis prior performs better than synthesis prior

[16]; as a result in this work, only analysis prior is utilized in
the IRL1 method (Algorithm 1).

Theoretically, a reweighted l2 (IRLS) minimization prob-
lem does not guarantee sparse solutions. The solution may
not have zero entries at all, irrespective of the number of times
the solution is reweighted. This effect is evident from the
reconstruction results presented in this work (Figs. 1–4),
where there are few background updates apart from the up-
dates in the target. On the other hand, iterative reweighted l1

(IRL1) and iterative thresholding methods (ITM) guarantee
sparse solutions at each iteration.

The IRL1 and IRLS algorithms require a sequence of posi-
tive numbers (ϵk) for all cases considered here. Our initializa-
tion for this vector was to make all entries equal to 0.1, and,
after every iteration, the vector was multiplied by 0.5 to
achieve a sequence that decays to zero. It was observed that
choosing a value very close to zero leads to lot of boundary
artifacts in the image. The stopping criterion (Tol) for IRL1,
IRLS, and ITM (Algorithms 1–3) were set to 10−6 (single pre-
cision limit), and the adaptive regularization parameter esti-
mation algorithm (Algorithm 4) to 10−5.

The IRL1, IRLS, and ITM require O�it × N3�, O�it × N3�, and
O�it × N2� number of operations, respectively, for a fixed p

and λ; here it represents the number of iterations. The ITM
also requires computation of the largest singular value of
Jacobian [Eq. (17)] for better implementation in real-time,
making it also computationally on par with other methods.
The typical computational time required for the IRL1, IRLS,
and ITM algorithms for the results presented in Fig. 1(a)
are 15.77, 12.03, and 13.81 s, respectively, for a fixed regulari-
zation parameter (λ) and value of p in the lp-norm.

The superiority of iteratively reweighted l1 has been dem-
onstrated in numerous other cases [16,19,35,36] in terms of
reconstructing a sparse solution compared to other existing
methods; the same was also shown in this work. In terms
of figures of merit, Tables 1 and 2, the IRL1 performance is
comparatively superior to other methods that were discussed
in this work. In terms of noise tolerance, the IRL1 also pro-
vides better robustness compared to other methods (Fig. 1,
Tables 1 and 2, second row).

Moreover, this is the first comparison of lp-norm
implementation schemes for biomedical optical image
reconstruction, which includes modalities, namely, BLT,
diffuse fluorescence optical tomography (DFT), and diffuse
optical tomography. Even though the test cases presented

here are limited in nature, the trends observed here should
hold good in general.

7. CONCLUSIONS
The sparse recovery methods that utilize lp-norm (0 < p < 1)
in the regularization function have been shown to have a bet-
ter utility compared to a strict convex regularization func-
tional (l2 and l1-norm) in solving inverse problem in
diffuse optical tomography. There are many ways of imple-
menting the minimization of lp-norm cost function, and an ef-
fective comparison of these leading methods was performed
in this work to know the utility of these implementations. The
systematic comparison, which included three numerical and
gelatin phantom cases, showed that these three typical
approximation methods utilized in implementing lp-norm
yield similar performance in the diffuse optical tomographic
image reconstruction, with the iteratively reweighted l1-norm
method performing better than others to some extent in
the limited cases considered here. The algorithms used in
this work are provided as open-source for enthusiastic
readers [30].
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