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Abstract

Quantitative susceptibility mapping (QSM) provides an estimation of the mag-
netic susceptibility of tissues from magnetic resonance (MR) phase measurements.
Estimation of the tissue magnetic susceptibility (source) from the measured mag-
netic field distribution/local tissue field (effect) inherent in the MR phase images
was achieved by numerically solving the inverse source-effect problem. This work
aims to develop an effective model-based deep learning framework to solve the
inverse problem of QSM. This work proposes a Schatten p-norm-driven model-
based deep learning framework for QSM with a learnable norm parameter p to
adapt to the data. In contrast to other model-based architectures that enforce
either l2-norm or l1-norm for the denoiser, the proposed approach can enforce any
p-norm (0 < p ≤ 2) on a trainable regularizer. The proposed method was com-
pared with deep learning-based approaches, such as QSMnet, and model-based
deep learning approaches, such as learned proximal convolutional neural network
(LPCNN). Reconstructions performed with 77 imaging volumes with different
acquisition protocols and clinical conditions, such as hemorrhage and multiple
sclerosis, showed that the proposed approach outperformed existing state-of-the-
art methods by a significant margin in terms of quantitative merits. The proposed
SpiNet-QSM showed a consistent improvement of at least 5% in terms of the
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high frequency error norm (HFEN) and the normalized root mean squared error
(NRMSE) over other QSM reconstruction methods in limited training data.

Keywords: dipole inversion, model-based deep learning, Schatten p-norm,
susceptibility reconstruction

1 Introduction

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI)
technique aimed at mapping the magnetic susceptibility of tissue from the gradient
echo imaging phase [1–4], QSM has important clinical relevance because bulk tissue
magnetic susceptibility provides essential information about tissue composition and
microstructure, such as myelin content in white matter and iron deposition in gray
matter. Pathological changes in these tissue susceptibility sources are closely related
to a series of neurodegenerative diseases such as multiple sclerosis and Alzheimer’s
disease. Multiple processing steps are involved in obtaining the susceptibility map from
the acquired MR data. These include phase unwrapping, background field removal,
and dipole inversion (dipole deconvolution).

In the first step, the ambiguity caused by the 2π periodicity is removed using phase
unwrapping. Furthermore, the phase contributions arising from the unwrapped phase
due to the air–tissue and air–bone interfaces will be reduced/eliminated in the back-
ground field removal because the magnitude of the former component is much larger
than that of the tissue component. Some popular background removal techniques are
sophisticated harmonic artifact reduction for phase data (SHARP)[5], regularization
enabled SHARP (RESHARP) [6], projection onto dipole fields (PDF)[7], spherical
mean value (SMV) filtering [8], Laplacian boundary value background field removal
(LBV)[9]. The background field removed unwrapped phase is typically referred to as
the local field. The following step involves the spatial deconvolution of the dipole
kernel with the local field. This is achieved in the Fourier domain by performing an
element-wise division between the phase image and the dipole kernel. Owing to the
singularity in the dipole kernel, performing a division in the Fourier domain results in
an ill-conditioned problem. Thus, the incorporation of either handcrafted or learned
priors is required to efficiently recover the underlying susceptibility map.

The advent of deep learning-based methods has shown promising results in
deconvolving the susceptibility distribution from the phase information of the MR
signal. QSMnet[10], DeepQSM[11], and xQSM [12] are examples of the deep learn-
ing approaches developed for computing susceptibility maps. In these methods, a
deep neural network was utilized to learn the mapping from the single-orientation
phase measurement to the corresponding multi-orientation Calculation of Susceptibil-
ity through Multiple Orientation Sampling (COSMOS) [13] susceptibility map, and
then utilize the learned network to estimate high-quality susceptibility maps similar
to COSMOS from the single-orientation phase measurements. QSMnet uses a three-
dimensional convolutional neural network (CNN) U-net [14] architecture to estimate

2



the susceptibility map. DeepQSM learns the physical forward problem by using syn-
thetic data. To further improve the performance of the QSM reconstruction, octave
convolutions were introduced in xQSM [12]. It also requires end-to-end training from
the local field to the COSMOS.

Although the aforementioned methods have the potential benefits of deep learning,
they do not utilize the underlying physics of the QSM problem and hence are more
biased towards the data used for training. Consequently, if the distribution of the input
phase data differs from that of the trained data, these methods fail to adapt to the
given input, resulting in suboptimal reconstruction. This is aggravated if the model
is trained with less data. To alleviate this, model-based deep learning approaches
were utilized that combine the power of deep learning and the underlying physics
of the problem [15]. Learned proximal convolutional neural network for quantitative
susceptibility mapping (LPCNN)[16] and model-based deep learning for QSM (MoDL-
QSM) are examples of such approaches which were developed for QSM reconstruction.
LPCNN approach is an unrolled iterative model that combines the proximal gradient
algorithm and a CNN (3D-WideResNet). LPCNN decouples the forward model and
data-driven parameters in the reconstruction algorithm. It utilizes a proximal operator
parameterized by CNN, which functions as a data-driven regularizer. This regularizer
restricts the set of possible solutions by enforcing the prior knowledge. Another model-
based approach for QSM reconstruction is MoDL-QSM [17], in which the principal
component of susceptibility is utilized as the ground truth or label.

In this work, the proposed SpiNet-QSM model introduces a novel deep learn-
ing architecture that replaces the traditional l2-norm or l1-norm regularizers with a
learnable p-norm (0 < p ≤ 2) based regularizer, which is automatically learned from
the data. The main contributions of this work are : (i) It provides an improved sus-
ceptibility map even on limited training data. (ii) It provides better generalizability
across different QSM datasets and performs consistently well in region of interest
(ROI) analysis. Reconstructions performed across 77 imaging volumes with differ-
ent acquisition protocols, and clinical conditions such as hemorrhage and multiple
sclerosis showed that the proposed approach outperforms existing state-of-the-art
reconstruction methods by a significant margin in all figures of merit.

2 Methods

2.1 Datasets

In this work, six datasets were used. The first dataset was from Seoul National Uni-
versity (SNU), South Korea, (SNU data) which consisted of 60 volumes collected from
12 healthy subjects, was utilized. The data were acquired at 3T (nine datasets using
Tim Trio and three datasets using MAGNETOM Skyra, Siemens Healthineers, Forch-
heim, Germany) at five different head orientations [10]. The data had dimensions of
176×176×160. The second dataset was shared by Lai et al. [16] (LPCNN data) which
consisted of four healthy subjects, acquired at 7T (Philips Achieva) with four head ori-
entations each, with a total of 16 volumes. The data had dimensions of 224×224×126.
The third dataset was shared by reconstruction challenge-1 (RC-1) [18] which con-
sisted of 1 volume collected from acquired at 3T (Tim Trio, Siemens Healthcare
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GmbH, Erlangen, Germany) with twelve head orientations. The data had dimensions
of 160× 160× 160. The fourth dataset was shared by reconstruction challenge-2 (RC-
2) [19] simulation2 which consisted of 2 volumes (sim2snr1,sim2snr2). The data had
dimensions of 164×205×205. For clinical study on hemorrhage and multiple sclerosis,
datasets acquired on 3T GE HDxt MR scanner was utilized as shared by [17]. These
datasets had dimensions 256×256×66 and 256×256×124, respectively. All datasets
were pre-processed and shared by the respective authors.

The SNU data was used for training the model. For training, the local field was
provided as an input to all methods, and the rotated COSMOS maps that matched the
orientation of the input local field were used as the ground truth. To increase the size
of the training data, the COSMOS maps were rotated at angles (−30◦ and 30◦ relative
to B0 ), and local field maps were generated by dipole convolution. Using this data
augmentation process, the total training data was tripled. Because the QSM problem
has been defined in 3D, multiple 3D patches were generated for the training process
with a size 64×64×64 voxels and 66 % overlap with adjacent patches. The COSMOS
map was used as a label/ground truth for all methods considered in this work.

2.2 QSM reconstruction model

The relation between the susceptibility map χ ∈ X and the local field y ∈ Y , with X
and Y representing the susceptibility and phase spaces, can be expressed as

ϕχ = y (1)

where ϕ = FHDF is the forward operator. Here, F is the discrete Fourier transform
and D is the dipole kernel, which is a diagonal matrix. However, there are zeros in D,
χ cannot be computed using a direct inverse and requires the introduction of some
prior information about the underlying susceptibility map. In this work, a Schatten
p-norm prior with 0 < p ≤ 2 was utilized in a model-based deep learning framework
for QSM reconstruction.

2.3 SpiNet

SpiNet is a model-based deep learning technique for solving the inverse problem with
an iterative unrolled structure [20]. It has two parts: the first is a p-norm-enforced
regularizer with a CNN-based learnable denoiser, and the second is an iterative data
consistency solver. SpiNet solves the inverse problem (Ax = b) by formulating the
following optimization problem:

x∗ = argmin
x

{J(x) = ∥Ax− b∥22︸ ︷︷ ︸
Data Consistency Term

+ λ∥x− z∥pp︸ ︷︷ ︸
Prior Information Enforcing Term

} (2)

where

z = Dw(x) (3)
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Fig. 1: (a) Network architecture of the proposed SpiNet-QSM. Each iteration of the network
consists of two blocks, namely CNN-denoiser (Dw) block and data consistency block (DC)
(b) Proposed SpiNet-QSM has been shown as an unrolled iterative architecture. The bottom
row shows the reconstructed susceptibilty maps with iteration for an example case. The
respective high-frequency error norm (HFEN) computed with respect to COSMOS shown
below the respective susceptibility map shows considerable improvement with iteration.
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Here, the eq.(2), ∥Ax − b∥22 represents the data consistency term, and ∥x − z∥pp rep-
resents the regularization term, with λ denoting the regularization parameter that
balances the trade-off between the data consistency term and the regularization term.
Here z in eq.(3) is a denoised version of x, which is an output of the CNN-based
denoiser denoted by Dw, and eq. (2). The solution x∗ is constrained to follow data
consistency and is in the vicinity of z. The solution x∗ simultaneously minimizes the
data consistency term ∥Ax − b∥22 and considers the prior information through the
regularization term, which comprises the CNN-based denoiser.
The eq. (2) is solved by utilizing the majorization-minimization (MM) approach. This
consists of two steps: computing the convex upper bound function F(x) (majorization)
and solving the upper bound function (minimization) in an iterative manner. The
steps involved in solving SpiNet are as follows:

zk = Dw(xk−1) (4)

(Wk)ii = |(x̄)i − (zk)i|p/2−1 (5)

F(x) = ∥Ax− b∥22 + λ
′
∥Wk(x− zk)∥22 ≥ J(x) (6)

xk = argmin
x

∥Ax− b∥22 + λ
′
∥Wk(x− zk)∥22 (7)

xk = (AHA+ λ
′
WH

k Wk)
−1(AHb+ λ

′
WH

k Wkzk) (8)

where x̄ is the known point nearer to the x∗ at the kth iteration (in the implementation

the xk−1 is used as x̄), Wk is a diagonal matrix and λ
′
= λp/2. Here, eq. (4), eq.

(5) and eq. (6) represents the majorization step and eq. (7) and eq. (8) are represent
the minimization step. The minimization step in eq. (8), is solved using the conjugate
gradient (CG) method to estimate xk given Wk and zk. The output xk from the
minimization step was used as x̄ for the majorization step in the (k+1)th iteration. The
denoisers share weights across all iterations with end-to-end learning, which effectively
reduces the number of learnable parameters [15].

All the steps from eq. (4) to eq. (8) were considered as a single unrolling step.
However, this method makes an end-to-end network by unfolding the data consistency
block and denoiser block interleaved manner for K times. Here, K is known as the
unrolling parameter. These interleaved CNN blocks, learn the prior information from
the dataset set, along with data consistency blocks that constrain the reconstruction
to follow the physics of the problem.

2.4 Proposed SpiNet-QSM

To adopt SpiNet to QSM reconstruction problem, eq. (1) was redefined with a Schatten
p-norm enforced regularizer,

χ∗ = argmin
χ

{J̄(χ) = ∥ϕχ− y∥22 + λ ∥χ− z∥pp} (9)
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Algorithm 1 Algorithm for proposed Spinet-QSM

Require: Local field (y), No of Unrollings (K), No of MM-steps (N)

1: χ0 = ϕHy
2: for k = 1 to K do
3: zk = Dw(χk−1)
4: χ̄

k,0 = χ
k−1

5: for j = 1 to N do

6: (Wk,j)ii = |(χ̄k,j)i − (zk)i|
p
2−1

7: χ̄
k,j = (ϕHϕ+ λWH

k,jWk,j)
−1(ϕHy + λWH

k,jWk,jzk)
8: end for
9: χ

k = χ̄
k,N

10: end for

Now, J̄(χ) can be iteratively solved using the majorization-minimization approach as
described earlier. The upper bound function of J̄(χ) denoted as F̄(χ) is first defined
(majorization step) by taking an analogy from eq. (4), eq. (5) and eq. (6) as

zk = Dw(χk−1) (10)

(Wk,j)ii = |(χ̄k,j−1)i − (zk)i|
p
2−1 (11)

here, χ̄k,0 = χk−1.

F̄(χ) = ∥ϕχ− y∥22 + λ ∥Wk,j(χ− zk)∥22 (12)

where zk is the denoised susceptibility map which is obtained from eq. (10) by taking
input as χk−1 and, χ̄k,j is a calculated susceptibility map in jth step of the MM in kth

iteration. The minimization step (solving upper bound function F̄(χ) ) was defined
by taking the analogy from the eq. (7) and eq. (8) and it showed as

χ̄k,j = argmin
χ

{F̄(χ)} (13)

χ̄k,j = (ϕHϕ+ λWH
k,jWk,j)

−1(ϕHy + λWH
k,jWk,jzk) (14)

Here, the eq. (13) can be solved using normal equations eq. (14). Now, this can be

solved using a CG solver of Āx = b̄.

Ā = (ϕHϕ+ λWH
k,jWk,j) = (FHD2F + λWH

k,jWk,j) (15)

b̄ = (ϕHy + λWH
k,jWk,jzk) = (FHDFy + λWH

k,jWk,jzk) (16)

At each iteration, this results in performing majorization and minimization N times

and the susceptibility map output from kth iteration is χk = χ̄k,N . A detailed kth

step-wise explanation of QSM solving using SpiNet is provided in Algorithm (1).

2.5 Proposed SpiNet-QSM architecture

The proposed SpiNet-QSM architecture is shown in Fig. 1. It has two blocks: a regu-
larizer that consists of a CNN-based denoiser for eq. (10), and another one is a data
consistency block for eq. (7). In the data consistency block, MM implementation is
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Table 1: Summary of the training parameters for different models utilized in this study.

Experiment Learning Rate Loss function Batch size
No. of Epochs

Trained
Time taken for

single epoch (Minutes)
SpiNet-QSM 1× 10−4 w1(lossL1) + w2(lossGradient) 2 45 90
LP-CNN 1× 10−4 w1(lossL1) + w2(lossGradient) 2 80 120
QSMNet 5× 10−4 w1(lossL1) + w2(lossGradient) 8 25 30
DeepQSM 5× 10−4 lossL2 8 25 30
xQSM 5× 10−4 lossL2 8 25 50

performed utilizing eq. (10) to eq. (12). In the Minimization step, CG method was
utilized to solve eq. (12) with M1 = 25 iterations to estimate χ given W and zk, and
use this χ as χ̄ for the next Majorization step. The MM algorithm is repeated for
N = 2 iterations. The denoiser block (Dw) uses a 3D-WideResNet CNN architecture
inspired by Refs. [16, 21]. This is an implicit data-driven regularizer that uses the
power of residual learning. It has 21 convolutional layers and eight repetitive residual
blocks. For the first 17 convolutional layers, the kernel size was 3× 3× 3 with a stride
of one, and for the last three convolutional layers, the kernel size was 1 × 1 × 1 and
stride 1. Batch normalization layer (BN) and rectified linear unit (ReLU) activation
functions were utilized inside the residual blocks. The last layer of the network is a
convolutional layer with a kernel size of one. In the proposed SpiNet-QSM network,
the trainable parameters are θ = {λi, (Dw)i, pi}Ki=1, where K is the number of itera-
tions in the unrolled network. However, the training parameters were shared among
different iterations. Therefore, the training parameters are θ = {λ,Dw, p}.

2.6 Implementation

The proposed SpiNet-QSM was implemented using Python 3.9.12 and PyTorch 1.11.0.
It was trained on an NVIDIA Quadro RTX 8000 graphics processing unit (GPU). For
all deep learning models in this work, Adam optimizer is utilized. The other training
parameters, including the learning rate, loss function, batch size, number of epochs,
and time for each epoch, are summarized in Table 1. It is to be noted that the training
parameters for each model was chosen empirically so as to give the best performance
on the validation data. In Table 1 the lossL1 term is defined as the l1-norm of the
voxel-wise difference, and the lossGradient term is defined as the l1-norm of gradients
difference. w1 and w2 are the weights assigned to lossL1 and lossGradient respectively.
The weights were chosen as w1 = 1 and w2 = 0.5, determined empirically. The lossL2

term is defined as the l2-norm of the voxel-wise difference, and it is nothing but a
mean square error between ground-truth and reconstructed QSM. Further, in the
proposed SpiNet-QSM, the number of MMsteps (N) was chosen as 2, and the number
of CG iterations (M1) was 25; these parameters were empirically selected. It has also
experimented with N ≥ 2 and M1 ≥ 25; however, it did not show any improvement
in performance compared to N = 2 and M1 = 25. Instead, it increased the GPU
computation and GPU RAM consumption during training.
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Fig. 2: (a) An example susceptibility image reconstructed using the complete data training
was shown in the first row, and the difference images with respect to COSMOS in the second
row. (b) The same data reconstructed on limited data training (16% of the data utilized in
(a)) are shown in the first row, and the difference images with respect to COSMOS are shown
in the second row. The corresponding high-frequency error norm (HFEN) and normalized
root mean squared error (NRMSE) with respect to COSMOS are shown below the respective
susceptibility map and difference image, respectively. As NDI is an iterative method, the
reconstruction results (NRMSE=57.734 and HFEN=54.175) were not included in the figure.

2.6.1 Selection of Dw

A 3D-WideResNet18 CNN architecture was used as the trainable regularizer. This
architecture was empirically chosen by experimenting with different 3D CNN archi-
tectures. To choose Dw, a simple residual-learning-based 3D CNN architecture (with
five layers) was initially used, motivated by MoDL [15]. As QSM reconstruction is
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a challenging 3D problem, the regularizer faces underfitting issues when trained on
complete data. When 3D-UNet was used as the regularizer, it performed well on the
complete training data with K=1. However, it did not show any improvement for
K = 2 and 3. The 3D-Unet architecture performed poorly as a learning regularizer
with shared weights over iterations, and thus cannot use the advantage of the unrolled
structure. This architecture also faces an underfitting issue when trained with limited
data. Finally, the 3D WideResNet18 architecture was utilized as a trainable regular-
izer. It performed well on complete and limited training data, and showed improved
reconstruction for K > 1.

2.6.2 Selection of K

In general, training any model-based deep learning technique is more challenging
than training pure deep learning techniques, requiring additional training time. The
proposed SpiNet-QSM has an unrolled architecture with shared weights and requires
additional effort to train the CNN regularizer. To arrive at the optimal value of the
number of iterations (K), experiments were performed with different unrolling param-
eters, i.e., K = 1, 2, 3, and 4. It was observed that the reconstruction performance
improved as the number of iterations increased from 1 to 2 and 2 to 3. However, from
3 to 4, this did not lead to significant improvement and made the training process
more difficult in terms of delayed convergence and increased training time. As the
number of iterations increases, learning a common regularization term across the
inputs and outputs in each iteration becomes more difficult, owing to the sharing of
weights across iterations. This implies that for K > 3, the CNN complexity is insuf-
ficient to learn the QSM problem with shared weights. However, if one increases the
complexity of CNN and the number of iterations (K > 3) then the training process
becomes more difficult. The proposed SpiNet-QSM showed the best performance at
K = 3, and therefore, K = 3 was fixed as the number of unrolling iterations in all the
experiments.

2.7 Experiments

2.7.1 Effect of Dataset Size

Training on complete data: Out of the 12 healthy volunteer scans from SNU data, each
with five head orientations, 25 scans from five subjects (along with augmented data
consisting of 75 scans) were utilized for training, five scans from one subject were used
for validation, and 30 scans from six subjects were utilized for testing. A 4-fold cross-
validation was performed. In order to compare SpiNet-QSM with other popular deep
learning models, QSMnet, DeepQSM, xQSM and LPCNN were also trained to solve
QSM. As the outcomes of the second QSM reconstruction challenge [22] revealed that
while deep learning methods often produce visually appealing results, their quantita-
tive performance is generally inferior to that of iterative methods, the deep learning
methods were also compared with an iterative method. Among the different state-of-
the- art nonlinear iterative reconstruction methods such as nonlinear dipole inversion
(NDI) [23], fast nonlinear susceptibility inversion (FANSI)[24] and nonlinear total field
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inversion [25], NDI was used for comparison in this study. For the deep model training,
4-fold cross-validation is used.
Training on limited data: An experiment involving a comparison of the reconstruction
performances of different methods under a limited data setting was also performed.
Here, the training dataset consisted of a single subject’s data (along with augmented
data consisting of 15 scans), the validation (same as that of full data training) set
consisted of single subject data, and the test set consisted of ten subject’s data. Single
subject data was utilized in this experiment, which is approximately 16% of that of
‘the training on complete data.’ The training settings detailed in the preceding section
were used for the deep learning models even when dealing with limited data training.

Table 2: Averaged quantitative performance metrics (SSIM, pSNR, NRMSE, and HFEN)
of different QSM reconstruction methods with respect to COSMOS estimated using 4-fold
cross-validation set. The best results are shown in bold.

Experiment Method
METRICS

SSIM xSIM pSNR NRMSE HFEN

Complete data
training

SpiNet-QSM 0.904 ± 0.031 0.577 ± 0.087 40.296 ± 1.622 54.782 ± 8.733 52.054 ± 9.262
LP-CNN 0.900 ± 0.030 0.559 ± 0.079 40.179 ± 1.566 56.007 ± 8.580 53.860 ± 9.997
QSMnet 0.902 ± 0.029 0.587 ± 0.078 40.244 ± 1.510 54.637 ± 8.118 52.880 ± 9.587
DeepQSM 0.899 ± 0.029 0.576 ± 0.076 40.179 ± 1.470 55.225 ± 7.944 54.110 ± 9.277
xQSM 0.901 ± 0.029 0.587 ± 0.078 40.176 ± 1.519 55.293 ± 8.293 53.833 ± 9.545
NDI 0.868 ± 0.035 0.487 ± 0.09 38.257 ± 1.351 70.089 ± 8.228 66.152 ± 8.631

Limited data
training

SpiNet-QSM 0.895 ± 0.027 0.537 ± 0.081 39.933 ± 1.453 57.001 ± 7.459 54.605 ± 8.838
LP-CNN 0.881 ± 0.027 0.493 ± 0.070 39.271 ± 1.387 61.794 ± 6.801 59.316 ± 8.323
QSMnet 0.861 ± 0.042 0.417 ± 0.061 38.698 ± 1.619 65.475 ± 9.756 68.881 ± 12.657
DeepQSM 0.861 ± 0.042 0.417 ± 0.059 38.723 ± 1.578 65.402 ± 9.308 66.554 ± 12.142
xQSM 0.853 ± 0.054 0.403 ± 0.061 38.590 ± 1.692 66.893 ± 10.446 67.176 ± 13.096
NDI 0.868 ± 0.035 0.487 ± 0.092 38.257 ± 1.351 70.089 ± 8.228 66.152 ± 8.631

2.7.2 Performance on Other Datasets

To assess the robustness of the model in terms of reconstruction and demonstrate
how well the regularization term generalizes the QSM reconstruction problem, the
performances of different methods were compared on datasets with different acquisi-
tion parameters. These datasets differed from the training data in terms of acquisition
parameters, vendors, and signal-to-noise ratio (SNR). For this, the models trained on
SNU data were tested using LPCNN data [16], RC-1 data [18] and RC-2 data [19].
As this experiment was performed to evaluate the generalizability and performance of
the trained models on unseen data, we did not use any type of pre-processing before
reconstructing the respective data. It should be noted that the models trained on
complete data were used in this experiment.

2.7.3 Clinical Analysis

To explore the clinical utility of the proposed SpiNet-QSM, reconstructions were per-
formed on pathological data including hemorrhage and multiple sclerosis (MS). For this
experiment, the data shared by MoDL-QSM [17] were utilized. Furthermore, local mea-
surements of susceptibility values were compared for different reconstruction methods.

11



Fig. 3: (a) Scatter plots of QSM maps reconstructed using the proposed SpiNet-QSM, LP-
CNN, QSMnet, DeepQSM, and xQSM, which were trained on complete training data. (b)
Scatter plots of QSM maps reconstructed using the same five methods and trained on limited
training data. QS represents the quantitative susceptibility value in parts per million (ppm).
As NDI is an iterative method, the same scatter plot was included in both scenarios and is
showcased as a sixth figure
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Table 3: Quantitative metrics with respect to COSMOS obtained by testing on other data
sets (LP-CNN data, RC-1 data and RC-2 (Sim2Snr1 and Sim2Snr)) data [22]. The models
were trained on SNU data. The best results are shown in bold font. As NDI and FANSI are
iterative methods, results for RC-1 and RC-2 data were presented without standard deviation
(No cross-validation).

Experiment Method
METRICS

SSIM xSIM pSNR NRMSE HFEN

LPCNN data

SpiNet-QSM 0.927 ± 0.013 0.541 ± 0.034 35.071 ± 1.480 57.340 ± 2.912 53.533 ± 3.472
LP-CNN 0.914 ± 0.011 0.387 ± 0.201 34.651 ± 1.537 61.353 ± 2.318 56.931 ± 2.875
QSMnet 0.918 ± 0.014 0.499 ± 0.034 34.612 ± 1.498 61.046 ± 2.879 56.422 ± 3.792
DeepQSM 0.918 ± 0.0128 0.493 ± 0.0292 34.693 ± 1.592 61.202 ± 2.662 56.669 ± 3.409
xQSM 0.917 ± 0.011 0.497 ± 0.033 34.580 ± 1.275 61.443 ± 2.554 57.301 ± 3.243

RC-1 data

SpiNet-QSM 0.916 ± 0.003 0.643 ± 0.011 40.653 ± 0.299 47.150 ± 0.392 46.0752 ± 0.539
LP-CNN 0.900 ± 0.002 0.557 ± 0.010 39.492 ± 0.124 52.217 ± 0.531 49.970 ± 0.381
QSMnet 0.909 ± 0.002 0.587 ± 0.021 39.764 ± 0.254 51.545 ± 1.491 49.225 ± 1.177
DeepQSM 0.908 ± 0.004 0.574 ± 0.012 39.601 ± 0.280 52.076 ± 0.743 50.175 ± 1.040
xQSM 0.909 ± 0.003 0.578 ± 0.015 39.560 ± 0.276 52.577 ± 0.713 50.133 ± 1.073
NDI 0.853 0.512 37.457 61.715 60.728
FANSI 0.856 0.411 37.970 61.920 59.480

RC-2 data
(Sim2Snr1)

SpiNet-QSM 0.991 ± 0.0002 0.618 ± 0.0159 51.336 ± 0.138 54.187 ± 1.527 50.076 ± 0.995
LP-CNN 0.991 ± 0.0005 0.593 ± 0.0133 51.057 ± 0.226 56.424 ± 0.391 51.695 ± 1.053
QSMnet 0.987 ± 0.001 0.471 ± 0.026 49.318 ± 0.376 66.525 ± 1.752 58.186 ± 3.206
DeepQSM 0.987 ± 0.001 0.445 ± 0.017 49.477 ± 0.316 67.731 ± 1.264 60.366 ± 1.567
xQSM 0.987 ± 0.001 0.465 ± 0.018 49.168 ± 0.291 67.459 ± 1.532 59.363 ± 1.208
NDI 0.984 0.596 51.056 55.384 48.661
FANSI 0.995 0.786 55.527 32.816 22.250

RC-2 data
(Sim2Snr2)

SpiNet-QSM 0.991 ± 0.0004 0.635 ± 0.0177 51.300 ± 0.367 53.073 ± 1.688 49.253 ± 0.989
LP-CNN 0.991 ± 0.0004 0.605 ± 0.0148 50.968 ± 0.209 55.377 ± 0.667 50.816 ± 1.260
QSMnet 0.987 ± 0.002 0.480 ± 0.026 49.305 ± 0.421 65.882 ± 2.036 57.436 ± 3.274
DeepQSM 0.987 ± 0.001 0.452 ± 0.019 49.293 ± 0.277 67.301 ± 1.347 59.893 ± 1.687
xQSM 0.987 ± 0.001 0.471 ± 0.021 49.130 ± 0.197 67.052 ± 1.801 58.892 ± 1.311
NDI 0.987 0.636 51.385 52.560 48.063
FANSI 0.995 0.834 56.518 29.177 20.043

For this experiment, three regions of interest (ROIs), including the putamen (PUT),
globus pallidus (GP), and caudate nucleus (CN), were segmented using ITKsnap [26]
for six subjects of the SNU data. Here, streaking artifact reduction (STAR) QSM [27]
is also used for comparison. Similar to the previous experiment, the models trained
on complete data was used for this experiment without any data pre-processing.

2.7.4 Convergence Comparison

SpiNet-QSM and LPCNN were trained with identical settings to ensure fairness in
their comparisons. Both methods used the same CNN architecture (3D-WideResNet-
18). To assess convergence, evaluation metrics such as SSIM, HFEN, and NRMSE
were computed and plotted for each epoch of the test dataset for LPCNN and the
proposed SpiNet-QSM. Both models underwent end-to-end training with the number
of unrollings, K = 1, and K = 3.
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Fig. 4: Comparison of the convergence for LPCNN and proposed SpiNet-QSM. HFEN, SSIM,
and NRMSE (computed with respect to COSMOS) for (a) full training data and (b) limited
training data.

Fig. 5: Clinical analysis on hemorrhage and multiple sclerosis (MS) for example cases. The
normalized model loss (L2-norm) is shown as insets at the bottom of each image. However,
NDI reconstructions for the clinical data were not performed due to the unavailability of
magnitude volumes.
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Table 4: The local susceptibility measurements in ppm (mean ± standard deviation) and
correlations with COSMOS for the three ROIs: Caudate (CAU), Putamen (PUT), Globus
Pallidus (GP) for six test subjects of the SNU data. The best results are shown in bold.

Susceptibility values

ROI METHOD subject-1 subject-2 subject-3 subject-4 subject-5 subject-6

CAU

COSMOS 0.040 ± 0.027 0.036 ± 0.033 0.036 ± 0.022 0.037 ± 0.024 0.052 ± 0.033 0.044 ± 0.022
SpiNet-QSM 0.047 ± 0.023 0.038 ± 0.026 0.038 ± 0.021 0.037 ± 0.021 0.058 ± 0.029 0.049 ± 0.020
LP-CNN 0.048 ± 0.021 0.046 ± 0.023 0.044 ± 0.021 0.043 ± 0.021 0.076 ± 0.027 0.060 ± 0.019
QSMnet 0.027 ± 0.022 0.028 ± 0.026 0.031 ± 0.021 0.029 ± 0.021 0.038 ± 0.025 0.035 ± 0.019
DeepQSM 0.031 ± 0.022 0.034 ± 0.024 0.033 ± 0.020 0.033 ± 0.021 0.045 ± 0.024 0.036 ± 0.020
xQSM 0.032 ± 0.022 0.030 ± 0.025 0.034 ± 0.021 0.033± 0.021 0.047± 0.026 0.038± 0.021
STAR-QSM 0.023 ± 0.027 0.031 ± 0.034 0.035 ± 0.028 0.040 ± 0.028 0.051 ± 0.035 0.035 ± 0.024
NDI 0.034 ± 0.022 0.024 ± 0.026 0.028 ± 0.021 0.026± 0.019 0.037± 0.024 0.040± 0.020

PUT

COSMOS 0.033 ± 0.027 0.047 ± 0.035 0.040 ± 0.028 0.051 ± 0.029 0.070 ± 0.037 0.042 ± 0.025
SpiNet-QSM 0.035 ± 0.025 0.047 ± 0.033 0.046 ± 0.027 0.053 ± 0.027 0.071 ± 0.033 0.047 ± 0.023
LP-CNN 0.047 ± 0.027 0.064 ± 0.034 0.059 ± 0.028 0.064 ± 0.029 0.087 ± 0.035 0.063 ± 0.026
QSMnet 0.029 ± 0.025 0.043 ± 0.033 0.039 ± 0.027 0.044 ± 0.029 0.054 ± 0.035 0.043 ± 0.027
DeepQSM 0.032 ± 0.026 0.047 ± 0.032 0.042 ± 0.027 0.045 ± 0.026 0.056 ± 0.032 0.047 ± 0.025
xQSM 0.032 ± 0.025 0.044 ± 0.031 0.041 ± 0.027 0.045± 0.026 0.057± 0.033 0.046± 0.026
STAR-QSM 0.049 ± 0.030 0.033 ± 0.039 0.039 ± 0.028 0.033 ± 0.025 0.050 ± 0.037 0.046 ± 0.024
NDI 0.022 ± 0.023 0.037 ± 0.029 0.031 ± 0.026 0.034± 0.026 0.046± 0.029 0.036± 0.024

GP

COSMOS 0.127 ± 0.039 0.152 ± 0.062 0.128 ± 0.046 0.127 ± 0.043 0.166 ± 0.055 0.124 ± 0.038
SpiNet-QSM 0.130 ± 0.040 0.154 ± 0.055 0.135 ± 0.046 0.132 ± 0.043 0.154 ± 0.052 0.130 ± 0.038
LP-CNN 0.147 ± 0.042 0.164 ± 0.053 0.151 ± 0.048 0.144 ± 0.048 0.162 ± 0.052 0.146 ± 0.043
QSMnet 0.120 ± 0.039 0.136 ± 0.055 0.123 ± 0.046 0.121 ± 0.044 0.134 ± 0.052 0.120 ± 0.041
DeepQSM 0.122 ± 0.037 0.138 ± 0.053 0.126 ± 0.043 0.120 ± 0.039 0.135 ± 0.048 0.120 ± 0.037
xQSM 0.126 ± 0.038 0.141 ± 0.052 0.128 ± 0.045 0.122 ± 0.041 0.142 ± 0.050 0.126 ± 0.093
STAR-QSM 0.096 ± 0.037 0.112 ± 0.053 0.105 ± 0.043 0.102 ± 0.040 0.122 ± 0.052 0.102 ± 0.035
NDI 0.086 ± 0.029 0.105 ± 0.041 0.092 ± 0.035 0.089± 0.033 0.100± 0.037 0.101± 0.032

Correlation with COSMOS

CAU

SpiNet-QSM 0.866 0.823 0.769 0.812 0.862 0.863
LP-CNN 0.798 0.656 0.631 0.704 0.735 0.713
QSMnet 0.855 0.791 0.757 0.710 0.837 0.817
DeepQSM 0.838 0.762 0.713 0.763 0.824 0.794
xQSM 0.83 0.766 0.757 0.736 0.858 0.819
STAR-QSM 0.747 0.722 0.666 0.747 0.724 0.738
NDI 0.775 0.698 0.658 0.698 0.691 0.719

PUT

SpiNet-QSM 0.885 0.834 0.866 0.861 0.866 0.841
LP-CNN 0.827 0.790 0.792 0.806 0.768 0.779
QSMnet 0.844 0.839 0.870 0.866 0.872 0.831
DeepQSM 0.840 0.813 0.850 0.875 0.866 0.802
xQSM 0.872 0.821 0.876 0.882 0.882 0.824
STAR-QSM 0.796 0.710 0.722 0.772 0.731 0.752
NDI 0.747 0.759 0.745 0.769 0.749 0.775

GP

SpiNet-QSM 0.861 0.866 0.877 0.909 0.859 0.876
LP-CNN 0.832 0.804 0.854 0.869 0.808 0.826
QSMnet 0.826 0.801 0.898 0.872 0.814 0.854
DeepQSM 0.832 0.803 0.853 0.852 0.828 0.848
xQSM 0.868 0.825 0.897 0.883 0.877 0.858
STAR-QSM 0.751 0.753 0.748 0.794 0.678 0.794
NDI 0.738 0.757 0.757 0.737 0.649 0.804

3 Results

3.1 Effect of Dataset Size

3.1.1 Training on Complete Data

The quantitative performance metrics such as structural similarity index (SSIM), peak
signal to noise ratio (pSNR), normalized mean square error (NRMSE), and high-
frequency error norm (HFEN) [28] with respect to COSMOS of the different QSM
reconstruction methods considered in this study are summarized in Table.2. One
example reconstruction was shown in Fig. 2(a). A t-test was performed for statistical
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analysis, and a statistically significant difference was determined for HFEN, based on a
threshold of 0.05. The P-values of SpiNet-QSMmatched the results of the deep learning
approaches QSMnet (P=0.939), DeepQSM (P=0.372), and xQSM (P=0.505). How-
ever, the proposed SpiNet-QSM showed an improvement over the LPCNN approach
(P=0.004).

3.1.2 Training on Limited Data

The quantitative performance metrics of the different QSM reconstruction methods
considered in this study are summarized in Table.2. The quality of the reconstructed
susceptibility maps was reduced with a reduction in the training data compared with
that of the full training data. One example reconstruction was shown in Fig. 2(b). The
scatter plots showing the quantitative performance of the proposed as well as other
methods were shown in Fig. 3 both for the complete training data as well as limited
training data. From these results, it can be observed that the proposed SpiNet-QSM
map matches closely with the gold-standard COSMOS map.

The proposed SpiNet-QSM showed a statistically significant improvement over
the existing deep learning approaches, QSMnet (P = 1.16e−21), DeepQSM (P =
6.23e−25), and xQSM (P = 7.30e−25). Even LPCNN performed better than the deep
learning methods QSMnet(P = 2.42e−09), DeepQSM (P = 1.4e−11), and xQSM (P =
4.9e−12). The performance of NDI also matched that of the deep learning methods
QSMnet(P = 0.915), DeepQSM (P = 0.453), and xQSM (P = 0.202). For a fair
comparison, the proposed SpiNet-QSM and LPCNN approaches were compared with
similar training conditions. The proposed SpiNet-QSM showed better reconstruction
than the LPCNN (P = 1.27e−07).

3.2 Performance on Other Datasets

The quantitative metrics obtained from the LPCNN data, RC-1 data, and RC-2 data
are summarized in Table. 3. On the LPCNN data, it’s evident that the proposed
SpiNet-QSM outperforms other approaches. The model-based deep learning method
LPCNN and the pure deep learning methods QSMNet, DeepQSM, and xQSM also
showed effective QSM reconstruction. Pure deep learning methods achieve compa-
rable performance to LPCNN. Similarly, on the RC-1 data, SpiNet-QSM exhibits
superior performance compared to other methods. However, QSMNet, DeepQSM, and
xQSM also achieved effective QSM reconstructions. Deep learning methods on RC-1
data match the performance of LPCNN. Both model-based and pure deep learning
approaches outperform NDI, an iterative method. On RC-2 data, the iterative method
NDI showed better performance than other methods. The Model-based deep learning
methods performed closer to that of NDI and, the SpiNet-QSM exhibited slight supe-
riority over the LPCNN. The performance of pure deep learning methods was inferior
when compared to the NDI, SpiNet-QSM, and LPCNN. Across all three datasets, The
model-based deep learning techniques SpiNet-QSM and LPCNN exhibited consistent
performance compared to other deep learning methods. However, SpiNet-QSM showed
even better performance than LPCNN.
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Fig. 6: ROI analysis (Caudate, Putamen, and globus pallidus) for an example case. The first
row shows the reconstructed susceptibility maps obtained using COSMOS, SpiNet-QSM, LP-
CNN, QSMnet, DeepQSM, xQSM, Star-QSM, and NDI. The second row shows a magnified
view of the QSM in the ROI using the above methods. The susceptibility values of Caudate,
Putamen, and globus pallidus corresponding to each ROI are shown as insets in the top,
middle, and bottom rows, respectively.
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3.3 Convergence Comparison

Figure 4 depicts the evaluation metrics versus epochs for both the models. Notably,
the plots illustrating the metric improvement show steeper trends in the case of
K = 1. For K = 3, the weights were initialized to those of K = 1 for SpiNet-QSM.
The saturation observed in SpiNet-QSM metrics with K = 3 can be attributed to two
factors. First, because the weights are initialized with K = 1, the model is already
near the solution space. Second, each epoch of the proposed SpiNet-QSM involves
inner iterations, facilitating a faster convergence to the solution. For the LPCNN
with K = 3, the weights initialization from LPCNN with K = 1 doesn’t add any
improvement in terms of convergence and performance. SpiNet-QSM consistently
outperformed LPCNN in terms of convergence speed, demonstrating its superiority
in both full and limited data training scenarios. The training was stopped for all the
methods by considering the model performance on the validation set. SpiNet-QSM
with the K = 3 model converged in the early epochs. However, a minimum of 45
epochs were considered in the training process.

Training one epoch of SpiNet-QSM and LPCNN took 90 and 120 minutes, respectively.
SpiNet-QSM training was performed for 45 epochs, which required approximately 68
hours, and LPCNN training was performed for approximately 80 epochs, required
approximately 160 hours. However, SpiNet-QSM training with K = 3 was performed
by initializing the weights of SpiNet-QSM with K = 1 (single unrolling). For training
one epoch, SpiNet-QSM with K = 1 took 20 minutes. The SpiNet-QSM with K = 1
training was also performed for 50 epochs, which took approximately 17 hours. By
including this training time, the overall training time of SpiNet-QSM with K = 3 was
approximately 85 hours. Although the LPCNN K = 3 experiment was attempted by
initializing the weights with LPCNN with K = 1, it did not show any improvement
in terms of time and quantitative metrics over the LPCNN with K = 3 with ran-
dom default initialization. It should be noted that the model weights were chosen for
that epoch when the validation error was the minimum. Remarkably, SpiNet-QSM
consistently showed faster convergence than LPCNN.

3.4 Clinical Analysis

3.4.1 Testing on Patient Data

The proposed SpiNet-QSM was tested on clinical data, including hemorrhage and
multiple sclerosis (MS), which were not present in the training data. The model loss
was utilized to evaluate the performance of the models. One example result from each
hemorrhage as well as the MS case was shown in Fig. 5.

3.4.2 ROI Analysis

The local region susceptibility values (mean and standard deviation) of the three ROIs
considered for the six different subjects are summarized in Table 4. One example
set of images were shown in Fig. 6. The respective COSMOS values are shown for
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reference. It can be observed that the local measurements of the proposed SpiNet-QSM
consistently match with the COSMOS susceptibility measurements.

4 Discussion

This study introduces SpiNet-QSM, a model-based deep learning approach for QSM
reconstruction. SpiNet-QSM utilizes an unrolling iterative structure with a p-norm-
enforced CNN-denoiser-based trainable regularizer, where the regularizer weights are
shared across the iterations. However, the inclusion of the regularization term ∥x−z∥pp
in the SpiNet-QSM objective function makes it non-convex. For the SpiNet-QSM
objective function, the majorization-minimization approach was employed, approxi-
mating an upper-bound function under conditions where 0 < p ≤ 2. The preference
for majorization-minimization [29] over alternatives, such as Gauss-Newton[29, 30],
is grounded in the challenges posed by non-convex and non-smooth optimization
problems. Specifically, the objective function of SpiNet-QSM is nonlinear and can be
nonconvex in nature owing to the p-norm in the regularization term. For 0 < p < 1,
the regularization term ∥x − z∥pp is nonconvex. It is also a nonsmooth function at
0 < p < 2. The Gauss-Newton approach may encounter difficulties in such scenarios,
often being prone to convergence issues and becoming trapped in local minima.
Majorization-minimization, on the other hand, emerges as a robust choice for han-
dling non-convex and non-smooth functions within the context of the minimization
problem. Its iterative nature involves majorizing the objective function using a
simpler upper-bound function, thereby making it more suitable for optimization. In
contrast to the Gauss-Newton method, majorization-minimization excels in navigat-
ing non-convex landscapes, providing effective and consistent performance throughout
the optimization process. Each iteration involved refining this upper-bound function
to iteratively address the challenges associated with the optimization function. This
robustness makes majorization-minimization a practical and reliable approach to this
problem.

Due to the physics-driven nature of SpiNet-QSM and LPCNN, both of them out-
performed the existing deep learning methods. Further, the proposed SpiNet-QSM
outperformed LPCNN for both complete and limited data training, despite being
trained under similar conditions. Although both the methods use an unrolling itera-
tive structure and a trainable regularizer with weight-sharing, the regularizer term is
a direct CNN in the LPCNN approach, whereas it consists of a CNN-based denoiser
in SpiNet-QSM. Moreover, SpiNet-QSM enforces the p-norm rather than the 2-norm
in LPCNN for the regularizer term, where p is trainable (0 < p ≤ 2). It was observed
from experiments that the converged p-value is between 1.5 and 1.8. Thus, in the
case of limited data training, the p-norm enforced regularizer constrained the pro-
posed SpiNet-QSM to choose a better susceptibility space, enabling the proposed
SpiNet-QSM to reconstruct better susceptibility maps. The second distinction lies in
the methodology utilized to solve the data consistency part. The proposed SpiNet-
QSM solves the data consistency block with the help of the conjugate gradient descent
method (as an iterative solver); however, LPCNN uses the proximal gradient method,
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and in each unrolling, only one proximal gradient step is used. These two factors
also helped SpiNet-QSM in achieving faster convergence compared to LPCNN. How-
ever, the end-to-end training of the proposed SpiNet-QSM is computationally more
expensive than direct deep learning methods due to the model-based unrolling net-
work architecture. For future improvement, the development of more trainer-friendly
networks for model-based deep learning frameworks will be explored.
In this study, a thorough analysis was conducted using the reconstruction challenge
(RC) 1 and 2 datasets [18, 22]. In RC-1, an in vivo data was shared with a refer-
ence susceptibility map computed using the susceptibility tensor imaging [31] on data
acquired at 12 head orientations, whereas RC-2 shared simulated data. It was observed
that the proposed SpiNet QSM performed better than the existing deep learning
methods and iterative methods for the RC-1 dataset. This suggests that integrating
Schatten p-norm regularization into the deep learning framework effectively reduces
artifacts and improves the accuracy of the susceptibility maps. These results also high-
light the generalization potential of the proposed approach for QSM reconstruction.
Likewise, in the RC-2 dataset, the proposed methodology exhibited superior perfor-
mance compared with all existing deep-learning techniques. (The reconstructed results
of QSMNet, DeepQSM, FANSI, and NDI were consistent with reported results [22]).
However, state-of-the-art iterative methods, such as L1-QSM [32] and FANSI [24] sur-
passed the proposed approach. This has been previously reported in studies such as
NextQSM [33]. This discrepancy can be attributed to the utilization of a nonlinear
fidelity term within the cost function. Hence, in future work, the proposed method
can be enhanced by incorporating a nonlinear fidelity term.

5 Conclusion

In this work, a model-based deep learning framework for single-orientation QSM recon-
struction was developed with a Schatten p-norm driven regularizer, where the norm
parameter p is trainable. The proposed SpiNet-QSM is a supervised method for QSM
reconstruction with a COSMOS map as the ground truth that uses an unrolled network
architecture with shared weights for end-to-end training. The proposed SpiNet-QSM
outperformed other state-of-the-art deep learning methods in terms of reconstruction
performance with limited training data. Furthermore, it showed good generalization
by yielding robust reconstructions when tested on data collected under different acqui-
sition parameters from those of the training data. The proposed SpiNet-QSM also
performed consistently well on clinical data from patients with hemorrhage, multiple
sclerosis, and ROI analysis.
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et al. The 2016 QSM Challenge: Lessons learned and considerations for a future
challenge design. Magnetic resonance in medicine. 2020;84(3):1624–1637.

[29] Lange K. Optimization. vol. 95. Springer Science & Business Media; 2013.

[30] Nocedal J, Wright SJ. Numerical optimization. Springer; 1999.

[31] Li W, Liu C, Duong TQ, van Zijl PC, Li X. Susceptibility tensor imaging (STI)
of the brain. NMR in Biomedicine. 2017;30(4):e3540.

[32] Milovic C, Lambert M, Langkammer C, Bredies K, Irarrazaval P, Tejos C. Streak-
ing artifact suppression of quantitative susceptibility mapping reconstructions via

23

https://doi.org/10.1002/mp.14744


L1-norm data fidelity optimization (L1-QSM). Magnetic Resonance in Medicine.
2022;87(1):457–473.

[33] Cognolato F, O’Brien K, Jin J, Robinson S, Laun FB, Barth M, et al. NeX-
tQSM—A complete deep learning pipeline for data-consistent Quantitative
Susceptibility Mapping trained with hybrid data. Medical Image Analysis.
2023;84:102700.

24


	Introduction
	Methods
	Datasets
	QSM reconstruction model 
	SpiNet
	Proposed SpiNet-QSM
	Proposed SpiNet-QSM architecture
	Implementation
	Selection of Dw
	Selection of K

	Experiments
	Effect of Dataset Size 
	Performance on Other Datasets
	Clinical Analysis
	Convergence Comparison


	Results
	Effect of Dataset Size 
	Training on Complete Data
	Training on Limited Data

	Performance on Other Datasets
	Convergence Comparison
	Clinical Analysis
	Testing on Patient Data
	ROI Analysis


	Discussion 
	Conclusion

