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Abstract
Objective Quantitative susceptibility mapping (QSM) provides an estimate of the magnetic susceptibility of tissue using 
magnetic resonance (MR) phase measurements. The tissue magnetic susceptibility (source) from the measured magnetic 
field distribution/local tissue field (effect) inherent in the MR phase images is estimated by numerically solving the inverse 
source-effect problem. This study aims to develop an effective model-based deep-learning framework to solve the inverse 
problem of QSM.
Materials and methods This work proposes a Schatten p-norm-driven model-based deep learning framework for QSM with 
a learnable norm parameter p to adapt to the data. In contrast to other model-based architectures that enforce the l

2
-norm or 

l
1
-norm for the denoiser, the proposed approach can enforce any p-norm ( 0 < p ≤ 2 ) on a trainable regulariser.

Results The proposed method was compared with deep learning-based approaches, such as QSMnet, and model-based deep 
learning approaches, such as learned proximal convolutional neural network (LPCNN). Reconstructions performed using 
77 imaging volumes with different acquisition protocols and clinical conditions, such as hemorrhage and multiple sclero-
sis, showed that the proposed approach outperformed existing state-of-the-art methods by a significant margin in terms of 
quantitative merits.
Conclusion The proposed SpiNet-QSM showed a consistent improvement of at least 5% in terms of the high-frequency error 
norm (HFEN) and normalized root mean squared error (NRMSE) over other QSM reconstruction methods with limited 
training data.

Keywords Dipole inversion · Model-based deep learning · Schatten p-norm · Susceptibility reconstruction

Introduction

Quantitative susceptibility mapping (QSM) is a magnetic 
resonance imaging (MRI) technique aimed at mapping the 
magnetic susceptibility of tissue from the gradient echo 
imaging phase [1–4], QSM has important clinical rele-
vance because bulk tissue magnetic susceptibility provides 

essential information about tissue composition and micro-
structure, such as myelin content in white matter and iron 
deposition in gray matter. Pathological changes in these tis-
sue susceptibility sources are closely related to a series of 
neurodegenerative diseases such as multiple sclerosis and 
Alzheimer’s disease. Multiple processing steps are involved 
in obtaining the susceptibility map from the acquired MR 
data. These include phase unwrapping, background field 
removal, and dipole inversion (dipole deconvolution).

In the first step, the ambiguity caused by the 2 � perio-
dicity is removed using phase unwrapping. Furthermore, 
the phase contributions arising from the unwrapped 
phase due to the air-tissue and air-bone interfaces will 
be reduced/eliminated in the background field removal 
because the magnitude of the former component is much 
larger than that of the tissue component. Some popular 
background removal techniques are sophisticated har-
monic artifact reduction for phase data (SHARP) [5], 
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regularization enabled SHARP (RESHARP) [6], projec-
tion onto dipole fields (PDF) [7], spherical mean value 
(SMV) filtering [8], Laplacian boundary value background 
field removal (LBV) [9]. The background field removed 
unwrapped phase is typically referred to as the local field. 
The following step involves the spatial deconvolution of 
the dipole kernel with the local field. This is achieved 
in the Fourier domain by performing an element-wise 
division between the phase image and the dipole kernel. 
Owing to the singularity in the dipole kernel, performing a 
division in the Fourier domain results in an ill-conditioned 
problem. Thus, the incorporation of either handcrafted or 
learned priors is required to efficiently recover the underly-
ing susceptibility map.

The advent of deep learning-based methods has shown 
promising results in deconvolving the susceptibility 
distribution from the phase information of the MR 
signal. QSMnet [10], DeepQSM [11], and xQSM [12] 
are examples of the deep learning approaches developed 
for computing susceptibility maps. In these methods, a 
deep neural network was utilized to learn the mapping 
from the single-orientation phase measurement to 
the corresponding multi-orientation Calculation of 
Susceptibility through Multiple Orientation Sampling 
(COSMOS) [13] susceptibility map, and then utilize the 
learned network to estimate high-quality susceptibility 
maps similar to COSMOS from the single-orientation 
phase measurements. QSMnet uses a three-dimensional 
convolutional neural network (CNN) U-net [14] 
architecture to estimate the susceptibility map. DeepQSM 
learns the physical forward problem by using synthetic 
data. To further improve the performance of the QSM 
reconstruction, octave convolutions were introduced in 
xQSM [12]. It also requires end-to-end training from the 
local field to the COSMOS.

Although the aforementioned methods have the potential 
benefits of deep learning, they do not utilize the underlying 
physics of the QSM problem and hence are more biased 
towards the data used for training. Consequently, if the 
distribution of the input phase data differs from that of the 
trained data, these methods fail to adapt to the given input, 
resulting in suboptimal reconstruction. This is aggravated if 
the model is trained with less data. To alleviate this, model-
based deep learning approaches were utilized that combine 
the power of deep learning and the underlying physics of 
the problem [15]. Learned proximal convolutional neural 
network for quantitative susceptibility mapping (LPCNN) 
[16] and model-based deep learning for QSM (MoDL-
QSM) are examples of such approaches which were 
developed for QSM reconstruction. LPCNN approach is 
an unrolled iterative model that combines the proximal 
gradient algorithm and a CNN (3D-WideResNet). LPCNN 
decouples the forward model and data-driven parameters in 

the reconstruction algorithm. It utilizes a proximal operator 
parameterized by CNN, which functions as a data-driven 
regularizer. This regularizer restricts the set of possible 
solutions by enforcing the prior knowledge. Another model-
based approach for QSM reconstruction is MoDL-QSM 
[17], in which the principal component of susceptibility is 
utilized as the ground truth or label.

In this work, the proposed SpiNet-QSM model 
introduces a novel deep learning architecture that replaces 
the traditional l2-norm or l1-norm regularizers with a 
learnable p-norm ( 0 < p ≤ 2 ) based regularizer, which is 
automatically learned from the data. The main contributions 
of this work are: (i) It provides an improved susceptibility 
map even on limited training data. (ii) It provides better 
generalizability across different QSM datasets and performs 
consistently well in region of interest (ROI) analysis. 
Reconstructions performed across 77 imaging volumes 
with different acquisition protocols, and clinical conditions 
such as hemorrhage and multiple sclerosis showed that the 
proposed approach outperforms existing state-of-the-art 
reconstruction methods by a significant margin in all figures 
of merit.

Methods

Datasets

In this work, six datasets were used. The first dataset was 
from Seoul National University (SNU), South Korea, (SNU 
data) which consisted of 60 volumes collected from 12 
healthy subjects, was utilized. The data were acquired at 
3T (nine datasets using Tim Trio and three datasets using 
MAGNETOM Skyra, Siemens Healthineers, Forchheim, 
Germany) at five different head orientations [10]. The data 
had dimensions of 176 × 176 × 160 . The second dataset was 
shared by Lai et al. [16] (LPCNN data) which consisted of 
four healthy subjects, acquired at 7T (Philips Achieva) with 
four head orientations each, with a total of 16 volumes. The 
data had dimensions of 224 × 224 × 126 . The third data-
set was shared by reconstruction challenge-1 (RC-1) [18] 
which consisted of 1 volume collected from acquired at 
3T (Tim Trio, Siemens Healthcare GmbH, Erlangen, Ger-
many) with twelve head orientations. The data had dimen-
sions of 160 × 160 × 160 . The fourth dataset was shared by 
reconstruction challenge-2 (RC-2) [19] simulation2 which 
consisted of 2 volumes (sim2snr1,sim2snr2). The data had 
dimensions of 164 × 205 × 205 . For clinical study on hem-
orrhage and multiple sclerosis, datasets acquired on 3T GE 
HDxt MR scanner was utilized as shared by [17]. These data-
sets had dimensions 256 × 256 × 66 and 256 × 256 × 124 , 
respectively. All datasets were pre-processed and shared by 
the respective authors.
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The SNU data was used for training the model. For 
training, the local field was provided as an input to all 
methods, and the rotated COSMOS maps that matched the 
orientation of the input local field were used as the ground 
truth. To increase the size of the training data, the COSMOS 
maps were rotated at angles ( −30◦ and 30◦ relative to B0 ), 
and local field maps were generated by dipole convolution. 
Using this data augmentation process, the total training data 
was tripled. Because the QSM problem has been defined 
in 3D, multiple 3D patches were generated for the training 
process with a size 64 × 64 × 64 voxels and 66 % overlap 
with adjacent patches. The COSMOS map was used as a 
label/ground truth for all methods considered in this work.

QSM reconstruction model

The relation between the susceptibility map � ∈ X and the 
local field y ∈ Y , with X and Y representing the susceptibility 
and phase spaces, can be expressed as

where � = FHDF is the forward operator. Here, F is the 
discrete Fourier transform and D is the dipole kernel, which 
is a diagonal matrix. However, there are zeros in D, � 
cannot be computed using a direct inverse and requires the 
introduction of some prior information about the underlying 
susceptibility map. In this work, a Schatten p-norm prior 
with 0 < p ≤ 2 was utilized in a model-based deep learning 
framework for QSM reconstruction.

SpiNet

SpiNet is a model-based deep learning technique for solving 
the inverse problem with an iterative unrolled structure [20]. 
It has two parts: the first is a p-norm-enforced regularizer 
with a CNN-based learnable denoiser, and the second is an 
iterative data consistency solver. SpiNet solves the inverse 
problem ( Ax = b ) by formulating the following optimiza-
tion problem:

where

Here, the Eq. (2), ‖Ax − b‖2
2
 represents the data consistency 

term, and ‖x − z‖
p
p represents the regularization term, with 

� denoting the regularization parameter that balances 

(1)�� = y

(2)

x∗ = argmin
x
{J(x) = ‖Ax − b‖2

2
⏟⏞⏞⏟⏞⏞⏟

Data Consistency Term

+ �‖x − z‖p
p

⏟⏞⏞⏟⏞⏞⏟
Prior Information Enforcing Term

}

(3)z = Dw(x)

the trade-off between the data consistency term and the 
regularization term. Here z in Eq. (3) is a denoised version 
of x, which is an output of the CNN-based denoiser denoted 
by Dw , and Eq.   (2). The solution x∗ is constrained to follow 
data consistency and is in the vicinity of z. The solution 
x∗ simultaneously minimizes the data consistency term 
‖Ax − b‖2

2
 and considers the prior information through 

the regularization term, which comprises the CNN-based 
denoiser.

The Eq. (2) is solved by utilizing the majorization-
minimization (MM) approach. This consists of two 
steps: computing the convex upper bound function F(x) 
(majorization) and solving the upper bound function 
(minimization) in an iterative manner. The steps involved in 
solving SpiNet are as follows:

where x̄ is the known point nearer to the x∗ at the kth iteration 
(in the implementation the xk−1 is used as x̄ ), Wk is a diagonal 
matrix and ��

= �p∕2 . Here, Eqs. (4), (5) and (6) represents 
the majorization step and Eqs. (7) and (8) are represent 
the minimization step. The minimization step in Eq. (8), is 
solved using the conjugate gradient (CG) method to estimate 
xk given Wk and zk . The output xk from the minimization 
step was used as x̄ for the majorization step in the (k + 1) th 
iteration. The denoisers share weights across all iterations 
with end-to-end learning, which effectively reduces the 
number of learnable parameters [15].

All the steps from Eqs. (4) to (8) were considered as a 
single unrolling step. However, this method makes an end-
to-end network by unfolding the data consistency block and 
denoiser block interleaved manner for K times. Here, K is 
known as the unrolling parameter. These interleaved CNN 
blocks, learn the prior information from the dataset set, along 
with data consistency blocks that constrain the reconstruction 
to follow the physics of the problem.

Proposed SpiNet‑QSM

To adopt SpiNet to QSM reconstruction problem, Eq. (1) was 
redefined with a Schatten p-norm enforced regularizer,

(4)zk = Dw(xk−1)

(5)(Wk)ii = |(x̄)i − (zk)i|
p∕2−1

(6)F(x) = ‖Ax − b‖2
2
+ �

�

‖Wk(x − zk)‖
2
2
≥ J(x)

(7)xk = argmin
x

‖Ax − b‖2
2
+ �

�

‖Wk(x − zk)‖
2
2

(8)xk = (AHA + �
�

WH
k
Wk)

−1(AHb + �
�

WH
k
Wkzk)
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Now, J̄(𝜒) can be iteratively solved using the majorization-
minimization approach as described earlier. The upper 
bound function of J̄(𝜒) denoted as F̄(𝜒) is first defined 
(majorization step) by taking an analogy from Eqs. (4), (5) 
and (6) as

here, �̄�k,0 = 𝜒k−1.

where zk is the denoised susceptibility map which is obtained 
from Eq. (10) by taking input as �k−1 and, �̄�k,j is a calculated 
susceptibility map in jth step of the MM in kth iteration. 
The minimization step (solving upper bound function F̄(𝜒) 
) was defined by taking the analogy from the Eqs. (7) and 
(8) and it showed as

Here, the Eq. (13) can be solved using normal equations Eq. 
(14). Now, this can be solved using a CG solver of Āx = b̄.

At each iteration, this results in performing majorization 
and minimization N times and the susceptibility map out-
put from kth iteration is 𝜒k = �̄�k,N . A detailed kth step-wise 
explanation of QSM solving using SpiNet is provided in 
Algorithm (1).

Proposed SpiNet‑QSM architecture

The proposed SpiNet-QSM architecture is shown in Fig. 1. 
It has two blocks: a regularizer that consists of a CNN-based 
denoiser for Eq. (10), and another one is a data consistency 
block for Eq. (7). In the data consistency block, MM 
implementation is performed utilizing Eq. (10) to (12). In 
the Minimization step, CG method was utilized to solve Eq. 
(12) with M1 = 25 iterations to estimate � given W and zk , 
and use this � as �̄� for the next Majorization step. The MM 
algorithm is repeated for N = 2 iterations. The denoiser 

(9)𝜒∗ = argmin
𝜒

{J̄(𝜒) = ‖𝜙𝜒 − y‖2
2
+ 𝜆‖𝜒 − z‖p

p
}

(10)zk = Dw(�k−1)

(11)(Wk,j)ii = |(�̄�k,j−1)i − (zk)i|
p

2
−1

(12)F̄(𝜒) = ‖𝜙𝜒 − y‖2
2
+ 𝜆

�
�
�
Wk,j(𝜒 − zk)

�
�
�

2

2

(13)�̄�k,j = argmin
𝜒

{F̄(𝜒)}

(14)�̄�k,j = (𝜙H𝜙 + 𝜆WH
k,j
Wk,j)

−1(𝜙Hy + 𝜆WH
k,j
Wk,jzk)

(15)Ā = (𝜙H𝜙 + 𝜆WH
k,j
Wk,j) = (FHD2F + 𝜆WH

k,j
Wk,j)

(16)b̄ = (𝜙Hy + 𝜆WH
k,j
Wk,jzk) = (FHDFy + 𝜆WH

k,j
Wk,jzk)

block ( Dw ) uses a 3D-WideResNet CNN architecture 
inspired by Refs. [16, 21]. This is an implicit data-driven 
regularizer that uses the power of residual learning. It has 21 
convolutional layers and eight repetitive residual blocks. For 
the first 17 convolutional layers, the kernel size was 3 × 3 × 3 
with a stride of one, and for the last three convolutional 
layers, the kernel size was 1 × 1 × 1 and stride 1. Batch 
normalization layer (BN) and rectified linear unit (ReLU) 
activation functions were utilized inside the residual blocks. 
The last layer of the network is a convolutional layer with a 
kernel size of one. In the proposed SpiNet-QSM network, the 
trainable parameters are � = {�i, (Dw)i, pi}

K
i=1

 , where K is the 
number of iterations in the unrolled network. However, the 
training parameters were shared among different iterations. 
Therefore, the training parameters are � = {�,Dw, p}.

Implementation

The proposed SpiNet-QSM was implemented using Python 
3.9.12 and PyTorch 1.11.0. It was trained on an NVIDIA 
Quadro RTX 8000 graphics processing unit (GPU). For 
all deep learning models in this work, Adam optimizer 
is utilized. The other training parameters, including the 
learning rate, loss function, batch size, number of epochs, 
and time for each epoch, are summarized in Table 1. It is 
to be noted that the training parameters for each model was 
chosen empirically so as to give the best performance on the 
validation data. In Table 1 the lossL1 term is defined as the l1
-norm of the voxel-wise difference, and the lossGradient term 
is defined as the l1-norm of gradients difference. w1 and w2 
are the weights assigned to lossL1 and lossGradient respectively. 
The weights were chosen as w1 = 1 and w2 = 0.5 , 
determined empirically. The lossL2 term is defined as the l2
-norm of the voxel-wise difference, and it is nothing but a 
mean square error between ground-truth and reconstructed 
QSM. Further, in the proposed SpiNet-QSM, the number 
of MMsteps (N) was chosen as 2, and the number of CG 
iterations ( M1 ) was 25; these parameters were empirically 
selected. It has also experimented with N ≥ 2 and M1 ≥ 25 ; 
however, it did not show any improvement in performance 
compared to N = 2 and M1 = 25 . Instead, it increased the 
GPU computation and GPU RAM consumption during 
training.

Selection of D
w

A 3D-WideResNet18 CNN architecture was used as the 
trainable regularizer. This architecture was empirically cho-
sen by experimenting with different 3D CNN architectures. 
To choose Dw , a simple residual-learning-based 3D CNN 
architecture (with five layers) was initially used, motivated 
by MoDL [15]. As QSM reconstruction is a challenging 
3D problem, the regularizer faces underfitting issues when 
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Fig. 1  a Network architecture of the proposed SpiNet-QSM. Each 
iteration of the network consists of two blocks, namely CNN-denoiser 
( D

w
 ) block and data consistency block (DC). b Proposed SpiNet-

QSM has been shown as an unrolled iterative architecture. The bot-
tom row shows the reconstructed susceptibilty maps with iteration for 

an example case. The respective high-frequency error norm (HFEN) 
computed with respect to COSMOS shown below the respective sus-
ceptibility map shows considerable improvement with iteration
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trained on complete data. When 3D-UNet was used as the 
regularizer, it performed well on the complete training data 
with K=1. However, it did not show any improvement for 
K = 2 and 3. The 3D-Unet architecture performed poorly as 
a learning regularizer with shared weights over iterations, 
and thus cannot use the advantage of the unrolled struc-
ture. This architecture also faces an underfitting issue when 
trained with limited data. Finally, the 3D WideResNet18 
architecture was utilized as a trainable regularizer. It per-
formed well on complete and limited training data, and 
showed improved reconstruction for K > 1.

Selection of K

In general, training any model-based deep learning tech-
nique is more challenging than training pure deep learn-
ing techniques, requiring additional training time. The 
proposed SpiNet-QSM has an unrolled architecture with 
shared weights and requires additional effort to train the 
CNN regularizer. To arrive at the optimal value of the num-
ber of iterations (K), experiments were performed with dif-
ferent unrolling parameters, i.e., K = 1, 2, 3, and 4. It was 
observed that the reconstruction performance improved 
as the number of iterations increased from 1 to 2 and 2 
to 3. However, from 3 to 4, this did not lead to significant 
improvement and made the training process more difficult in 
terms of delayed convergence and increased training time. 
As the number of iterations increases, learning a common 
regularization term across the inputs and outputs in each 
iteration becomes more difficult, owing to the sharing of 
weights across iterations. This implies that for K > 3 , the 

CNN complexity is insufficient to learn the QSM problem 
with shared weights. However, if one increases the com-
plexity of CNN and the number of iterations ( K > 3 ) then 
the training process becomes more difficult. The proposed 
SpiNet-QSM showed the best performance at K = 3 , and 
therefore, K = 3 was fixed as the number of unrolling itera-
tions in all the experiments.

Experiments

Effect of Dataset Size

Training on complete data: Out of the 12 healthy volunteer 
scans from SNU data, each with five head orientations, 25 
scans from five subjects (along with augmented data consist-
ing of 75 scans) were utilized for training, five scans from 
one subject were used for validation, and 30 scans from six 
subjects were utilized for testing. A 4-fold cross-validation 
was performed. In order to compare SpiNet-QSM with other 
popular deep learning models, QSMnet, DeepQSM, xQSM 
and LPCNN were also trained to solve QSM. As the out-
comes of the second QSM reconstruction challenge [22] 
revealed that while deep learning methods often produce 
visually appealing results, their quantitative performance is 
generally inferior to that of iterative methods, the deep learn-
ing methods were also compared with an iterative method. 
Among the different state-of- the- art nonlinear iterative 
reconstruction methods such as nonlinear dipole inversion 
(NDI) [23], fast nonlinear susceptibility inversion (FANSI)
[24] and nonlinear total field inversion [25], NDI was used 

Algorithm 1  Algorithm for 
proposed Spinet-QSM

Table 1  Summary of the 
training parameters for different 
models utilized in this study

Experiment Learning Rate Loss function Batch size No. of 
Epochs 
Trained

Time taken for 
single epoch 
(Min)

SpiNet-QSM 1 × 10
−4 w

1
(loss

L1
) + w

2
(loss

Gradient
) 2 45 90

LP-CNN 1 × 10
−4 w

1
(loss

L1
) + w

2
(loss

Gradient
) 2 80 120

QSMNet 5 × 10
−4 w

1
(loss

L1
) + w

2
(loss

Gradient
) 8 25 30

DeepQSM 5 × 10
−4 loss

L2
8 25 30

xQSM 5 × 10
−4 loss

L2
8 25 50
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for comparison in this study. For the deep model training, 
4-fold cross-validation is used.

Training on limited data: An experiment involving a 
comparison of the reconstruction performances of different 
methods under a limited data setting was also performed. 
Here, the training dataset consisted of a single subject’s data 
(along with augmented data consisting of 15 scans), the vali-
dation (same as that of full data training) set consisted of 
single subject data, and the test set consisted of ten subject’s 
data. Single subject data was utilized in this experiment, 
which is approximately 16% of that of ‘the training on com-
plete data.’ The training settings detailed in the preceding 
section were used for the deep learning models even when 
dealing with limited data training.

Performance on Other Datasets

To assess the robustness of the model in terms of 
reconstruction and demonstrate how well the regularization 
term generalizes the QSM reconstruction problem, the 
performances of different methods were compared on 
datasets with different acquisition parameters. These 
datasets differed from the training data in terms of 
acquisition parameters, vendors, and signal-to-noise ratio 
(SNR). For this, the models trained on SNU data were 
tested using LPCNN data [16], RC-1 data [18] and RC-2 
data [19]. As this experiment was performed to evaluate 
the generalizability and performance of the trained models 
on unseen data, we did not use any type of pre-processing 
before reconstructing the respective data. It should be noted 
that the models trained on complete data were used in this 
experiment.

Clinical analysis

To explore the clinical utility of the proposed SpiNet-
QSM, reconstructions were performed on pathological data 
including hemorrhage and multiple sclerosis (MS). For 
this experiment, the data shared by MoDL-QSM [17] were 
utilized. Furthermore, local measurements of susceptibility 
values were compared for different reconstruction methods. 
For this experiment, three regions of interest (ROIs), 
including the putamen (PUT), globus pallidus (GP), and 
caudate nucleus (CN), were segmented using ITKsnap [26] 
for six subjects of the SNU data. Here, streaking artifact 
reduction (STAR) QSM [27] is also used for comparison. 
Similar to the previous experiment, the models trained on 
complete data was used for this experiment without any data 
pre-processing.

Convergence comparison

SpiNet-QSM and LPCNN were trained with identical set-
tings to ensure fairness in their comparisons. Both meth-
ods used the same CNN architecture (3D-WideResNet-18). 
To assess convergence, evaluation metrics such as SSIM, 
HFEN, and NRMSE were computed and plotted for each 
epoch of the test dataset for LPCNN and the proposed 
SpiNet-QSM. Both models underwent end-to-end training 
with the number of unrollings, K = 1 , and K = 3.

Results

Effect of dataset size

Training on complete data

The quantitative performance metrics such as structural 
similarity index (SSIM), peak signal to noise ratio (pSNR), 
normalized mean square error (NRMSE), and high-fre-
quency error norm (HFEN) [28] with respect to COSMOS 
of the different QSM reconstruction methods considered in 
this study are summarized in Table 2. One example recon-
struction was shown in Fig. 2a. A t-test was performed for 
statistical analysis, and a statistically significant difference 
was determined for HFEN, based on a threshold of 0.05. 
The P-values of SpiNet-QSM matched the results of the 
deep learning approaches QSMnet (P=0.939), DeepQSM 
(P=0.372), and xQSM (P=0.505). However, the proposed 
SpiNet-QSM showed an improvement over the LPCNN 
approach (P=0.004).

Training on limited data

The quantitative performance metrics of the different 
QSM reconstruction methods considered in this study are 
summarized in Table 2. The quality of the reconstructed 
susceptibility maps was reduced with a reduction in the 
training data compared with that of the full training data. 
One example reconstruction was shown in Fig. 2b. The 
scatter plots showing the quantitative performance of the 
proposed as well as other methods were shown in Fig. 3 
both for the complete training data as well as limited training 
data. From these results, it can be observed that the proposed 
SpiNet-QSM map matches closely with the gold-standard 
COSMOS map.

The proposed SpiNet-QSM showed a statistically 
significant improvement over the existing deep learning 
approaches,  QSMnet  (  P = 1.16e−21 ) ,  DeepQSM 
( P = 6.23e−25 ), and xQSM ( P = 7.30e−25 ). Even LPCNN 
performed better than the deep learning methods QSMnet 
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( P = 2.42e−09 ), DeepQSM ( P = 1.4e−11 ), and xQSM 
( P = 4.9e−12 ). The performance of NDI also matched that of 
the deep learning methods QSMnet ( P = 0.915 ), DeepQSM 
( P = 0.453 ), and xQSM ( P = 0.202 ). For a fair comparison, 
the proposed SpiNet-QSM and LPCNN approaches were 

compared with similar training conditions. The proposed 
SpiNet-QSM showed better reconstruction than the LPCNN 
( P = 1.27e−07).

Fig. 2  a An example susceptibility image reconstructed using the 
complete data training was shown in the first row, and the difference 
images with respect to COSMOS in the second row. b The same data 
reconstructed on limited data training (16% of the data utilized in (a)) 
are shown in the first row, and the difference images with respect to 
COSMOS are shown in the second row. The corresponding high-fre-

quency error norm (HFEN) and normalized root mean squared error 
(NRMSE) with respect to COSMOS are shown below the respective 
susceptibility map and difference image, respectively. As NDI is an 
iterative method, the reconstruction results (NRMSE=57.734 and 
HFEN=54.175) were not included in the figure
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Fig. 3  (a) Scatter plots of QSM maps reconstructed using the pro-
posed SpiNet-QSM, LP-CNN, QSMnet, DeepQSM, and xQSM, 
which were trained on complete training data. (b) Scatter plots of 
QSM maps reconstructed using the same five methods and trained 

on limited training data. QS represents the quantitative susceptibility 
value in parts per million (ppm). As NDI is an iterative method, the 
same scatter plot was included in both scenarios and is showcased as 
a sixth figure
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Table 2  Averaged quantitative performance metrics (SSIM, pSNR, NRMSE, and HFEN) of different QSM reconstruction methods with respect 
to COSMOS estimated using 4-fold cross-validation set. The best results are shown in bold

Experiment Method METRICS

SSIM xSIM pSNR NRMSE HFEN

Complete data training SpiNet-QSM 0.904 ± 0.031 0.577 ± 0.087 40.296 ±1.622 54.782 ± 8.733 52.054 ± 9.262
LP-CNN 0.900 ± 0.030 0.559 ± 0.079 40.179 ± 1.566 56.007 ± 8.580 53.860 ± 9.997
QSMnet 0.902 ± 0.029 0.587 ±0.078 40.244 ± 1.510 54.637 ± 8.118 52.880 ± 9.587
DeepQSM 0.899 ± 0.029 0.576 ± 0.076 40.179 ± 1.470 55.225 ± 7.944 54.110 ± 9.277
xQSM 0.901 ± 0.029 0.587 ±0.078 40.176 ± 1.519 55.293 ± 8.293 53.833 ± 9.545
NDI 0.868 ± 0.035 0.487 ± 0.09 38.257 ± 1.351 70.089 ± 8.228 66.152 ± 8.631

Limited data training SpiNet-QSM 0.895 ± 0.027 0.537 ± 0.081 39.933 ±1.453 57.001 ± 7.459 54.605 ± 8.838
LP-CNN 0.881 ± 0.027 0.493 ± 0.070 39.271 ± 1.387 61.794 ± 6.801 59.316 ± 8.323
QSMnet 0.861 ± 0.042 0.417 ± 0.061 38.698 ± 1.619 65.475 ± 9.756 68.881 ± 12.657
DeepQSM 0.861 ± 0.042 0.417 ± 0.059 38.723 ± 1.578 65.402 ± 9.308 66.554 ± 12.142
xQSM 0.853 ± 0.054 0.403 ± 0.061 38.590 ± 1.692 66.893 ± 10.446 67.176 ± 13.096
NDI 0.868 ± 0.035 0.487 ± 0.092 38.257 ± 1.351 70.089 ± 8.228 66.152 ± 8.631

Table 3  Quantitative metrics with respect to COSMOS obtained by 
testing on other data sets (LP-CNN data, RC-1 data and RC-2 (Sim-
2Snr1 and Sim2Snr)) data [22]. The models were trained on SNU 

data. The best results are shown in bold font. As NDI and FANSI 
are iterative methods, results for RC-1 and RC-2 data were presented 
without standard deviation (No cross-validation)

Experiment Method METRICS

SSIM xSIM pSNR NRMSE HFEN

LPCNN data SpiNet-QSM 0.927 ± 0.013 0.541 ± 0.034 35.071 ±1.480 57.340 ± 2.912 53.533 ± 3.472
LP-CNN 0.914 ± 0.011 0.387 ± 0.201 34.651 ± 1.537 61.353 ± 2.318 56.931 ± 2.875
QSMnet 0.918 ± 0.014 0.499 ± 0.034 34.612 ± 1.498 61.046 ± 2.879 56.422 ± 3.792
DeepQSM 0.918 ± 0.0128 0.493 ± 0.0292 34.693 ± 1.592 61.202 ± 2.662 56.669 ± 3.409
xQSM 0.917 ± 0.011 0.497 ± 0.033 34.580 ± 1.275 61.443 ± 2.554 57.301 ± 3.243

RC-1 data SpiNet-QSM 0.916 ± 0.003 0.643 ± 0.011 40.653 ± 0.299 47.150 ± 0.392 46.0752 ± 0.539
LP-CNN 0.900 ± 0.002 0.557 ± 0.010 39.492 ± 0.124 52.217 ± 0.531 49.970 ± 0.381
QSMnet 0.909 ± 0.002 0.587 ± 0.021 39.764 ± 0.254 51.545 ± 1.491 49.225 ± 1.177
DeepQSM 0.908 ± 0.004 0.574 ± 0.012 39.601 ± 0.280 52.076 ± 0.743 50.175 ± 1.040
xQSM 0.909 ± 0.003 0.578 ± 0.015 39.560 ± 0.276 52.577 ± 0.713 50.133 ± 1.073
NDI 0.853 0.512 37.457 61.715 60.728
FANSI 0.856 0.411 37.970 61.920 59.480

RC-2data(Sim2Snr1) SpiNet-QSM 0.991 ± 0.0002 0.618 ± 0.0159 51.336 ± 0.138 54.187 ± 1.527 50.076 ± 0.995
LP-CNN 0.991 ± 0.0005 0.593 ± 0.0133 51.057 ± 0.226 56.424 ± 0.391 51.695 ± 1.053
QSMnet 0.987 ± 0.001 0.471 ± 0.026 49.318 ± 0.376 66.525 ± 1.752 58.186 ± 3.206
DeepQSM 0.987 ± 0.001 0.445 ± 0.017 49.477 ± 0.316 67.731 ± 1.264 60.366 ± 1.567
xQSM 0.987 ± 0.001 0.465 ± 0.018 49.168 ± 0.291 67.459 ± 1.532 59.363 ± 1.208
NDI 0.984 0.596 51.056 55.384 48.661
FANSI 0.995 0.786 55.527 32.816 22.250

RC-2data(Sim2Snr2) SpiNet-QSM 0.991 ± 0.0004 0.635 ± 0.0177 51.300 ± 0.367 53.073 ± 1.688 49.253 ± 0.989
LP-CNN 0.991 ± 0.0004 0.605 ± 0.0148 50.968 ± 0.209 55.377 ± 0.667 50.816 ± 1.260
QSMnet 0.987 ± 0.002 0.480 ± 0.026 49.305 ± 0.421 65.882 ± 2.036 57.436 ± 3.274
DeepQSM 0.987 ± 0.001 0.452 ± 0.019 49.293 ± 0.277 67.301 ± 1.347 59.893 ± 1.687
xQSM 0.987 ± 0.001 0.471 ± 0.021 49.130 ± 0.197 67.052 ± 1.801 58.892 ± 1.311
NDI 0.987 0.636 51.385 52.560 48.063
FANSI 0.995 0.834 56.518 29.177 20.043
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Performance on other datasets

The quantitative metrics obtained from the LPCNN data, 
RC-1 data, and RC-2 data are summarized in Table 3. On 
the LPCNN data, it’s evident that the proposed SpiNet-
QSM outperforms other approaches. The model-based 
deep learning method LPCNN and the pure deep learning 
methods QSMNet, DeepQSM, and xQSM also showed 
effective QSM reconstruction. Pure deep learning methods 
achieve comparable performance to LPCNN. Similarly, on 
the RC-1 data, SpiNet-QSM exhibits superior performance 
compared to other methods. However, QSMNet, DeepQSM, 
and xQSM also achieved effective QSM reconstructions. 
Deep learning methods on RC-1 data match the performance 
of LPCNN. Both model-based and pure deep learning 
approaches outperform NDI, an iterative method. On RC-2 
data, the iterative method NDI showed better performance 
than other methods. The Model-based deep learning 
methods performed closer to that of NDI and, the SpiNet-
QSM exhibited slight superiority over the LPCNN. The 
performance of pure deep learning methods was inferior 
when compared to the NDI, SpiNet-QSM, and LPCNN. 
Across all three datasets, The model-based deep learning 
techniques SpiNet-QSM and LPCNN exhibited consistent 
performance compared to other deep learning methods. 
However, SpiNet-QSM showed even better performance 
than LPCNN.

Convergence comparison

Figure 4 depicts the evaluation metrics versus epochs for 
both the models. Notably, the plots illustrating the metric 
improvement show steeper trends in the case of K = 1 . For 
K = 3 , the weights were initialized to those of K = 1 for 
SpiNet-QSM. The saturation observed in SpiNet-QSM 
metrics with K = 3 can be attributed to two factors. First, 
because the weights are initialized with K = 1 , the model is 
already near the solution space. Second, each epoch of the 
proposed SpiNet-QSM involves inner iterations, facilitating 
a faster convergence to the solution. For the LPCNN with 
K = 3 , the weights initialization from LPCNN with K = 1 
doesn’t add any improvement in terms of convergence and 
performance. SpiNet-QSM consistently outperformed 
LPCNN in terms of convergence speed, demonstrating its 
superiority in both full and limited data training scenarios. 
The training was stopped for all the methods by considering 
the model performance on the validation set. SpiNet-
QSM with the K = 3 model converged in the early epochs. 
However, a minimum of 45 epochs were considered in the 
training process.

Training one epoch of SpiNet-QSM and LPCNN took 
90 and 120 min, respectively. SpiNet-QSM training was 
performed for 45 epochs, which required approximately 

68 hours, and LPCNN training was performed for 
approximately 80 epochs, required approximately 160 h. 
However, SpiNet-QSM training with K = 3 was performed 
by initializing the weights of SpiNet-QSM with K = 1 
(single unrolling). For training one epoch, SpiNet-QSM with 
K = 1 took 20 min. The SpiNet-QSM with K = 1 training 
was also performed for 50 epochs, which took approximately 
17 h. By including this training time, the overall training 
time of SpiNet-QSM with K = 3 was approximately 85 h. 
Although the LPCNN K = 3 experiment was attempted by 
initializing the weights with LPCNN with K = 1 , it did not 
show any improvement in terms of time and quantitative 
metrics over the LPCNN with K = 3 with random default 
initialization. It should be noted that the model weights 
were chosen for that epoch when the validation error was the 
minimum. Remarkably, SpiNet-QSM consistently showed 
faster convergence than LPCNN.

Clinical analysis

Testing on patient data

The proposed SpiNet-QSM was tested on clinical data, 
including hemorrhage and multiple sclerosis (MS), which 
were not present in the training data. The model loss was 
utilized to evaluate the performance of the models. One 
example result from each hemorrhage as well as the MS 
case was shown in Fig. 5.

ROI analysis

The local region susceptibility values (mean and standard 
deviation) of the three ROIs considered for the six different 
subjects are summarized in Table 4. One example set of 
images were shown in Fig. 6. The respective COSMOS 
values are shown for reference. It can be observed that 
the local measurements of the proposed SpiNet-QSM 
consistently match with the COSMOS susceptibility 
measurements.

Discussion

This study introduces SpiNet-QSM, a model-based deep 
learning approach for QSM reconstruction. SpiNet-QSM uti-
lizes an unrolling iterative structure with a p-norm-enforced 
CNN-denoiser-based trainable regularizer, where the regu-
larizer weights are shared across the iterations. However, the 
inclusion of the regularization term ‖x − z‖

p
p in the SpiNet-

QSM objective function makes it non-convex. For the 
SpiNet-QSM objective function, the majorization-minimiza-
tion approach was employed, approximating an upper-bound 
function under conditions where 0 < p ≤ 2 . The preference 
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Table 4  The local susceptibilitymeasurements in ppm (mean ± standard deviation) and correlationswith COSMOS for the three ROIs: Caudate 
(CAU), Putamen (PUT), GlobusPallidus (GP) for six test subjects of the SNU data. The bestresults are shown in bold

ROI

METHOD Subject-1 Subject-2 Subject-3 Subject-4 Subject-5 Subject-6

Susceptibility values
CAU COSMOS 0.040 ± 0.027 0.036 ± 0.033 0.036 ± 0.022 0.037 ± 0.024 0.052 ± 0.033 0.044 ± 0.022

SpiNet-QSM 0.047 ± 0.023 0.038± 0.026 0.038 ± 0.021 0.037 ± 0.021 0.058± 0.029 0.049 ± 0.020
LP-CNN 0.048 ± 0.021 0.046 ± 0.023 0.044 ± 0.021 0.043 ± 0.021 0.076± 0.027 0.060 ± 0.019
QSMnet 0.027 ± 0.022 0.028 ± 0.026 0.031 ± 0.021 0.029 ± 0.021 0.038 ± 0.025 0.035 ± 0.019
DeepQSM 0.031 ± 0.022 0.034 ± 0.024 0.033 ± 0.020 0.033 ± 0.021 0.045 ± 0.024 0.036 ± 0.020
xQSM 0.032 ± 0.022 0.030 ± 0.025 0.034 ±0.021 0.033± 0.021 0.047± 0.026 0.038± 0.021
STAR-QSM 0.023 ± 0.027 0.031 ± 0.034 0.035 ± 0.028 0.040 ± 0.028 0.051 ± 0.035 0.035 ± 0.024
NDI 0.034 ± 0.022 0.024 ± 0.026 0.028 ±0.021 0.026± 0.019 0.037± 0.024 0.040± 0.020

PUT COSMOS 0.033 ± 0.027 0.047 ± 0.035 0.040 ± 0.028 0.051 ± 0.029 0.070 ± 0.037 0.042 ± 0.025
SpiNet-QSM 0.035 ± 0.025 0.047 ± 0.033 0.046 ± 0.027 0.053 ± 0.027 0.071 ±0.033 0.047 ± 0.023
LP-CNN 0.047 ± 0.027 0.064 ± 0.034 0.059 ± 0.028 0.064 ± 0.029 0.087 ± 0.035 0.063 ± 0.026
QSMnet 0.029 ± 0.025 0.043 ± 0.033 0.039 ± 0.027 0.044 ± 0.029 0.054 ± 0.035 0.043 ± 0.027
DeepQSM 0.032 ± 0.026 0.047 ± 0.032 0.042 ± 0.027 0.045 ± 0.026 0.056 ± 0.032 0.047 ± 0.025
xQSM 0.032 ± 0.025 0.044 ± 0.031 0.041 ± 0.027 0.045± 0.026 0.057±0.033 0.046± 0.026
STAR-QSM 0.049 ± 0.030 0.033 ± 0.039 0.039 ±0.028 0.033 ± 0.025 0.050 ± 0.037 0.046 ± 0.024
NDI 0.022 ± 0.023 0.037 ± 0.029 0.031 ±0.026 0.034± 0.026 0.046± 0.029 0.036± 0.024

GP COSMOS 0.127 ± 0.039 0.152 ± 0.062 0.128 ± 0.046 0.127 ± 0.043 0.166 ± 0.055 0.124± 0.038
SpiNet-QSM 0.130 ± 0.040 0.154± 0.055 0.135 ± 0.046 0.132 ± 0.043 0.154± 0.052 0.130 ± 0.038
LP-CNN 0.147 ± 0.042 0.164 ± 0.053 0.151 ± 0.048 0.144 ± 0.048 0.162 ± 0.052 0.146 ± 0.043
QSMnet 0.120 ± 0.039 0.136 ± 0.055 0.123 ± 0.046 0.121 ± 0.044 0.134 ± 0.052 0.120 ± 0.041
DeepQSM 0.122 ± 0.037 0.138 ± 0.053 0.126 ± 0.043 0.120 ± 0.039 0.135 ± 0.048 0.120 ± 0.037
xQSM 0.126 ± 0.038 0.141 ± 0.052 0.128 ± 0.045 0.122 ± 0.041 0.142 ±0.050 0.126 ± 0.093
STAR-QSM 0.096 ± 0.037 0.112 ± 0.053 0.105 ±0.043 0.102 ± 0.040 0.122 ± 0.052 0.102 ± 0.035
NDI 0.086 ± 0.029 0.105 ± 0.041 0.092 ±0.035 0.089± 0.033 0.100± 0.037 0.101± 0.032

Correlation with COSMOS
CAU SpiNet-QSM 0.866 0.823 0.769 0.812 0.862 0.863

LP-CNN 0.798 0.656 0.631 0.704 0.735 0.713
QSMnet 0.855 0.791 0.757 0.710 0.837 0.817
DeepQSM 0.838 0.762 0.713 0.763 0.824 0.794
xQSM 0.83 0.766 0.757 0.736 0.858 0.819
STAR-QSM 0.747 0.722 0.666 0.747 0.724 0.738
NDI 0.775 0.698 0.658 0.698 0.691 0.719

PUT SpiNet-QSM 0.885 0.834 0.866 0.861 0.866 0.841
LP-CNN 0.827 0.790 0.792 0.806 0.768 0.779
QSMnet 0.844 0.839 0.870 0.866 0.872 0.831
DeepQSM 0.840 0.813 0.850 0.875 0.866 0.802
xQSM 0.872 0.821 0.876 0.882 0.882 0.824
STAR-QSM 0.796 0.710 0.722 0.772 0.731 0.752
NDI 0.747 0.759 0.745 0.769 0.749 0.775

GP SpiNet-QSM 0.861 0.866 0.877 0.909 0.859 0.876
LP-CNN 0.832 0.804 0.854 0.869 0.808 0.826
QSMnet 0.826 0.801 0.898 0.872 0.814 0.854
DeepQSM 0.832 0.803 0.853 0.852 0.828 0.848
xQSM 0.868 0.825 0.897 0.883 0.877 0.858
STAR-QSM 0.751 0.753 0.748 0.794 0.678 0.794
NDI 0.738 0.757 0.757 0.737 0.649 0.804
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Fig. 4  Comparison of the convergence for LPCNN and proposed SpiNet-QSM. HFEN, SSIM, and NRMSE (computed with respect to COS-
MOS) for a full training data and b limited training data

Fig. 5  Clinical analysis on hemorrhage and multiple sclerosis (MS) 
for example cases. The normalized model loss (L2-norm) is shown 
as insets at the bottom of each image. However, NDI reconstructions 

for the clinical data were not performed due to the unavailability of 
magnitude volumes
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for majorization-minimization [29] over alternatives, such as 
Gauss-Newton [29, 30], is grounded in the challenges posed 
by non-convex and non-smooth optimization problems. Spe-
cifically, the objective function of SpiNet-QSM is nonlinear 
and can be nonconvex in nature owing to the p-norm in the 
regularization term. For 0 < p < 1 , the regularization term 
‖x − z‖

p
p is nonconvex. It is also a nonsmooth function at 

0 < p < 2 . The Gauss-Newton approach may encounter dif-
ficulties in such scenarios, often being prone to convergence 
issues and becoming trapped in local minima. Majorization-
minimization, on the other hand, emerges as a robust choice 
for handling non-convex and non-smooth functions within 
the context of the minimization problem. Its iterative nature 
involves majorizing the objective function using a simpler 
upper-bound function, thereby making it more suitable for 
optimization. In contrast to the Gauss-Newton method, 
majorization-minimization excels in navigating non-convex 
landscapes, providing effective and consistent performance 
throughout the optimization process. Each iteration involved 
refining this upper-bound function to iteratively address the 
challenges associated with the optimization function. This 
robustness makes majorization-minimization a practical and 
reliable approach to this problem.

Due to the physics-driven nature of SpiNet-QSM and 
LPCNN, both of them outperformed the existing deep 
learning methods. Further, the proposed SpiNet-QSM 
outperformed LPCNN for both complete and limited data 
training, despite being trained under similar conditions. 
Although both the methods use an unrolling iterative 
structure and a trainable regularizer with weight-sharing, the 
regularizer term is a direct CNN in the LPCNN approach, 
whereas it consists of a CNN-based denoiser in SpiNet-
QSM. Moreover, SpiNet-QSM enforces the p-norm rather 
than the 2-norm in LPCNN for the regularizer term, where 
p is trainable ( 0 < p ≤ 2 ). It was observed from experiments 
that the converged p-value is between 1.5 and 1.8. Thus, 
in the case of limited data training, the p-norm enforced 
regularizer constrained the proposed SpiNet-QSM to choose 
a better susceptibility space, enabling the proposed SpiNet-
QSM to reconstruct better susceptibility maps. The second 
distinction lies in the methodology utilized to solve the 
data consistency part. The proposed SpiNet-QSM solves 
the data consistency block with the help of the conjugate 
gradient descent method (as an iterative solver); however, 
LPCNN uses the proximal gradient method, and in each 

unrolling, only one proximal gradient step is used. These 
two factors also helped SpiNet-QSM in achieving faster 
convergence compared to LPCNN. However, the end-to-end 
training of the proposed SpiNet-QSM is computationally 
more expensive than direct deep learning methods due to 
the model-based unrolling network architecture. For future 
improvement, the development of more trainer-friendly 
networks for model-based deep learning frameworks will 
be explored.

In this study, a thorough analysis was conducted using 
the reconstruction challenge (RC) 1 and 2 datasets [18, 
22]. In RC-1, an in vivo data was shared with a reference 
susceptibility map computed using the susceptibility tensor 
imaging [31] on data acquired at 12 head orientations, 
whereas RC-2 shared simulated data. It was observed 
that the proposed SpiNet QSM performed better than the 
existing deep learning methods and iterative methods for 
the RC-1 dataset. This suggests that integrating Schatten 
p-norm regularization into the deep learning framework 
effectively reduces artifacts and improves the accuracy 
of the susceptibility maps. These results also highlight 
the generalization potential of the proposed approach for 
QSM reconstruction. Likewise, in the RC-2 dataset, the 
proposed methodology exhibited superior performance 
compared with all existing deep-learning techniques. (The 
reconstructed results of QSMNet, DeepQSM, FANSI, and 
NDI were consistent with reported results [22]). However, 
state-of-the-art iterative methods, such as L1-QSM [32] and 
FANSI [24] surpassed the proposed approach. This has been 
previously reported in studies such as NextQSM [33]. This 
discrepancy can be attributed to the utilization of a nonlinear 
fidelity term within the cost function. Hence, in future work, 
the proposed method can be enhanced by incorporating a 
nonlinear fidelity term.

Conclusion

In this work, a model-based deep learning framework for 
single-orientation QSM reconstruction was developed 
with a Schatten p-norm driven regularizer, where the norm 
parameter p is trainable. The proposed SpiNet-QSM is a 
supervised method for QSM reconstruction with a COSMOS 
map as the ground truth that uses an unrolled network 
architecture with shared weights for end-to-end training. 
The proposed SpiNet-QSM outperformed other state-of-
the-art deep learning methods in terms of reconstruction 
performance with limited training data. Furthermore, 
it showed good generalization by yielding robust 
reconstructions when tested on data collected under different 
acquisition parameters from those of the training data. The 
proposed SpiNet-QSM also performed consistently well 

Fig. 6  ROI analysis (Caudate, Putamen, and globus pallidus) for an 
example case. The first row shows the reconstructed susceptibility 
maps obtained using COSMOS, SpiNet-QSM, LP-CNN, QSMnet, 
DeepQSM, xQSM, Star-QSM, and NDI. The second row shows a 
magnified view of the QSM in the ROI using the above methods. The 
susceptibility values of Caudate, Putamen, and globus pallidus cor-
responding to each ROI are shown as insets in the top, middle, and 
bottom rows, respectively

◂
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on clinical data from patients with hemorrhage, multiple 
sclerosis, and ROI analysis.
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