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ABSTRACT
Quantitative susceptibility mapping (QSM) estimates the tissue magnetic susceptibility from magnetic resonance (MR) phase 
measurements by solving an inverse problem. This study introduces iteration specific denoising via unshared weights for QSM 
reconstruction, also referred to as ISDU-QSMNet, an end-to-end model-based deep learning framework designed to effectively 
solve the inverse problem of QSM reconstruction from the local field. ISDU-QSMNet introduces significant modifications to 
existing model-based deep learning approaches by incorporating unshared denoiser weights and random subset sampling dur-
ing training, leading to a more powerful, robust, and training-efficient model that improves the performance with full training 
data, reduces the overall training time, and effectively handles different datasets. The proposed method was evaluated against 
other model-based deep learning approaches, such as learned proximal networks for QSM reconstruction (LPCNN) and Schatten 
p-norm driven regularizer-based QSM reconstruction (SpiNet-QSM), as well as pure deep learning methods, such as QSMnet, 
DeepQSM, and xQSM, by performing reconstructions on 94 imaging volumes with varying acquisition parameters under two 
scenarios: full training data and limited training data. In the full training data scenario, the proposed approach demonstrated 
substantial improvements over all existing methods in both model-based and pure deep learning categories, achieving significant 
reductions in high-frequency error norm (HFEN) by up to 3.5% across 60 data volumes. In the limited training data scenario, 
the proposed approach matched the performance of state-of-the-art model-based deep learning models. Additionally, it demon-
strated strong generalization capabilities by effectively handling data with different acquisition parameters and consistently 
performed well in ROI analysis.

1   |   Introduction

Quantitative susceptibility mapping (QSM) is an advanced MRI 
technique that estimates the magnetic susceptibility of tissues 
using the measured phase data from three-dimensional (3D) or 
two dimensional (2D) multislice gradient echo (GRE) acquisi-
tions [1–4]. QSM has several important clinical applications [5–7], 
particularly in neuroimaging, as it offers both visualization and 

quantification of tissue susceptibility. It effectively differentiates 
hemorrhage (paramagnetic, high contrast) from calcifications 
(diamagnetic, low contrast), visualizes and quantifies brain iron 
deposits, which are crucial in studying neurodegenerative dis-
eases [6] such as Parkinson's [8,9] and Alzheimer's [10–13], and 
multiple sclerosis [14–16]. QSM is a valuable tool for studying 
microstructural and compositional changes in the brain asso-
ciated with various neurological conditions, with applications 
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in improving diagnostic precision, guiding treatment planning, 
and facilitating disease monitoring. The susceptibility map is 
generated through a multistep process involving phase unwrap-
ping to resolve 2� ambiguities, background field removal to 
obtain the local field map, and dipole inversion to reconstruct 
the final susceptibility distribution. Additional postprocessing 
details are provided in the supplementary materials. Inversion is 
an ill-conditioned problem because the dipole kernel has zeroes 
along a conical surface and, therefore, undersamples k-space, 
calling for either handcrafted or learned priors for accurate map 
reconstruction [17].

Traditional iterative QSM reconstruction methods, such as 
morphology-enabled dipole inversion (MEDI) [18] and fast non-
linear susceptibility inversion with variational regularization 
(FANSI) [19] utilize iterative algorithms with handcrafted reg-
ularizers. FANSI [19] is a nonlinear QSM algorithm that em-
ploys variable splitting and the alternating direction method of 
multipliers (ADMM). This approach decomposes the problem 
into simpler subproblems with closed-form solutions, while 
the decoupled nonlinear inversion is solved using a Newton–
Raphson iterative scheme. However, the resulting image quality 
is highly sensitive to the choice of the regularization parameter, 
which controls the trade-off between data fidelity and image 
smoothness. Alternatively, in nonlinear dipole inversion (NDI) 
[20] method, optimization solely performed on the nonlinear 
forward model without explicitly introducing a regularization 
term, and solving it using a simple gradient descent rule. These 
approaches, although effective to an extent, often struggle to 
balance the trade-off between image fidelity and noise suppres-
sion, and their performance can be significantly affected by the 
choice of regularization parameters or the number of iterations 
used in the reconstruction.

In recent years, deep learning has significantly affected medi-
cal imaging by providing data-driven solutions (end-to-end deep 
learning methods) that learn complex mappings directly from 
data. Convolutional neural networks (CNNs) have shown prom-
ising results in QSM reconstruction. Examples include QSMnet, 
DeepQSM, and xQSM, which use deep neural networks to map 
single-orientation phase measurements to multiorientation cal-
culation of susceptibility through multiple-orientation sampling 
(COSMOS) [21] susceptibility maps. QSMnet [22] employs a 3D 
CNN UNet [23] architecture, DeepQSM [24] uses synthetic data 
to learn the physical forward problem, and xQSM [25] intro-
duces octave convolutions to enhance the QSM reconstruction 
performance, which requires end-to-end training from the local 
field to COSMOS. However, these methods do not incorporate 
the underlying physics of the QSM problem, making them more 
biased towards the training data and less adaptable to changes 
in the input distributions. To address this, model-based deep-
learning (MoDL) approaches have been developed that combine 
the strengths of deep learning with the underlying physics of the 
problem [26].

To addresses the challenges in QSM reconstruction arising from 
varying acquisition orientations and anisotropic voxel sizes, 
Xiong et  al. proposed AFTER-QSM (Affine Transformation 
Edited and Refined Deep Neural Network for quantitative sus-
ceptibility mapping), which is a model-based deep learning 
method. The method incorporates affine transformations to 

align images into a consistent coordinate space, followed by a 
U-Net architecture for dipole inversion and a residual dense net-
work for refinement, enhancing generalizability across diverse 
imaging conditions [27]. Notably, Graf et  al. [28] proposed an 
adaptive convolutional network that integrates a prior informa-
tion about imaging parameters, such as orientation and resolu-
tion, into the reconstruction process to improve generalizability. 
Similarly, adaptive instance normalization (AdaIN)-QSM by 
Oh et al. [29] applies AdaIN to address performance degrada-
tion due to resolution mismatches between training and testing 
datasets.

Alternatively, there are single step QSM reconstruction meth-
ods like Instant QSM (iQSM), which is a deep learning-based 
method that enables near-instant quantitative susceptibility 
mapping directly from raw MRI phase data by bypassing tra-
ditional multistep processes, significantly reducing recon-
struction time and improving accuracy [30]. iQSM+ further 
enhanced this framework by integrating a novel orientation-
adaptive latent feature editing (OA-LFE) module to enable ac-
curate, artifact-reduced reconstructions across arbitrary dipole 
field orientations, demonstrating superior performance over ex-
isting DL-QSM methods [31].

Meanwhile, all the aforementioned methods perform dipole de-
convolution in a single step, by directly computing QSM from the 
input local field. However, two-step methods exist, such as data 
fidelity–based QSM (DF-QSM) [32], fidelity imposed network 
edit (FINE) [33], and model-resolution-based deconvolution for 
improved QSM (MR-QSM) [34]. These methods first predict 
the QSM from the local field and then refine the prediction in 
a second step, which incorporates gradients derived from the 
physics of QSM. These methods often require additional com-
puting and the solution of the initial step to be in close proximity 
to the target reconstruction. Model-based Deep Image Prior for 
QSM (MoDIP-QSM) is an unsupervised, training-free method 
that combines a small untrained neural network with a data fi-
delity optimization module. The network serves as an implicit 
prior for image regularization, while the optimization enforces 
the physical dipole inversion model. MoDIP-QSM has demon-
strated improved generalizability and computational efficiency 
in QSM reconstruction, particularly in handling variations in 
scan parameters [35]. However, it is important to note that in 
inverse problems like QSM reconstruction, which involve high-
dimensional null spaces, deep image prior (DIP) has limitations 
in recovering all relevant information. Research on magnetic 
resonance imaging reconstruction has shown that DIP performs 
suboptimally, especially when the forward operators are com-
plex or the data are highly undersampled [36]. Furthermore, DIP 
tends to recover low-frequency components of the image more 
quickly than high-frequency details, leading to a spectral bias 
that can result in the loss of fine structural information, which 
is critical in QSM maps [36–38].

Model-based deep learning techniques have emerged as promis-
ing paradigms that combine the strengths of traditional model-
based methods and deep learning. By integrating the physical 
model of the QSM reconstruction problem into the deep learning 
framework, these techniques aim to leverage the advantages of 
both the strong prior knowledge encoded in the physical model 
and the powerful feature-learning capabilities of deep neural 
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networks. In each iteration, the model-based deep learning uses 
the predicted QSM from the previous iteration to refine and im-
prove the prediction in the current iteration. Thus, model-based 
deep learning can be viewed as a multistep refinement process 
(known as unrolling) for QSM reconstruction. However, the 
training is performed in an end-to-end fashion.

Learned proximal convolutional neural networks for quantita-
tive susceptibility mapping (LPCNN) [39] and Schatten p-norm 
regularization for improved quantitative susceptibility mapping 
(SpiNet-QSM) [40] are examples of approaches developed for 
QSM reconstruction. LPCNN combines the proximal gradient 
algorithm with 3D-WideResNet to form an unrolled iterative 
model. It iteratively refines solutions using a data-driven regu-
larizer through its CNN component, which acts as a proximal 
operator to enhance the reconstruction quality by learning from 
data, thereby decoupling the forward model from data-driven 
parameters. SpiNet-QSM is another iterative unrolled model 
that utilizes a Schatten p-norm–driven CNN denoiser-based 
regulariser.

Although the aforementioned model-based deep learning meth-
ods effectively integrate the physical principles of the QSM 
forward model with the representational power of deep neural 
networks, they remain insufficient to fully address the chal-
lenges of QSM reconstruction. These methods generally outper-
form purely data-driven approaches, particularly in low-data 
regimes— which is supported by prior studies comparing both 
paradigms across varying levels of data availability [32, 40]. 
However, when large amount of training data are available, the 
performance gap between model-based and pure deep learning 
methods tends to narrow. The inherent incorporation of model 
physics gives model-based approaches an advantage in terms of 
generalizability. Nevertheless, these observations indicate that 
there remains considerable scope for improving model-based 
deep learning frameworks, especially in high-data scenarios. 
With optimized architectural design, such methods could yield 
superior performance and robustness in QSM reconstruction. 
Alternatively, another major limitation of existing model-based 
deep learning techniques is their high computational cost 
during training, which often compels the use of simplified archi-
tectures with fewer unrolling iterations. This trade-off restricts 
their utility primarily to data-constrained settings and under-
mines their potential benefits in high-data regimes. Moving 
toward more efficient training paradigms that reduce compu-
tational overhead could enable the adoption of deeper unrolled 
architectures. This, in turn, would facilitate more effective ex-
ploitation of larger training datasets, leading to improved QSM 
reconstruction performance compared to current methods such 
as LPCNN [39] and SpiNet-QSM [40].

To overcome the limitations of existing model-based deep learn-
ing techniques in QSM reconstruction, we propose a novel 
approach called Iteration-Specific Denoising with Unshared 
Weights-QSMNet (ISDU-QSMNet), which introduces an 
iteration-specific denoiser with unshared weights to improve 
susceptibility map refinement. By assigning unique weights to 
each iteration, the network learns denoising parameters tailored 
to that stage of reconstruction. Unlike shared weight model-
based deep learning methods, the design of ISDU-QSMNet sup-
ports iteration-specific regularization, improving reconstruction 

quality progressively. This results in superior QSM reconstruc-
tion performance compared to conventional shared-weight 
approaches. To address the challenge of long training times, 
ISDU-QSMNet employs random subset sampling. The un-
shared weights enhance the model's capacity to leverage large 
datasets, while subset sampling accelerates training without 
sacrificing accuracy. This design enables efficient, high-quality 
QSM reconstruction. Extensive evaluations show that ISDU-
QSMNet outperforms state-of-the-art methods in both full-data 
and limited-data scenarios, offering superior performance and 
generalizability.

2   |   Methods

2.1   |   Datasets

Five datasets are used in this study. Dataset-I comprises SNU 
data from Seoul National University, including 60 volumes from 
12 healthy subjects, acquired using a 3 T MRI scanner across 
five head orientations [22]. Dataset-II is the LPCNN data shared 
by Lai et al. [39], consisting of 32 volumes from eight subjects at 
7 T, with varying dimensions. Dataset-III is from reconstruction 
challenge-1 (RC-1) [41], which includes a single 3 T volume with 
12 head orientations. Dataset-IV is from reconstruction chal-
lenge-2 (RC-2) [42, 43] and comprises two simulated volumes. 
Dataset-V is a scanning volume acquired from a subject with 
hemorrhage on a 3 T MR scanner with different resolution [44]. 
Further details, including acquisition, resolution and other key 
parameters, are provided in the supplementary material.

The SNU data were used to train the model. The local field 
served as the input, while rotated COSMOS maps aligned with 
the input local field were used as the ground truth. A physics-
based data augmentation strategy was applied to increase the 
training dataset  [22]. The COSMOS QSM maps were rotated 
between − 30

◦ and + 30
◦ relative to the B0 direction, and the cor-

responding local field maps were generated by convolving the 
rotated COSMOS maps with the dipole kernel. This approach 
ensured consistency with the physics of the QSM problem and 
effectively doubled the size of the training dataset by generat-
ing additional COSMOS–local field pairs through each rota-
tion. Training involved generating multiple 3D patches of size 
64 × 64 × 64 voxels with a 66% overlap. The COSMOS map was 
used as the ground truth for all the methods.

2.2   |   QSM Reconstruction Model

The QSM reconstruction problem seeks to estimate the suscep-
tibility distribution (�) from the observed local magnetic field 
(y). These belong to function spaces X  and Y , respectively. The 
relationship between them can be modeled as:

where f  represents the (typically nonlinear) forward mapping 
from susceptibility to field, often involving dipole convolution. 
Because of the presence of zeros in the dipole kernel in the 
Fourier domain, this forward operator is ill-posed and does not 
admit a well-defined inverse in the classical sense. In purely 

(1)y = f (�),
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deep learning-based approaches, the reconstruction task is 
reformulated by learning an approximate inverse mapping 
ℱ

�
:Y → X, where ℱ

�
≈ f −1 is a parameterized model trained to 

estimate � from y.

A linearized version of the QSM forward model [39] is com-
monly used, expressed as:

� = FHDF represents the forward operator, where F denotes the 
discrete Fourier transform and D refers to a diagonal matrix 
in the Fourier domain corresponding to the dipole kernel. The 
entries of D are given by the expression D(k) = 1

3
−

k2z
∥ k∥2

, which 
vanishes on the conical surface defined by 2k2z = k2x + k2y. This 
leads to a nontrivial null space, making the direct inversion of 
D ill-posed or unstable due to the presence of zeros or near-zero 
values along its diagonal. Consequently, the QSM reconstruc-
tion problem becomes an ill-posed inverse problem, necessitat-
ing prior knowledge or regularization to stabilize the solution. 
Model-based deep learning solvers use Equation 2 for the fidel-
ity term and derive the QSM calculations. Unlike direct deep 
learning models, model-based solvers maintain a linear approx-
imation from Equation 2 to ensure that the solutions adhere to 
the underlying physics.

2.3   |   Model-Based Deep Learning for QSM

In this study, a model-based deep learning framework is used to 
solve the QSM reconstruction problem by leveraging an iterative 
unrolled approach commonly used for inverse problems. The 
QSM-specific implementation of the mode-based deep learning 
framework is represented by the following equation:

In this context, � represents the susceptibility map, � relates 
the susceptibility map to the local field y (QSM data consis-
tency term), Dw(�) enforces prior information, and � controls 
the tradeoff between data fidelity and prior enforcement. The 
optimization Equation 3 is solved in an unrolled iterative man-
ner using its corresponding normal equations, as detailed in the 
following equations:

Here, I is the identity matrix. Thus, the iterative process con-
tinues for K unrollings, with the training parameters for Dw 
and � learned in an end-to-end fashion. To reduce the num-
ber of training parameters, the network parameters of Dw and 
the regularization parameter � are shared across the unrolls. 

Equation 6 can be solved by using the conjugate gradient (CG) 
descent algorithm. This approach effectively bridges deep learn-
ing with QSM, enabling accurate susceptibility mapping from 
the phase data.

2.4   |   Proposed ISDU-QSMNet

The proposed ISDU-QSMNet leverages key parameters of 
model-based deep learning, specifically the unrolling parame-
ter (K), unshared weights, and the subset-sampling parameter 
(n). By carefully balancing these factors, we can optimize the 
training efficiency while maintaining a strong performance 
of the model-based deep learning technique for QSM recon-
struction. The following sections provide a detailed explora-
tion of these parameters in the context of the ISDU-QSMNet 
architecture.

2.4.1   |   Unshared Weights

In the ISDU-QSMNet design, the model-based deep learning 
approach is modified by replacing the CNN-based denoiser 
with unshared weights rather than using a CNN-based de-
noiser with shared weights across unrolling iterations. This 
modification introduced iteration-specific denoisers, each 
with its own set of training parameters. This means that we 
are updating the existing model-based deep learning model 
to include iteration-specific denoisers through unshared 
weights. Despite this modification, the design still utilizes a 
CNN denoiser-based regularizer, which is similar to the ex-
isting MoDL design. As a result, the regularization parame-
ters (�i) are also iteration-specific to effectively implement 
iteration-specific regularization. This design achieves both 
iteration-specific denoising and regularization. It also adds 
flexibility to the model-based deep learning QSM approach 
and enhances its ability to capture subtle variations in data, 
especially when dealing with complex features such as suscep-
tibility distributions.

2.4.2   |   Unrolling Parameter (K)

The unrolling parameter (K) in the model-based deep-learning 
technique for QSM represents the number of iterations per-
formed within the end-to-end framework. Essentially, this 
parameter translates to the number of stages that the model un-
dergoes to refine the susceptibility map. By unrolling the tra-
ditional iterative process into K distinct stages within the deep 
learning model, each stage can be considered as a layer in the 
neural network. Adjusting K allows us to control the complexity 
of the model and the degree of refinement applied to the QSM 
solution.

Generally, a higher K value enhances the capacity of the model, 
allowing it to capture more detailed features and potentially 
lead to more accurate reconstructions. In existing MoDL de-
signs with shared-weight denoisers, capacity is constrained by 
a fixed set of parameters shared across all iterations, which 
are suitable for smaller datasets. As a result, increasing K 
does not necessarily enhance the model's capacity, although 

(2)�� = y

(3)

�
∗ = argmin

�

⎧
⎪⎪⎨⎪⎪⎩

∥ �� − y ∥22
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

QSM data consistency

+ � ∥ � − Dw(�) ∥
2
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Prior Information Enforcing Term

⎫
⎪⎪⎬⎪⎪⎭

(4)�0 = �
Hy

(5)zk = Dw

(
�k−1

)

(6)�k =
(
�
H
�+�kI

)−1(
�
Hy + �zk

)
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it still increases complexity. In contrast, the proposed ISDU-
QSMNet design with iteration-specific denoisers through un-
shared weights does not constrain the capacity of the model. 
This approach allows for higher K values, effectively enhanc-
ing the model's ability to handle more data. Careful consid-
eration was also given to selecting CNN model designs to 
prevent overfitting and ensure effective model performance. 
However, it is important to note that using a large K can lead 
to increased computational costs, making the training process 
more resource intensive.

2.4.3   |   Subset Sampling

The proposed model-based design with a large unrolling pa-
rameter (K) and unshared weights is a powerful model for QSM 
reconstruction. However, training such models can be compu-
tationally expensive. To mitigate this, the proposed approach 
employs subset sampling, in which only a subset of n samples is 
used for training each epoch. These n samples were randomly 
selected from the full dataset, ensuring that after a sufficient 
number of epochs (N), the model was exposed to all available 
samples. Training with a smaller subset in each epoch signifi-
cantly reduces computational demands compared to training 
on the entire dataset simultaneously, leading to faster training 
times. The size of the subset (n) was chosen based on the dataset 
characteristics.

2.5   |   Mathematical Equations

In this work, we adopted and modified the mathematical for-
mulation from MoDL to solve the QSM reconstruction problem. 
The following are proposed and modified equations.

Equation 9 defines the core optimization framework of ISDU-
QSMNet for QSM reconstruction by formulating the objective 
function to update the susceptibility map �k through a balance 
of data fidelity and regularization. Here, �k represents the reg-
ularization parameter for the k-th iteration. DWk

 represents the 
iteration-specific CNN-based denoiser at iteration k. The opti-
mization problem is analytically solvable by deriving its normal 
equations, yielding the closed-form solution given below:

Here, zk represents the denoised susceptibility map calculated 
in Equation 8 using an iteration specific CNN denoiser DWk

 for 
the kth iteration. This denoised output zk is then used in the op-
timization Equation 9, where the QSM problem is solved with a 
denoiser-based regularization term. Equation 10 shows how this 
optimization equation is solved by formulating the normal equa-
tions. Equations 8, 9, and 10 together represent a single iteration 

step of the proposed ISDU-QSMNet. These steps are repeated for 
K iterations, corresponding to K unrolling iterations.

2.6   |   Proposed ISDU-QSMNet Architecture

The proposed ISDU-QSMNet architecture is shown in Figure 1, 
comprises two primary blocks: a regularizer block and a data 
consistency block. The regularizer block features a CNN-
based denoiser that handles the denoising process as defined 
in Equation  8. The data consistency block uses a CG method 
to solve the optimization problem based on normal equations, 
as defined in Equation  9. In this CG implementation, 25 iter-
ations (M1 = 25) are used to estimate � given zk, which is then 
passed to the next iteration. The denoiser block (Dwk

) employs a 
3D-WideResNet18 CNN inspired by previous studies [39, 40, 45], 
serving as a data-driven regularizer through residual learning. 
It consisted of 21 convolutional layers, including eight residual 
blocks, with batch normalization and ReLU activation applied 
within the blocks. The first 17 layers use a 3 × 3 × 3 kernel and the 
final layers use a 1 × 1 × 1 kernel. The proposed ISDU-QSMNet 
architecture also utilizes iteration-specific learning parameters 
to improve performance, represented as �i =

{
�i,wi

}K
i=1

, where �i is 
the iteration-specific regularization parameter, wi are the weights 
of the iteration-specific denoiser, i is the iteration number, and K 
is the total number of iterations in the unrolled network.

2.6.1   |   Optimization Perspective on Iteration-Specific 
Denoisers in QSM Reconstruction

In the ISDU-QSMNet formulation, DWk
 acts as a denoiser, func-

tioning as part of a CNN-based regularizer in the optimization 
process for QSM reconstruction. Unlike other model-based 
deep learning algorithms, DWk

 is a convolutional neural network 
(CNN) trained to denoise the susceptibility map � by leverag-
ing learned prior information. This is reflected in the regular-
ization term �k ∥ � − DWk

(�) ∥22, which minimizes the difference 
between the original map and the denoised output. The term 
�k ∥ � − DWk

(�) ∥22 plays a crucial role in addressing the ill-posed 
nature of the QSM problem by enforcing regularization, where 
the parameter �k balances this regularization with data consis-
tency by adapting to the training data at the k-th iteration. This 
DWk

 adapts during training and learning from data to reduce 
noise while preserving the structural features of the map, mak-
ing it distinct from traditional fixed-prior methods. To demon-
strate the functionality of DWk

 as a denoiser, difference maps 
between the denoised outputs DWk

(
xk
)
 and the COSMOS ground 

truth susceptibility map (x) are shown for each iteration. These 
maps illustrate how the denoising process evolves across iter-
ations, with DWk

 refining the susceptibility map to align more 
closely with the ground truth. In Figure 2, the QSM reconstruc-
tions for subject 7 were shown using the ISDU-QSMNet model 
with unshared denoisers. The figure shows reconstructed maps 
at each iteration (x0–x4) with HFEN values, denoised outputs 
(z1–z4), and difference maps (xk − zk, COSMOS - zk), highlight-
ing the denoising effect and alignment with the ground truth. 
The COSMOS − xk differences further assess the accuracy of the 
reconstruction across iterations. These visualizations confirm 
DWk

’s role in refining the susceptibility map.

(7)�0 = �
Hy

(8)zk = DWk

(
�k−1

)

(9)�k = argmin
�

�
‖��−y‖22 + �k

���−zk��22
�

(10)�k =
(
�
H
�+�kI

)−1(
�
Hy + �kzk

)
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2.6.2   |   Design and Optimization Comparison 
With LPCNN

The proposed ISDU-QSMNet is a model-based deep learn-
ing framework that, like LP-CNN, employs iterative unroll-
ing for QSM reconstruction. While both methods share this 
architectural foundation, ISDU-QSMNet introduces several 
key differences that distinguish it from LP-CNN and similar 
approaches. First, ISDU-QSMNet uses a CNN as a denoiser, 
which is integrated as part of a regularization term within the 
optimization framework. In contrast, LP-CNN employs a CNN 
as a learned proximal operator, which directly serves the role 

of regularization but in a different mathematical form. Second, 
ISDU-QSMNet features unshared denoiser weights across 
iterations, meaning that each unrolling step is having a dedi-
cated CNN tailored specific to that stage. This design enables 
iteration-specific refinement. On the other hand, LP-CNN uses 
shared weights across iterations, applying the same CNN pa-
rameters for denoising at every step, which limits adaptability. 
Third, ISDU-QSMNet adopts conjugate gradient descent for 
solving the data consistency subproblem during each iteration, 
offering greater computational efficiency. In contrast, LP-CNN 
uses proximal gradient descent, which is generally less efficient, 
as also demonstrated in [40].

FIGURE 1    |    (a) The network architecture of ISDU-QSMNet consists of two blocks per iteration: a CNN-denoiser (Dw) block and a data consistency 
block. (b) The proposed ISDU-QSMNet is presented as an iterative unrolled architecture with iteration-specific denoisers that use unshared weights. 
The bottom row shows susceptibility map reconstructions over iterations for subject 7 from SNU dataset, demonstrating progressive refinement. The 
corresponding high-frequency error norm (HFEN) values relative to COSMOS highlight substantial improvements across iterations.
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2.7   |   Implementation

The proposed ISDU-QSMNet was implemented using Python 
3.10.9 and PyTorch 2.0.1, and trained on an NVIDIA GeForce 

RTX 3090 GPU. The Adam optimizer was used for all the mod-
els. The training parameters, including the learning rate, loss 
function, batch size, and number of epochs are summarized 
in Table 1. These parameters were empirically chosen based 

FIGURE 2    |    Visualization of intermediate and final QSM reconstructions for subject 7 from the SNU data [22], using the ISDU-QSMNet model with 
unshared denoisers. The first row shows reconstructed susceptibility maps at each unrolled iteration stage (x0–x4), annotated with HFEN values relative 
to the COSMOS ground truth. The second row shows the corresponding denoised outputs (z1–z4), with the corresponding HFEN values given below 
each images. The third and fourth rows display difference maps: (xk − zk) and (COSMOS − zk), respectively, highlighting the denoising effect and the 
alignment with ground truth. The last row presents COSMOS − xk differences indicative of improvements in reconstruction accuracy across iterations.
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on the validation performance. The lossL1 term is the l1-norm 
of the voxel-wise differences between the reconstructed sus-
ceptibility and ground truth COSMOS, whereas the lossGradient 
term is the l1-norm of the gradient differences. Weights w1 = 1, 
w2 = 0.5, and w3 = 0.5 were chosen empirically. The lossL2 term 
is the l2-norm of the voxel-wise differences, representing the 
mean square error between the ground truth and the recon-
structed QSM.

2.7.1   |   Selection of Denoiser DWk

The primary objective of this study was to develop a model-based 
deep learning solution for QSM that required an architecture 
capable of iterative unrolling to progressively refine the QSM 
map, integrating unshared weights while balancing complexity 
to prevent overfitting with limited data and underfitting with a 
full dataset. The selection of the appropriate denoiser DWk

 was a 
crucial step in this process. To this end, we explored various ar-
chitectures, including a simple residual-learning-based 3D CNN, 
3D-UNet, and 3D-WideResNet18 from SpiNet-QSM and LPCNN.

Experiments were conducted using four different CNN ar-
chitectures to identify the most suitable denoising network: 
Simple WideResNet CNN, a lightweight model with a sin-
gle residual connection and 5 layers; UNet-mini, a compact 
model with 4 encoders and 4 decoders using 3 × 3 × 3 filters; 
UNet-heavy, a more parameterized model with 5 × 5 × 5 fil-
ters; and WideResNet-18, a ResNet-based model with eight 
residual connections designed to maintain spatial resolution. 
Quantitative performance metrics (SSIM, pSNR, NRMSE, 
HFEN) and computational costs for each network are sum-
marized in Table  2, with sample reconstructions shown in 
Figure  6 of the supplementary material. These performance 
metrics clearly demonstrated that WideResNet-18 achieved 
the best balance between computational efficiency and recon-
struction quality, leading to its selection as the denoising net-
work for ISDU-QSMNet.

(11)losscombined = w1

(
lossL1

)
+ w2

(
lossGradient

)
+ w3

(
lossModel

)

TABLE 1    |    Summary of training parameters for various models 
trained on the SNU dataset using the full training data setting, including 
learning rate, loss function, batch size, and number of training epochs.

Experiment
Learning 

rate
Loss 

function
Batch 
size

No. 
epochs 
trained

ISDU-
QSMNet, 
K = 4

1 × 10−4 Losscombined 2 45

SpiNet-QSM, 
K = 4

1 × 10−4 Losscombined 2 45

LP-CNN, 
K = 3

1 × 10−4 Losscombined 2 80

QSMNet 5 × 10−4 Losscombined 8 25

Deep QSM 5 × 10−4 LossL2 8 25

xQSM 5 × 10−4 LossL2 8 25
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To ensure that the selected WideResNet architecture is the 
optimal denoising model, an overfitting risk calculation was 
performed as a hypothesis test to evaluate whether shallower 
architectures could provide a better balance between model 
complexity and computational efficiency compared to the 
chosen WideResNet-18. This test will allow us for assessing 
whether a simpler model could maintain or improve perfor-
mance without overfitting, providing a rationale for the final 
model choice. For that, experiments were conducted by replac-
ing the proposed ISDU-QSMNet's WideResNet-18 architecture 
with shallower WideResNet models, evaluating their impact 
on the model's parameter count, computational efficiency, and 
overall performance. The WideResNet-18 architecture, with its 
18-layer depth, demands significant computational resources 
due to the consistent image size maintained throughout the for-
ward pass. Despite having a relatively modest parameter count 
(approximately 1.8 M), the computational cost primarily arises 
from maintaining the original image size, which mimics the 
behavior of iterative methods. In these experiments, the depth 
of the WideResNet architecture was varied (with depths of 10, 
12, 14, 16, and 18) to evaluate the trade-offs between model 
complexity and computational efficiency. The results, including 

performance metrics across different unrolling iterations (K) 
and WideResNet depths, are presented in Table 3.

Moreover, it is crucial to consider the impact of unshared 
weights over shared weights. The unshared weights approach 
in ISDU-QSMNet increases the parameter space by a factor 
of K compared to model-based deep learning methods with 
shared weights like LPCNN and SpiNet-QSM. However, the 
increase in parameter space required by the proposed model 
is minimal in comparison to existing deep learning models. 
In the ISDU-QSMNet architecture, unshared weights are uti-
lized in the denoising step, enabling each iteration to inde-
pendently apply specialized denoising transformations. This 
approach contrasts with existing model-based deep learning 
methods that use shared weights, which can limit the model's 
ability to adapt and refine the denoising process at each itera-
tion. As a result, shared weights reduce the model's flexibility 
and overall performance, particularly in complex reconstruc-
tion tasks like QSM.

However, from a computational complexity perspective, meth-
ods that use shared weights do not necessarily result in lower 

TABLE 3    |    Performance comparison of ISDU-QSMNet variants using WideResNet denoisers of different depths, evaluated under full training 
data conditions from the SNU dataset  [22]. Each row presents results for a specific configuration, with varying model complexities achieved by 
adjusting both the number of unrolling iterations (K) and the depth of the WideResNet architecture (depths of 10, 12, 14, 16, and 18). All metrics are 
reported as mean ± standard deviation.

Model K

No. 
parameters 

(M)
Comput. 
(G.Flop) SSIM xSIM pSNR NRMSE HFEN

WideResNet-10 1 0.225 1121.6 0.905 ± 0.015 0.583 ± 0.053 40.858 ± 1.176 52.516 ± 4.324 50.232 ± 4.676

2 0.451 2243.2 0.910 ± 0.015 0.589 ± 0.049 41.031 ± 1.126 51.799 ± 4.226 48.600 ± 4.920

3 0.677 3364.8 0.910 ± 0.015 0.597 ± 0.050 41.222 ± 1.145 50.691 ± 4.207 47.916 ± 4.888

4 0.902 4486.4 0.914 ± 0.015 0.607 ± 0.048 41.326 ± 1.121 50.346 ± 4.208 47.164 ± 5.143

WideResNet-12 1 0.281 1397.2 0.906 ± 0.015 0.583 ± 0.053 40.929 ± 1.121 52.195 ± 4.247 49.940 ± 4.570

2 0.562 2794.4 0.909 ± 0.014 0.588 ± 0.051 41.129 ± 1.091 51.283 ± 4.200 48.631 ± 4.712

3 0.843 4191.7 0.910 ± 0.014 0.593 ± 0.052 41.167 ± 1.156 50.876 ± 4.270 48.018 ± 4.841

4 1.124 5589.0 0.914 ± 0.015 0.615 ± 0.050 41.379 ± 1.167 49.820 ± 4.245 47.146 ± 5.062

WideResNet-14 1 0.336 1672.9 0.907 ± 0.015 0.586 ± 0.052 41.007 ± 1.122 51.752 ± 4.236 49.457 ± 4.723

2 0.673 3345.8 0.911 ± 0.015 0.599 ± 0.051 41.193 ± 1.168 50.778 ± 4.248 47.957 ± 4.935

3 1.009 5018.6 0.913 ± 0.014 0.607 ± 0.050 41.382 ± 1.089 50.055 ± 4.281 47.207 ± 5.012

4 1.346 6691.5 0.913 ± 0.014 0.610 ± 0.049 41.342 ± 1.069 50.378 ± 4.156 47.262 ± 4.924

WideResNet-16 1 0.392 1948.5 0.909 ± 0.015 0.594 ± 0.051 41.116 ± 1.085 51.414 ± 4.216 48.995 ± 4.740

2 0.784 3897.0 0.913 ± 0.015 0.605 ± 0.052 41.306 ± 1.168 50.307 ± 4.346 47.399 ± 5.078

3 1.175 5845.6 0.914 ± 0.014 0.610 ± 0.051 41.431 ± 1.125 49.821 ± 4.229 47.138 ± 4.981

4 1.567 7794.1 0.913 ± 0.014 0.610 ± 0.049 41.391 ± 1.076 49.965 ± 4.211 47.179 ± 4.962

WideResNet-18 1 0.447 2224.2 0.910 ± 0.015 0.599 ± 0.052 41.089 ± 1.188 51.175 ± 4.312 48.608 ± 4.920

2 0.894 4448.3 0.912 ± 0.015 0.604 ± 0.051 41.294 ± 1.176 50.244 ± 4.359 47.296 ± 5.078

3 1.341 6672.5 0.914 ± 0.014 0.616 ± 0.048 41.399 ± 1.153 49.594 ± 4.133 46.743 ± 5.037

4 1.789 8896.7 0.915 ± 0.014 0.605 ± 0.044 41.368 ± 1.103 50.309 ± 3.865 46.726 ± 5.020
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computational cost. Although the same weights are used across 
all iterations, each iteration still involves a forward pass and 
solving the optimization equation, which contributes to the 
overall computational load. Therefore, the computational cost 
remains significant even with shared weights, as computations 
are performed for each iteration independently.

2.7.2   |   Iteration Specific Denoising

Using unshared weights, the CNN denoiser can learn different 
filters and features at each iteration. This allows it to adapt to 
the specific noise characteristics present in different iterations of 
the reconstruction process. Imagine that the noise may be more 
prominent in earlier iterations and more subtle in later itera-
tions. The unshared weights allow the denoiser to address these 
variations effectively.

2.7.3   |   Selection of K

The complexity of a model-based deep learning architecture 
primarily depends on the unrolling parameter because higher 
unrolling parameters increase the gradient calculation com-
plexity during end-to-end training. Therefore, the selection 
of the unrolling parameter is a crucial decision that must be 
made experimentally. In existing model-based deep learning 
techniques, such as LPCNN and SpiNet-QSM, CNN weights 
are shared across iterations. Thus, the choosing K parame-
ter is even difficult for the effective utilization of the model-
based deep learning architecture. As the number of iterations 
increases, learning a common regularization term becomes 
more difficult owing to shared weights. As the number of it-
erations increases, learning a common regularization term 
becomes more difficult owing to the shared weights, limiting 
the ability of the CNN to address the QSM problem effectively. 
In the proposed ISDU-QSMNet, leveraging unshared weights 
allows us to use higher unrolling parameters, such as K = 4, 
for QSM solving.

Experiments with K values greater than 4 were initially excluded 
to mitigate the increased complexity and training difficulties 
associated with higher values. This is because, we hypothe-
sized that increasing the CNN complexity and the number of 
unrolling iterations (K) could potentially improve QSM recon-
struction. To explore this further, we expanded our analysis by 
including experiments with a broader range of K values, includ-
ing those exceeding 4, to assess their effectiveness for larger 
K settings. Table  4 provides details on key parameters for the 
proposed ISDU-QSMNet, including the training time per epoch, 
GPU RAM usage during training with a batch size of 2, model 
size (which increases with K), and the model's parameter space. 
Additionally, it presents various performance metrics of the pro-
posed ISDU-QSMNet across different levels of complexity by 
varying K.

There is no universal strategy for selecting the optimal K value, 
as it depends on multiple factors such as the dataset, hardware 
constraints, and the desired trade-off between accuracy and 
computational efficiency. Therefore, experimentation with dif-
ferent K values is necessary to determine the best configuration 

for the model, depending on whether the priority is higher ac-
curacy (with larger K) or faster inference (with smaller K). 
observation.

Although no specific algorithm exists for determining the op-
timal K value, we relied on empirical observations to guide our 
choice. As the unrolling parameter K increases, the regulariza-
tion effect becomes stronger in the later iterations, as seen in 
Table  5, where the regularization parameter �i increases with 
each iteration. The increasing �i means that as we move deeper 
into the unrolling process, the model places more emphasis on 
the regularization term ∥ � − DWk(�) ∥

2
2
 and less on the fidelity 

term ∥ �� − y ∥2
2
. In other words, as �i increases, the contribution 

from the denoising regularizer 
(
� − DWk(�)

)
 becomes more dom-

inant, while the data consistency term becomes less influential. 
This tradeoff leads to the observation that as K increases and 
more iterations are added, the contribution from the later iter-
ations to the final output becomes smaller. Beyond a certain K, 
the additional iterations contribute less to the overall learning, 
and the benefits of further increasing K become limited.

2.7.4   |   Selection of Subset Size (n)

Training model-based deep learning techniques is generally 
more challenging and time-consuming than training pure deep 
learning models, especially with higher unrolling parameters. 
Existing model-based techniques often share weights across 

TABLE 4    |    Regularization parameters (� or �i for i = 1,2,3,4) and step 
size (�) values used for different model-based deep learning methods 
in this study. All configurations reported in this table correspond to 
models trained using the full training dataset from the SNU dataset [22].

Model
Regularization 
parameter (�) Step size (�)

LPCNN, K = 4 — 5.6003

SpiNet-QSM, K = 4 λ = 0.0384 —

MoDL-QSM-SW, K = 4 λ = 0.1565 —

ISDU-QSMNet-USW, 
K = 3

λ1 = 0.0444 —

λ2 = 0.1227 —

λ3 = 0.2197 —

ISDU-QSMNet-
USW-RS, K = 3

λ1 = 0.0500 —

λ2 = 0.1196 —

λ3 = 0.1887 —

ISDU-QSMNet-USW, 
K = 4

λ1 = 0.0669 —

λ2 = 0.0746 —

λ3 = 0.1664 —

λ4 = 0.2905 —

ISDU-QSMNet-
USW-RS, K = 4

λ1 = 0.0911 —

λ2 = 0.0668 —

λ3 = 0.1531 —

λ4 = 0.1970 —
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iterations, limiting their ability to use large unrolling parame-
ters owing to constrained weight parameters. However, in the 
proposed ISDU-QSMNet, the weights are unshared and spe-
cific to each denoiser, allowing for larger unrolling parameters 
but resulting in longer training times. To address this, random 
subset sampling can be employed, in which each epoch trains 
the model on a random subset of n samples. This strategy helps 
reduce training time and it also will not leads to abrupt weight 
updates due to the physics-informed QSM gradients. In full-data 
training, a subset size of n = 4000 (approximately 25% of the data-
set) was used, effectively halving the training time. Additional 
experiments were conducted with n = 1000, 2000, 3000, 4000, 5000, 
and 6000 to analyze training efficiency and performance trade-
offs. Table 6 summarizes the training and performance metrics 
of ISDU-QSMNet-USW-RS with K = 4 across these varying sub-
set sizes. For experiments involving limited training data, subset 
sampling was not used due to the inherently small dataset size.

2.8   |   Experiments

2.8.1   |   Effect of Dataset Size

To evaluate the impact of data availability on model perfor-
mance, the ISDU-QSMNet was evaluated using two experi-
ments: training on complete data and limited data training.

2.8.2   |   Training on Complete Data

For this study, the SNU dataset was used, comprising scans from 
12 healthy volunteers, each with five different head orientations. 
From this dataset, 25 scans from five subjects were selected for 
training, with data augmentation increasing the total number 
of scans to 75. Additionally, five scans from one subject were set 
aside for validation and 30 scans from six subjects were used for 

testing. As part of this study, three model-based deep learning 
implementations were explored.

1.	 A model-based deep learning method using a CNN 
denoiser-based regularizer with shared weights, referred 
to as MoDL-QSM-SW.

2.	 A model-based deep learning method utilizing a CNN 
denoiser-based regularizer with unshared weights and 
iteration-specific training parameters, referred to as 
ISDU-QSMNet-USW.

3.	 A model-based deep learning method incorporating a CNN 
denoiser-based regularizer with unshared weights and it-
eration specific training parameters, combined with ran-
dom subset sampling during each training epoch to reduce 
training time, referred to as ISDU-QSMNet-USW-RS.

Although ISDU-QSMNet-USW and ISDU-QSMNet-USW-RS 
share the same architecture, the key difference is the use of ran-
dom subset sampling in ISDU-QSMNet-USW-RS. The results 
from the ISDU-QSMNet-USW-RS experiments were treated as 
the ISDU-QSMNet results for comparison with other models. 
These three experiments (MoDL-QSM-SW, ISDU-QSMNet-
USW, and ISDU-QSMNet-USW-RS) were conducted using 
identical training settings to properly evaluate the capabilities 
of each approach. Experiments were conducted with different 
unrolling iterations (K = 1, 2, 3, 4) to develop models of vary-
ing complexity. Subsequently, to compare ISDU-QSMNet with 
other existing model-based deep learning methods, we trained 
LPCNN and SpiNet-QSM, as well as popular deep learning 
models, such as QSMnet, DeepQSM, and xQSM. For this full 
data training experiments, a single-fold validation approach was 
used. The training was conducted on SNU data from 12 subjects, 
with each subject having five orientations. In this fold, five ori-
entations from the first five subjects were used for training, one 
subject (subject 6) was used for validation, and the remaining six 

TABLE 6    |    Performance metrics and training configurations for ISDU-QSMNet-USW and ISDU-QSMNet-USW-RS (both with K = 4) under 
different subset sampling values (n), evaluated on the SNU dataset using full training data conditions. Metrics include SSIM, xSIM, pSNR, NRMSE, 
and HFEN, reported as mean ± standard deviation. Training time per epoch is also included to reflect computational efficiency.

Method n
Training 

time/epoch SSIM (±) xSIM (±) pSNR (±) NRMSE (±) HFEN (±)

ISDU-QSMNet-
USW-RS, K = 4

1000 15 0.912 ± 0.014 0.606 ± 0.048 41.271 ± 1.152 50.282 ± 4.118 47.489 ± 4.904

ISDU-QSMNet-
USW-RS, K = 4

2000 30 0.913 ± 0.014 0.607 ± 0.046 41.230 ± 1.151 50.465 ± 4.092 47.305 ± 4.984

ISDU-QSMNet-
USW-RS, K = 4

3000 45 0.914 ± 0.014 0.614 ± 0.047 41.368 ± 1.129 49.798 ± 4.146 46.988 ± 5.037

ISDU-QSMNet-
USW-RS, K = 4

4000 60 0.916 ± 0.014 0.618 ± 0.046 41.415 ± 1.131 49.749 ± 4.133 46.562 ± 5.151

ISDU-QSMNet-
USW-RS, K = 4

5000 75 0.915 ± 0.014 0.617 ± 0.046 41.454 ± 1.126 49.565 ± 4.058 46.590 ± 5.041

ISDU-QSMNet-
USW-RS, K = 4

6000 90 0.917 ± 0.014 0.615 ± 0.046 41.580 ± 1.154 49.647 ± 4.086 46.464 ± 5.111

ISDU-QSMNet-
USW, K = 4

— 120 0.915 ± 0.014 0.605 ± 0.044 41.368 ± 1.103 50.309 ± 3.865 46.726 ± 5.020
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subjects (subjects 7–12) were used for testing. The final results 
were reported as the average reconstruction performance across 
all test subjects.

2.8.3   |   Training on Limited Data

An experiment was conducted to assess the reconstruction per-
formance of the aforementioned methods using limited training 
data. For this setup, the training dataset included data from a 
single subject, supplemented with 15 augmented scans, whereas 
the validation set remained unchanged from the full data train-
ing scenario. The test set consisted of data from 10 additional 
subjects. This reduced dataset represents approximately 16% of 
the data used in the full-data training experiment. The same 
training configurations described earlier were applied to the 
deep learning models for this limited training-data scenario. 
Both the limited and full data training experiments were con-
ducted independently, with no knowledge transfer between 
them. Specifically, the weights obtained from the limited data 
experiments were not used to initialize the models in the full 
data experiments, and vice versa. For the limited training data 
experiments, an inter-subject validation approach was used. 
Five subjects were selected for training, one subject was re-
served for validation, and six subjects were consistently used 
for testing. This setup resulted in five independent experiments, 
where each experiment utilized one of the five training sub-
jects for training while keeping the validation subject constant 
across all experiments. The same six test subjects were used in 
every experiment to ensure consistency. The results from all 
five experiments were consolidated to produce overall metrics. 
Specifically, in one experimental iteration, subjects 1–5 were 
used for training, the 6th subject was used for validation, and 
testing was conducted on subjects 7–12. Consequently, in the 
consolidated results, each subject's test outcomes appeared five 
times, reflecting their presence in different experimental config-
urations. The test subjects (subjects 7–12) from the SNU dataset 
were kept the same across both full and limited training data ex-
periments. This consistency ensures that the evaluation metrics 
are directly comparable, allowing for a meaningful assessment 
of performance differences between the two training scenarios.

2.8.4   |   Statistical Analysis

A two-tailed paired t test was performed to assess the statisti-
cal significance of differences in HFEN between the proposed 
ISDU-QSMNet and other existing methods, using a significance 
level of P = 0.05. For the full training data experiments, a single-
fold evaluation was carried out. In contrast, for the limited 
training data experiments, the results were derived from the 
consolidation of five separate experimental runs. Detailed ex-
perimental setups can be found in Sections 2.8.2 and 2.8.3.

2.8.5   |   Performance on Other Datasets

To assess the robustness and generalization of the model, pre-
trained models were evaluated on datasets with varying acqui-
sition parameters, vendors, and signal-to-noise ratios (SNR). 
Specifically, models trained on SNU data under full data training 

conditions were tested on LPCNN data [39], RC-1 data [41], and 
RC-2 data  [42] datasets. These models were tested on unseen 
data, in which the preprocessed local field maps were provided 
directly by the respective authors. No additional preprocessing 
was performed prior to reconstruction.

2.8.6   |   Evaluation on Clinical Data With 
Nonisotropic Resolution

Although the proposed ISDU-QSMNet was not explicitly de-
signed or trained to be resolution-independent, we evaluated its 
generalizability across different resolutions using a hemorrhage 
dataset [44] acquired on a GE 3 T MR scanner. The data has a 
matrix size of 256 × 256 × 66, voxel size of 0.86 × 0.86 × 2 mm 3, 
and a repetition time (TR) of 42.58 ms. In contrast, the models 
were trained on the SNU dataset with an isotropic resolution of 1 
× 1 × 1 mm 3. This evaluation was designed to test model robust-
ness under out-of-distribution conditions, particularly in the 
presence of hemorrhagic lesions for checking on clinical data.

2.8.7   |   ROI Analysis

The local susceptibility values were compared across different 
reconstruction methods to assess the clinical applicability of the 
proposed ISDU-QSMNet. For this analysis, regions of interest 
(ROIs) were defined across the full volume of the brain, includ-
ing the caudate nucleus (CN), putamen (PUT), globus pallidus 
(GP), white matter (left and right white matter), and gray matter 
(left and right gray matter). These ROIs were segmented using 
ITKsnap [46] and SynthSeg [47] for six test subjects from the 
SNU dataset. To evaluate the model's performance, reconstruc-
tions from models trained on SNU datasets from both the full 
and limited training were utilized.

2.8.8   |   Ablation Study

To evaluate the contributions of individual components in 
ISDU-QSMNet, ablation studies were performed focusing on 
two key aspects: (i) unshared weights and (ii) random subset 
sampling. All experiments were conducted using the full train-
ing data with an unrolling parameter of K = 4, under consistent 
training and implementation settings.

2.8.9   |   Unshared Weights

To assess the impact of unshared weights, a comparison was 
made with models employing shared weights, where a single 
CNN denoiser was reused across all iterations instead of using 
iteration-specific denoisers. Ablation experiments 1 and 2 were 
conducted to analyze the effects of unshared weights.

2.8.10   |   Unshared Weights and Random 
Subset Sampling

The combined effect of unshared weights and random subset 
sampling was analyzed through three experimental setups: 
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(Experiment 1) shared weights without random subset sampling 
(Experiment 2) shared weights with random subset sampling, 
and (Experiment 3) unshared weights without random subset 
sampling.

3   |   Results

3.1   |   Effect of Dataset Size

3.1.1   |   Training on Complete Data

The quantitative performance metrics such as structural simi-
larity index measure (SSIM), peak signal-to-noise ratio (pSNR), 
normalized mean square error (NRMSE), and high-frequency 
error norm (HFEN) [41] with respect to COSMOS for the differ-
ent QSM reconstruction methods considered in this study are 
summarized in Table 7. Additionally, the reconstructions from 
all model-based experiments conducted across different un-
rolling iterations (K = 1, 2, 3, 4), using various configurations 
such as shared or unshared weights and either full-set or ran-
dom subset sampling, are summarized in Table 8, with sample 
image reconstructions from each method displayed shown in 
Figure 3. To better illustrate alignment with the gold standard 
COSMOS, a representative reconstruction from each method 
is shown in Figure  4a. Additionally, QSM reconstruction im-
ages for subjects 7, 8, and 9 from the SNU test dataset, includ-
ing axial, coronal, and sagittal views, have been provided in 
Figures 3–5 of the supplementary material. Table 9 describes the 
training time and inference time. The proposed ISDU-QSMNet 
demonstrated statistically significant improvements over ex-
isting model-based deep-learning approaches, outperforming 
SpiNet-QSM (P = 0.01) and LPCNN (P = 6.98 × 10−5). It also 
outperformed the existing deep learning methods, including 
QSMNet (P = 1.10 × 10−3), DeepQSM (P = 9.5 × 10−6), and 

xQSM (P = 3.80 × 10−4). For a fair comparison, ISDU-QSMNet 
was evaluated under training conditions similar to SpiNet-
QSM and LPCNN. Additionally, SpiNet-QSM performance 
matched the performance of model-based deep learning with 
shared weights (MoDL-QSM-WS) with P = 0.87 and achieved 
better reconstruction results than LPCNN (P = 1.27 × 10−07).

3.1.2   |   Training on Limited Data

Table  10 summarizes the quantitative performance metrics 
of various QSM reconstruction methods evaluated under lim-
ited data conditions. The results indicate that as the training 
data were reduced, the quality of the reconstructed suscep-
tibility maps decreased compared to those obtained using 
the full dataset. An example of reconstruction is shown in 
Figure 4b. Figure 5 presents scatter plots of the quantitative 
performance of the proposed method and other approaches for 
both complete and limited training data, showing that ISDU-
QSMNet reconstruction closely matches the gold-standard 
COSMOS map. The results showed that ISDU-QSMNet 
performed similarly to the model-based deep-learning ap-
proach with shared weights (MoDL-QSM-WS) (P = 0.603) and 
SpiNet-QSM (P = 0.845). However, ISDU-QSMNet achieved 
significantly better reconstruction results than the LPCNN 
(P = 7.72 × 10−7). ISDU-QSMNet also showed statistically 
significant improvements over existing deep learning ap-
proaches, including QSMnet (P = 1.16 × 10−21), DeepQSM 
(P = 6.23 × 10−25), and xQSM (P = 7.30 × 10−25). Another ob-
servation from our experiments was that SpiNet-QSM outper-
formed the LPCNN (P = 1.27 × 10−7). Both SpiNet and LPCNN 
showed better performance than the deep learning methods 
QSMnet, DeepQSM, and xQSM. To ensure a fair comparison, 
ISDU-QSMNet was evaluated along with SpiNet-QSM and 
LPCNN under similar training conditions.

TABLE 7    |    Quantitative performance metrics (SSIM, xSIM, pSNR, NRMSE, and HFEN) for various QSM reconstruction methods, evaluated on 
the SNU dataset using models trained on the full training data from the same dataset. The results, obtained through single-fold cross-validation, 
highlight the best performance for each metric in bold.

METRICS

Method SSIM xSIM pSNR NRMSE HFEN

QSMnet 0.907 ± 0.029 0.600 ± 0.047 40.411 ± 1.230 53.543 ± 4.948 52.880 ± 9.587

DeepQSM 0.904 ± 0.029 0.589 ± 0.046 40.343 ± 1.188 54.061 ± 4.818 54.110 ± 9.277

xQSM 0.906 ± 0.018 0.600 ± 0.048 40.342 ± 1.246 54.075 ± 5.058 52.397 ± 0.259

LP-CNN, K = 4 0.905 ± 0.014 0.572 ± 0.051 40.345 ± 1.303 56.108 ± 5.039 53.701 ± 5.630

SpiNet-QSM, K = 4 0.912 ± 0.015 0.591 ± 0.059 40.470 ± 1.343 53.531 ± 5.586 50.559 ± 6.359

NDI 0.868 ± 0.035 0.487 ± 0.090 38.257 ± 1.351 70.089 ± 8.228 66.152 ± 8.631

FANSI 0.870 ± 0.024 0.413 ± 0.077 38.584 ± 1.398 67.239 ± 7.993 63.152 ± 8.636

MoDL-QSM-SW, K = 4 0.912 ± 0.015 0.601 ± 0.051 40.560 ± 1.393 53.406 ± 5.300 50.467 ± 6.020

ISDU-QSMNet-USW, K = 4 0.915 ± 0.014 0.610 ± 0.043 40.868 ± 1.459 52.308 ± 5.865 49.725 ± 6.619

ISDU-QSMNet-USW-RS, K = 4 0.916 ± 0.014 0.617 ± 0.056 40.914 ± 1.495 52.033 ± 5.704 49.310 ± 6.608
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3.2   |   Performance on Other Datasets

Table 11 presents the quantitative performance metrics for the var-
ious QSM reconstruction methods tested on the LPCNN, RC-1, and 
RC-2 datasets. ISDU-QSMNet consistently outperformed the other 
methods on these datasets. For the LPCNN data, ISDU-QSMNet 
(with random sampling) achieved the best results compared to 
the model-based deep learning methods (LPCNN and SpiNet-
QSM), and completely outperformed the pure deep learning meth-
ods (QSMnet, DeepQSM, and xQSM), as evidenced by the lower 
HFEN and NRMSE. On the RC-1 data, ISDU-QSMNet demon-
strated better results than SpiNet-QSM and LPCNN and surpassed 
the deep learning methods QSMnet, DeepQSM, and xQSM. The 
deep-learning methods matched the performance of the LPCNN. 
On both LPCNN data and RC-1 data, model-based and pure deep 
learning methods achieved better performance than the iterative 

methods of NDI and FANSI. Visual comparisons of reconstructed 
susceptibility maps from various QSM methods, shown in axial, 
coronal, and sagittal views, are provided in Figures 1 and 2 of the 
supplementary material for the RC-1 and LPCNN datasets respec-
tively. On the RC-2 dataset, the iterative method FANSI demon-
strated the highest performance among the evaluated approaches, 
as reported in [43]. Model-based deep learning methods performed 
slightly better than NDI, with the proposed ISDU-QSMNet show-
ing a modest advantage over LPCNN and SpiNet-QSM. In com-
parison, purely data-driven deep learning methods yielded lower 
performance than NDI, SpiNet-QSM, and LPCNN. The improved 
performance on RC-2 is mainly due to the use of data-adaptive 
regularization parameters, which help mitigate the effects of 
noise present in the dataset. The slight improvements observed in 
model-based approaches can be attributed to the incorporation of 
underlying physics into the learning process. Overall, model-based 

FIGURE 3    |    Example susceptibility reconstructions from subject 7 of the SNU dataset, obtained using models trained on the full training data. 
The comparison includes MoDL-QSM with a shared-weights denoiser, ISDU-QSMNet with unshared weights per iteration, and ISDU-QSMNet with 
both unshared weights and random subset sampling. Reconstructions are shown for different unrolling parameters (K = 1, 2, 3, 4), highlighting the 
effect of iterative depth on reconstruction quality.
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deep-learning methods outperformed pure deep-learning meth-
ods with ISDU-QSMNet, showing the best performance across all 
datasets.

3.3   |   Evaluation on Clinical Data With Anisotropic 
Resolution

The sample QSM reconstructions for anisotropic resolution are 
presented in Figure 6. Because ground truth is unavailable for 
this dataset, we computed the model loss as the l2 norm of the 
difference between the input local field and the local field cal-
culated from the reconstructed susceptibility map produced 
by the trained models, which is obtained by convolving the 

reconstructed susceptibility map with the dipole kernel (for-
ward model).

3.4   |   ROI Analysis

The results of the ROI analysis for models trained on the full 
dataset are presented in Table  12. This table summarizes the 
local susceptibility values (mean and standard deviation) of the 
ROIs for the six subjects, alongside the corresponding COSMOS 
values for comparison. The findings indicate that the local mea-
surements obtained from the proposed ISDU-QSMNet consis-
tently align with the COSMOS susceptibility measurements. 
Additionally, Table  12 presents the correlation between the 

FIGURE 4    |    (a) The first row shows susceptibility map reconstructions for subject 7 from the SNU dataset [22], obtained using models trained on 
the full training dataset. The second row displays the corresponding difference maps with respect to COSMOS. (b) The same subject is reconstructed 
using models trained with limited training data (16% of the data used in (a)), with difference maps shown in the second row. High-frequency error 
norm and normalized root mean squared error values are reported below each susceptibility and difference map.
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ISDU-QSMNet results and the COSMOS susceptibility measure-
ments for each region of interest. The results for models trained 
on the limited dataset are provided in Table 1 of the supplemen-
tary material.

3.5   |   Ablation Study

Table 13 highlights the significance of each module and demon-
strates its impact on the performance metrics.

3.5.1   |   Unshared Weights

The absence of unshared weights resulted in a noticeable per-
formance decline, particularly in the HFEN and SSIM metrics, 
when compared to COSMOS. This performance drop can be at-
tributed to the reduced denoising ability of the models trained 
with shared weights, which limits their effectiveness in QSM re-
construction. However, when comparing experiments involving 

shared weights with random subset sampling, the performance 
was significantly lower than that of the models trained with 
unshared weights and random subset sampling. This decline is 
attributed to the reduced denoising capacity of the models with 
shared weights, which compromises their ability to perform ef-
fective QSM reconstruction.

3.5.2   |   Unshared Weights and Random Subset Sampling

In Experiment 3, which utilized unshared weights without 
random subset sampling, the performance remained consis-
tent and did not show any significant difference compared 
with Experiment 4, where both unshared weights and random 
subset sampling were employed. Similarly, in Experiment 1, 
where shared weights were used without random subset sam-
pling, the performance remained unchanged when compared to 
Experiment 2, where random subset sampling was applied with 
shared weights. Although random subset sampling did not sig-
nificantly impact the performance in these experiments, it of-
fered the advantage of reduced training time. This reduction in 
training time occurred because the model-based deep learning 
approach, when combined with random subset sampling, could 
effectively explore the full dataset when trained for a sufficient 
number of epochs.

4   |   Discussion

This study introduced ISDU-QSMNet, a novel model-based 
deep learning approach for QSM reconstruction that utilizes 
an unrolling iterative structure with an iteration-specific 
CNN denoiser-based trainable regularizer featuring unique 
denoiser weights for each iteration. When addressing large 
and complex problems, sufficient training data are typically 
required to capture all the variations within the data. That 
is particularly evident in the performance of deep learning 
methods. Alternatively, incorporating the underlying physics 

TABLE 9    |    Summary of training and inference times for various 
models trained on the SNU dataset using the full training data setting. 
The table reports the average training time per epoch (in minutes) and 
the average inference time per subject (in seconds).

Experiment
Training time 
(min/epoch)

Inference 
time (s)

ISDU-QSMNet, K = 4 120 4.65

SpiNet-QSM, K = 4 120 4.65

LP-CNN, K = 3 120 0.33

QSMNet 45 1.65

Deep QSM 30 0.25

xQSM 50 0.96

TABLE 10    |    Quantitative performance metrics (SSIM, xSIM, pSNR, NRMSE, and HFEN) for various QSM reconstruction methods, evaluated 
on the SNU dataset using models trained on limited training data from the same dataset. Results are averaged over five independent experiments, 
each trained using a single subject from the training set. The best-performing value for each metric is highlighted in bold. Because NDI and FANSI 
are iterative methods, their results remain consistent and are reported in the same manner as in the full-data training experiments (see Table 7).

METRICS

Method SSIM xSIM pSNR NRMSE HFEN

QSMNet 0.866 ± 0.040 0.436 ± 0.127 39.345 ± 1.549 63.164 ± 9.265 63.299 ± 12.285

DeepQSM 0.866 ± 0.040 0.434 ± 0.124 39.355 ± 1.493 63.208 ± 8.792 64.004 ± 11.628

xQSM 0.859 ± 0.054 0.419 ± 0.152 39.230 ± 1.632 64.602 ± 10.161 64.625 ± 12.841

NDI 0.868 ± 0.035 0.487 ± 0.090 38.257 ± 1.351 70.089 ± 8.228 66.152 ± 8.631

FANSI 0.870 ± 0.024 0.413 ± 0.077 38.584 ± 1.398 67.239 ± 7.993 63.152 ± 8.636

LPCNN, K = 4 0.891 ± 0.019 0.514 ± 0.061 40.179 ± 1.080 57.193 ± 4.167 54.784 ± 4.886

SpiNet-QSM, K = 4 0.903 ± 0.017 0.560 ± 0.054 40.692 ± 1.137 54.181 ± 4.152 51.474 ± 4.777

MoDL-QSM-SW, K = 4 0.902 ± 0.017 0.555 ± 0.053 40.635 ± 1.141 54.430 ± 4.128 51.720 ± 4.726

ISDU-QSMNet-USW, K = 4 0.903 ± 0.019 0.568 ± 0.060 40.714 ± 1.204 53.716 ± 4.371 51.095 ± 5.249
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FIGURE 5    |    Scatter plots of QSM reconstructions for subject 7 from the SNU dataset [22]. (a) Models trained on the full training dataset. (b) 
Models trained on the limited training dataset. Each plot compares the reconstructed susceptibility values (QS, in ppm) against the COSMOS refer-
ence. In both cases, all voxels within the brain volume were included.
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TABLE 11    |    Performance metrics (SSIM, xSIM, pSNR, NRMSE, and HFEN) for various QSM reconstruction methods trained on the SNU dataset 
using models with full training data, evaluated on LPCNN, RC-1, and RC-2 datasets. Results are reported as mean ± standard deviation, with the best 
performance for each metric highlighted in bold.

Experiment Method

METRICS

SSIM xSIM pSNR NRMSE HFEN

LPCNN data QSMnet 0.928 ± 0.015 0.472 ± 0.040 32.987 ± 1.730 61.873 ± 3.377 56.496 ± 4.539

DeepQSM 0.926 ± 0.015 0.459 ± 0.038 32.998 ± 1.734 61.960 ± 3.086 57.453 ± 4.054

xQSM 0.924 ± 0.015 0.457 ± 0.039 32.909 ± 1.633 62.938 ± 3.141 58.757 ± 4.384

LP-CNN 0.916 ± 0.010 0.389 ± 0.202 34.559 ± 1.551 60.607 ± 2.286 55.768 ± 2.850

SpiNet-QSM 0.931 ± 0.014 0.514 ± 0.051 33.129 ± 1.796 57.499 ± 4.421 54.625 ± 4.800

MoDL-QSM-SW, K = 4 0.931 ± 0.013 0.521 ± 0.049 33.100 ± 1.767 57.246 ± 4.303 54.392 ± 4.685

ISDU-QSMNet-
USW, K = 4

0.932 ± 0.013 0.526 ± 0.049 33.094 ± 1.680 56.185 ± 4.512 53.599 ± 4.560

ISDU-QSMNet-
USW-RS, K = 4

0.933 ± 0.013 0.535 ± 0.049 33.130 ± 1.730 56.053 ± 4.584 53.577 ± 4.755

RC-1 data QSMnet 0.909 0.587 39.764 51.545 49.225

DeepQSM 0.908 0.574 39.601 52.076 50.175

xQSM 0.909 0.578 39.560 52.577 50.133

NDI 0.853 0.512 37.457 61.715 60.728

FANSI 0.856 0.411 37.970 61.920 59.480

LP-CNN 0.900 0.557 39.492 52.217 49.970

SpiNet-QSM 0.916 0.643 40.653 47.150 46.0752

MoDL-QSM-SW, K = 4 0.916 0.627 40.368 47.002 45.041

ISDU-QSMNet-
USW, K = 4

0.919 0.635 40.471 46.448 44.710

ISDU-QSMNet-
USW-RS, K = 4

0.919 0.641 40.556 46.082 44.651

RC-2 data 
(Sim2Snr1)

QSMnet 0.987 0.471 49.318 66.525 58.186

DeepQSM 0.987 0.445 49.477 67.731 60.366

xQSM 0.987 0.465 49.168 67.459 59.363

NDI 0.984 0.596 51.056 55.384 48.661

FANSI 0.995 0.786 55.527 32.816 22.250

LP-CNN 0.991 0.593 51.057 56.424 51.695

SpiNet-QSM 0.991 0.618 51.336 54.187 50.076

MoDL-QSM-SW, K = 4 0.991 0.654 51.861 51.261 49.186

ISDU-QSMNet-
USW, K = 4

0.992 0.671 52.078 49.418 46.250

ISDU-QSMNet-
USW-RS, K = 4

0.992 0.676 52.038 49.607 46.100

(Continues)
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of the problem drawn from traditional iterative methods into 
the deep learning framework can substantially enhance model 
performance, especially in limited-data scenarios, leading to 
model-based deep learning solutions that are more reliable and 
consistent than purely data-driven approaches. Conversely, 
when sufficient training data are available, model-based deep 
learning approaches may not necessarily outperform pure 
deep learning models. Among these two paradigms, it re-
mains uncertain which will perform better when evaluated 
on the same type of data. To address this, more powerful 
models are needed that can fully leverage the available data 
and the underlying physics of the problem. When sufficient 
training data are available and combined with the underlying 
physics of the problem, it becomes possible to develop robust 
model-based deep learning approaches that effectively cap-
ture data variability. This is especially crucial for QSM, given 
its inherent complexity and the ill-posed nature of the inverse 
problem. Because, QSM reconstruction involves handling 3D 
volumes and requires significant computational resources and 
well-designed models to manage the intricacies involved. The 
challenge of ill-posedness must also be addressed in model de-
sign. Therefore, an efficient and scalable design is essential for 
developing a powerful model-based deep learning solution for 
QSM. The proposed ISDU-QSMNet is specifically designed to 
address these challenges through a framework that can lever-
age larger training datasets—something that many existing 
deep learning and model-based methods struggle to achieve.

First unique challenge addressed by ISDU-QSMNet: 
Its architecture, based on iteration-specific denoisers with 
unshared weights, enables the model to better utilize larger 
training datasets. This capability is lacking in many exist-
ing model-based deep learning methods [39, 40].

Second unique challenge addressed by ISDU-
QSMNet: Its ability to consistently outperform existing 
deep learning methods in limited training data scenarios, 

owing to its physics-informed model-based design that en-
sures more reliable and stable reconstructions.

Third unique challenge addressed by ISDU-QSMNet: 
Its strong ability to generalize to unseen conditions, even 
when the test data are acquired using different parameters, 
highlights its robustness in real-world clinical scenarios.

4.1   |   Mitigating Instability in Subset Sampling

In model-based deep learning, the physics of the QSM model is 
incorporated into the model formulation, helping to reduce the 
abrupt weight updates (guided weight updates) that often occur 
in purely data-driven models when training with subset sampling. 
This integration also reduces the likelihood of the model getting 
stuck in the local minima, leading to more stable weight updates.

4.2   |   Architectural and Methodological Difference

ISDU-QSMNet builds on the model-based deep learning para-
digm through iterative unrolling, a strategy also employed by 
LP-CNN and SpiNet-QSM. However, several critical architec-
tural distinctions set ISDU-QSMNet apart. First, while all three 
methods utilize CNN-based regularization, their implemen-
tations differ: ISDU-QSMNet and SpiNet-QSM both use CNN 
denoisers integrated as regularization terms, whereas LP-CNN 
uses a CNN as a learned proximal operator. Unlike SpiNet-
QSM and LP-CNN, which use shared weights across iterations, 
ISDU-QSMNet employs unshared, iteration-specific denoisers, 
enabling each stage to learn context-specific refinements. This 
design offers greater adaptability to varying noise levels and re-
construction errors over the course of unrolling, which is lim-
ited in both LP-CNN and SpiNet-QSM due to weight sharing. 
Second, for solving the data consistency subproblem, ISDU-
QSMNet and SpiNet-QSM both use conjugate gradient descent, 
which ensures efficient and stable convergence. LP-CNN, on the 

Experiment Method

METRICS

SSIM xSIM pSNR NRMSE HFEN

RC-2 data 
(Sim2Snr2)

QSMnet 0.987 0.480 49.305 65.882 57.436

DeepQSM 0.987 0.452 49.293 67.301 59.893

xQSM 0.987 0.471 49.130 67.052 58.892

NDI 0.987 0.636 51.385 52.560 48.063

FANSI 0.995 0.834 56.518 29.177 20.043

LP-CNN 0.991 0.605 50.968 55.377 50.816

SpiNet-QSM 0.991 0.635 51.300 53.073 49.253

MoDL-QSM-SW, K = 4 0.991 0.669 51.604 50.251 48.274

ISDU-QSMNet-
USW, K = 4

0.992 0.687 51.970 48.199 45.594

ISDU-QSMNet-
USW-RS, K = 4

0.992 0.689 51.936 48.596 45.282

TABLE 11    |    (Continued)
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other hand, employs proximal gradient descent, which is gener-
ally less efficient and may converge more slowly.

4.3   |   Rethinking Unrolling Efficiency: Moving 
Beyond Uniform Iterations

Although the proposed ISDU-QSMNet, LP-CNN, and SpiNet-
QSM all adopt model-based deep learning strategies, none of 
these methods explicitly optimize iteration-specific compu-
tational complexity. In the iterative unrolling frameworks of 
QSM, the level of refinement introduced by each iteration tends 
to diminish with each successive iteration—as illustrated by the 
trend in regularization parameters in Figure 2 and Table 4. For 
LP-CNN and SpiNet-QSM, optimizing per-iteration complexity 
is inherently not in scope due to the use of shared CNN weights 
across all iterations. Although ISDU-QSMNet introduces 
iteration-specific denoisers (unlike SpiNet-QSM and LP-CNN, 
which share weights across iterations), it still uses denoisers of 
uniform computational complexity at every stage. This over-
looks the potential to reduce computational burden in later 
iterations, where less refinement may be sufficient. A promis-
ing future direction would involve designing denoisers with 
decreasing complexity across iterations—for example, by using 
shallower networks in later stages—to enhance computational 

efficiency without degrading reconstruction quality (e.g., the 
depth of the network can decrease from the ith unrolling to the 
(i+1)th unrolling). This is especially relevant given that QSM is 
a computationally demanding 3D reconstruction task, and op-
timizing the architecture for efficiency remains an important 
opportunity for further improvement.

4.4   |   Scope and Boundaries of Generalization

Even though ISDU-QSMNet is a model-based deep learning 
architecture that leverages physical consistency through data 
fidelity terms, it does not explicitly address resolution or ori-
entation invariance. Although model-based methods are often 
believed to exhibit improved generalizability, the current ar-
chitecture was not specifically designed to handle anisotropic 
resolution or varying dipole orientations. Because the model 
uses frozen weights trained on the SNU dataset, its parameters 
are inherently aligned with the characteristics of that dataset, 
such as isotropic resolution. However, when evaluated on out-
of-distribution data, such as anisotropic resolution, the model's 
generalization primarily relies on the data consistency term, 
with limited support from the learned priors. Consequently, the 
model's performance cannot be guaranteed under significantly 
different testing conditions.

FIGURE 6    |    Comparison of QSM reconstructions and estimated local fields (forward model results from reconstruction) and error maps of a 
hemorrhage data [44]. Top row: Susceptibility maps from different methods. Middle row: Estimated local fields obtained by applying the forward 
model to each reconstruction. Bottom row: Absolute error maps between forward-estimated and measured local fields (Model loss is shown below 
the absolute error maps for each method). All images correspond to the same axial slice with consistent intensity ranges.
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The ISDU-QSMNet model is trained on the SNU dataset, 
which includes five distinct orientations per subject, along 
with additional augmented data incorporating arbitrary rota-
tions between − 30

◦ and + 30
◦. While this introduces orienta-

tion diversity during training, it is handled implicitly through 
data-driven learning. The model does not include any explicit 
formulation or architectural mechanism to ensure orienta-
tion invariance. Consequently, although the network has 
been exposed to a range of orientations, its ability to general-
ize to unseen or more extreme orientation scenarios remains 
empirically unproven and lacks theoretical guarantees. This 
implicit handling of orientation variability represents a limita-
tion of the current approach and highlights the need for future 
work to incorporate explicit rotation-invariant components or 
physics-informed constraints to enhance robustness across di-
verse dipole orientations.

5   |   Conclusions

This study introduced ISDU-QSMNet, a novel model-based 
deep-learning approach for QSM reconstruction. The results 
demonstrate that the proposed ISDU-QSMNet outperforms ex-
isting techniques in full-data training scenarios and matches or 
exceeds the performance in limited data training situations. The 
implementation of unshared weights across iterations improved 
the overall denoising capability, whereas random subset sam-
pling reduced the training time without compromising the ac-
curacy. The model exhibited strong generalization capabilities, 
and ROI analysis revealed good alignment with the COSMOS 
reference values. ISDU-QSMNet effectively integrates QSM 
physics with deep learning capabilities. In conclusion, the ISDU-
QSMNet represents an advancement in QSM reconstruction, 
offering superior performance, efficiency, and generalizability, 
thus providing a foundation for enhancing QSM applications in 
research and clinical settings.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Table  S1: Comparison of suscepti-
bility values (in ppm) and their correlations with COSMOS across the 
following eight ROIs: caudate (CAU), putamen (PUT), globus pallidus 
(GP), left/right white matter (WM), and left/right gray matter (GM), de-
rived from reconstructed susceptibility maps for six test subjects from 
the SNU dataset. All models were trained on limited training data from 
SNU dataset. For each subject's ROI, the best-performing method (i.e., 
susceptibility value with the smallest deviation from COSMOS and 
highest correlation coefficient) is highlighted in bold. Figure S1: An 
example susceptibility image reconstructed from RC-1 data using mod-
els trained on the full dataset using SNU dataset. The first row shows 
the reference COSMOS maps in the following three orthogonal views: 
sagittal, coronal, and axial. Each subsequent row shows reconstructions 
from a different method: SpiNet-QSM, LPCNN, QSMnet, DeepQSM, 
xQSM, ISDU-QSMNet-USW, and ISDU-QSMNet-USW-RS. Each model 
row displays the same three views and includes quantitative evaluation 
metrics as x-axis labels—structural similarity index measure (SSIM), 
peak signal-to-noise ratio (PSNR), and high-frequency error norm 
(HFEN)—computed with respect to the COSMOS reference. Figure 
S2: An example susceptibility image reconstructed from LPCNN data 
using models trained on the full dataset using SNU dataset. The first 
row shows the reference COSMOS maps in the following three orthog-
onal views: sagittal, coronal, and axial. Each subsequent row shows re-
constructions from a different method: SpiNet-QSM, LPCNN, QSMnet, 
DeepQSM, xQSM, ISDU-QSMNet-USW, and ISDU-QSMNet-USW-RS. 
Each model row displays the same three views and includes quanti-
tative evaluation metrics as x-axis labels—structural similarity index 
measure (SSIM), peak signal-to-noise ratio (PSNR), and high-frequency 
error norm (HFEN)—computed with respect to the COSMOS refer-
ence. Figure S3: Comparison of quantitative susceptibility mapping 
(QSM) reconstructions for subject 7 from the SNU dataset, across multi-
ple models trained with the SNU dataset with full training data settings. 
The first row shows the reference COSMOS maps in the following three 
orthogonal views: sagittal, coronal, and axial. Each subsequent row 
shows reconstructions from a different method: SpiNet-QSM, LPCNN, 
QSMnet, DeepQSM, xQSM, ISDU-QSMNet-USW, and ISDU-QSMNet-
USW-RS. Each model row displays the same three views and includes 
quantitative evaluation metrics asx-axis labels—structural similarity 
index measure (SSIM), peak signal-to-noise ratio (PSNR), and HFEN 
(HFEN)—computed with respect to the COSMOS reference. Figure 4: 
Comparison of quantitative susceptibility mapping (QSM) reconstruc-
tions for subject-8 from the SNU dataset, across multiple models trained 
with the SNU dataset with full training data settings. The first row 
shows the reference COSMOS maps in the following three orthogonal 
views: sagittal, coronal, and axial. Each subsequent row shows recon-
structions from a different method: SpiNet- QSM, LPCNN, QSMnet, 
DeepQSM, xQSM, ISDU-QSMNet-USW, and ISDU-QSMNet-USW-RS. 
Each model row displays the same three views and includes quantitative 
evaluation metrics asx-axis labels—structural similarity index measure 
(SSIM), peak signal-to-noise ratio (PSNR), and HFEN (HFEN)—com-
puted with respect to the COSMOS reference. Figure 5: Comparison of 
quantitative susceptibility mapping (QSM) reconstructions for subject-9 
from the SNU dataset, across multiple models trained with the SNU 
dataset with full training data settings. The first row shows the refer-
ence COSMOS maps in the following three orthogonal views: sagittal, 
coronal, and axial. Each subsequent row shows reconstructions from a 
different method: SpiNet- QSM, LPCNN, QSMnet, DeepQSM, xQSM, 
ISDU-QSMNet-USW, and ISDU-QSMNet-USW-RS. Each model row 

displays the same three views and includes quantitative evaluation met-
rics as x-axis labels—structural similarity index measure (SSIM), peak 
signal-to-noise ratio (PSNR), and high-frequency error norm (HFEN)—
computed with respect to the COSMOS reference. Figure  6: Sample 
QSM reconstructions for Subject 8 from the SNU dataset, obtained using 
the proposed ISDU-QSMNet with different denoising networks: Simple 
Wide ResNet CNN, UNet-mini, UNet-heavy, and WideResNet-18. 
WideResNet-18 demonstrates the best reconstruction quality, leading to 
its selection as the denoising network for ISDU-QSMNet. 
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