
SE256: Scalable Systems for Data Science (Jan 2016) cds.iisc.in/courses/se256

v0.1, 2016-01-25 Page 1 of 4
© 2016, Yogesh Simmhan & Partha Talukdar, Department of Computational and Data Science, Indian Institute of Science, Bangalore

Assignment A
Simple analysis of large datasets using MapReduce

Weightage: 100 points (10%), with extra credit of 10 points

Posted date: Mon 25 Jan, 2016

Due date: Wed 3 Feb, 2016 before midnight

Intended Learning Objectives
1. Writing MapReduce applications from scratch, and improving the performance of MR applications

using combiners and partitioners.

2. Defining simple analytics over large text and graph datasets, and translating them into MapReduce.

3. Generating large synthetic datasets for evaluation.

4. Coordination of MapReduce runs on a shared cluster. Awareness of memory and CPU usage by

Mapper and Reducer tasks.

5. Analysis of MapReduce application logs and results to evaluate performance and scalability.

1. SIMPLE ANALYTICS OVER TEXT DATA [50 POINTS]

Introduction
One of the original motivating applications for MapReduce was to process content that was crawled from

the World Wide Web (WWW). Common Crawl1 is a project that crawls the Web every month and provides

a dataset of over 1.8 billion webpages, >150 TB in size. While our class cluster cannot handle that datasize

for 20+ students concurrently, you will be performing simple analytics over ~0.5% of the entire WWW.

The results of the crawl are stored in a Web ARChive (WARC) file with the HTTP request and response

headers and the body for many URLs placed in a single WARC file. Each WARC file is about 4GB in size, and

it is further compressed using GZip to be about 1GB in size. About 180 of the 36,000 files from the most

recent crawl in Nov 20152 are present under /SE256/CC folder on HDFS in the cluster.

You are given a starter Maven project on the course website that uses a special Hadoop file reader for the

GZipped WARC file directly3, and creates a “split” for each WARC file. The file reader returns an

ArchiveReader object4 for each URL, and associated HTTP request and response headers, body, etc.,

and each map method is called with an archive record object as an input. This is an example of using

custom readers over complex datasets to translate them into Key-Value pairs required by MapReduce.

Tasks (10 points each, 50 points total)
a) You are given a list of member and observer countries in the United Nations (countries.txt

file). Write a MapReduce (MR) job that gives the number of unique webpages in which each

country is mentioned, and total number of times a country is mentioned (i.e. multiple times in

1 http://commoncrawl.org/the-data/get-started/
2 http://blog.commoncrawl.org/2015/12/november-2015-crawl-archive-now-available/
3 https://github.com/commoncrawl/cc-warc-examples
4 https://github.com/iipc/webarchive-commons

http://commoncrawl.org/the-data/get-started/
http://blog.commoncrawl.org/2015/12/november-2015-crawl-archive-now-available/
https://github.com/commoncrawl/cc-warc-examples
https://github.com/iipc/webarchive-commons

SE256: Scalable Systems for Data Science (Jan 2016) cds.iisc.in/courses/se256

Page 2 of 4

the same webpage). Is there a correlation between the GDP of a country and its frequency of

mentions?

b) Write a MR job to return the Top 20 pairs of countries that are most frequently mentioned

together in the same webpage. Is there a logical reason that they co-occur together?

c) You can mine this web data to approximately find if one entity is more popular than the other,

e.g. two movies nominated for the Oscar Awards (“Martian” vs. “The Big Short”), two smart

phones (“Apple iPhone” vs. “Samsung Galaxy”), or two government programs (“Swacch

Bharath” vs. “Jan Dhan”). Define a problem where you want to find which one of two entities

are popular, and write a MapReduce job to find the same.

d) One of the reasons that Google crawled the webpage was to build a graph of the WWW, where

vertices are URLs and directed edges are links present from the source URL to the sink URL.

Write a MR job to generate the graph of this crawl dataset as an adjacency list. Each row of

output should have a Source URL (ID), and the list of Sink URLs(IDs) that are links present in that

webpage. Show how you’re able to run the default MR PageRank algorithm sample on this

graph you generate.

e) For one of the above problems, demonstrate if application exhibits weak scaling. You should

show a plot where the X Axis has increasing number of containers (Mappers/Reducers), and Y

axis shows the time taken for running the application on an input such that the input data size

per container is constant. When does the weak scaling stop, and why?

2. SIMPLE ANALYTICS OVER GRAPH DATA [20 POINTS+10 POINTS EXTRA CREDIT]

Introduction
MapReduce can be used for graph processing also, as evident from the use of MR to implement the

PageRank algorithm. There are however shortcomings with the MR programming model for graph

analytics that we will discuss in later lectures. As an introductory dataset for graph processing, you are

given the Twitter social network graph from 20105. This dataset gives the follower-followee edge list for

the directed network, i.e., each row is a pair of source and sink vertex IDs, where the source vertex is the

user ID of a follower, and the sink vertex ID is the user ID of followee. There are about 40 million unique

users (vertices), and 1.46 billion follows relationships (edges). The source and sink vertex IDs are tab

separated. The file is hosted at SE256/TWITTER on the HDFS cluster.

Tasks (10 points each)
a) The twitter MR code that has been provided counts the number of vertices and directed edges

in the graph. It is inefficient taking more than one hour to run! Write a combiner that helps get

the same output results, but in a much faster time of under 10 mins.

b) Write a MapReduce job that collects information from the Twitter graph that helps you test if it

follows a Powerlaw distribution for the number incoming and the number of outgoing edges.

c) EXTRA CREDIT (10 POINTS). Social networks such as Twitter often recommend members to

follow based on the similarity of the set of members you currently follow with the set of

members that other users follow. Write one or more MR job(s) that recommends people to

follow for a given user UA based on the following logic. Say the given user UA follows users {U1,

U2, …, Ui}. Identify other users {UB, UC, UD,…}. who follow the same set of users {U1, U2, …, Ui} as

5 http://an.kaist.ac.kr/traces/WWW2010.html

http://an.kaist.ac.kr/traces/WWW2010.html

SE256: Scalable Systems for Data Science (Jan 2016) cds.iisc.in/courses/se256

Page 3 of 4

UA, plus additional ones, {Uk,..., Um}. From these additional followees {Uk,..., Um}, find the ones

who are most frequently followed by {UB, UC, UD,…} and recommend them to user UA to follow.

3. GENERATING AND SORTING DATASETS [30 POINTS]

Introduction
It may not always be possible to get access to large datasets for testing your Big Data application or

analytic. So often, there is a need to generate synthetic data that still has some statistical properties that

makes the analytic meaningful. MR can be used to generate such large datasets quickly, in addition to

writing analytics that can scale on them.

Tasks (10 points each, 30 points total)
a) Say you have to benchmark a new Aadhaar online service that has been developed, and you

need to generate random Aadhaar ID numbers to simulate transactions by those users on the

service. Aadhaar IDs are 12 digit positive random long numbers in the range of

100,000,000,000 to 999,999,999,999. You are asked to generate synthetic datasets of

different sizes, the number of IDs in each being {1*108, 2*108,…, 10*108}, which is

approximately 1.2 to 12GB of text data since each ID is 12 bytes in size. There can be duplicates

IDs in the generated data since the same person could perform a transaction multiple times.

Further, you are told that based on statistical observations, the frequency of transactions

expected from different ranges of Aadhaar IDs are known and your random data should follow

this distribution. Say that for each of the 90 intervals of width 1010 that partitions the Aadhaar

ID range (10×1010,11×1010], (11×1010,12×1010],…, (99×1010,100×1010], you are given

the probability distribution of IDs (0.0-1.0) falling in that interval.

Write a MR job that takes as input a probability distribution file with these 90 values, each in the

range (0.0-1.0), and as input the number of random numbers to be generated, and

generates that many numbers into an output file. Also, write another MR job to output the

actual distribution of the generated dataset, as an output file with 90 values.

b) Given a file with randomly generated numbers from (a) above, and also given the probability

distribution of the numbers as an input, write an MR application to sort these numbers such that

the load on each reducer task is balanced, i.e., the output file from each reducer has

approximately the same number of sorted numbers.

c) Use the datasets from (a) and the sort program from (b) to analyze if MR weakly scales.

Submission Instructions
For all tasks, you should submit the source files integrated with Maven’s pom.xml that compiles without

error, the log files generated for your job, the list of HDFS output file directories along with the MD5

checksum of its files.

i. Name your source folder as username-se256-alpha/. Replace “username” you’re your

cluster account username. Make sure the root of the folder contains the pom.xml,

output.csv CSV file with path of HDFS output files and their checksums, log/ folder

containing logs generated for the final output reported, and your assignment report

username-se256-alpha-report.pdf. Do not include jar or class files in this folder.

ii. Tar your folder into a single file with the filename as below.

SE256: Scalable Systems for Data Science (Jan 2016) cds.iisc.in/courses/se256

Page 4 of 4

tar cvf username-se256-alpha-src.tar username-se256-alpha/

iii. Calculate its MD5 checksum for the tarred tile

md5sum username-se256-alpha-src.tar

iv. Zip the tarred file with a strong password.

zip –e username-se256-alpha-src.tar.zip username-se256-alpha-

src.tar

Copy the encrypted file to ~se256/submission-alpha/ folder in the head node and email the

password and MD5 checksum to Ravikant by the deadline with the subject line “assignment

submission username-se256-alpha”.

If you upload an unencrypted file to the folder, or you use a weak password, you will get 0 (zero) points.

Rules
- You are working in a shared cluster. So make sure that your source files are kept secure, and are

NOT readable by any other student account. Disable group and world read and execute permissions

on your home folder. Make sure the jar submitted to Hadoop does NOT contain source files. Do not

store source files in /tmp, on HDFS or any other publicly readable locations. Any student who

violates these rules will get an automatic 0 (zero) for that assignment.

- Do NOT look into the source code of others, even if others are in violation and source code is “lying

around” in some folder. If it is not yours or a shared dataset, do not be curious. If you come across

such violations, please bring it to the attention of the TA and Yogesh immediately.

- We will pass the submissions through plagiarism checks. If there are noticeable similarities between

different submissions, you will get an automatic 0 (zero) for that assignment. Repeat offenders will

get grade point reductions or failing grades.

Guidelines
- Given human readable names to your jobs and include your username in the job. This helps identify

issues.

- Run your experiments on a subset of the data initially before you run it on the full dataset. Since it

may take 10’s of minutes or hours to analyze the whole data, limit your full dataset analytics (e.g. on

180 Common Crawl files) to 1 or 2 runs for the final results, and instead use, say 10 files, for testing

and debugging.

- Watch your jobs for exceptions and errors. An incorrect map or reduce method can appear to run

slowly while it generates a lot of exceptions in the background, overflowing the log files. Monitor

the status using yarn application status, and tail the log output file watching for exceptions.

- If you notice someone else’s application is taking up a lot of resources, is behaving abnormally or

causing the cluster to be unstable, bring it to the attention of the TA and Yogesh. Do NOT kill others’

job.

- Do NOT submit a large number of MR jobs at the same time. While the batch system does schedule

jobs, do not hog the cluster with many long running jobs. If we find students dominating the cluster,

they will be warned initially, and if repeated, their jobs may be involuntarily terminated.

