
Profiling CUDA Applications
with Nvidia Nsight Systems

B Y: K E V I N M A H E S H K U R I A KO S E

What is Nsight?

• From Nvidia: "[…] a system-wide performance analysis tool designed to visualize an application’s

algorithms, identify the largest opportunities to optimize, and tune to scale efficiently across [various

systems]"

• Profiler/Tracer for GPU-based applications on Nvidia hardware

o Graphics: OpenGL, OpenXR, Vulkan, DirectX

o Video: NVDEC, NVENC

o Compute: CUDA, OpenACC

o Communication: MPI, OpenSHMEM, UCX, NCCL

o CPU: OpenMP, Python, C/C++

• Successor to NVProf

1 / 2 8 / 2 0 2 5

2

Why Profiling/Tracing?

• Shows where your program is spending its time

o Often, bottlenecks are in small sections of the program

o Helps focus performance optimizations

• Tracing gives a timeline of all events

o Very detailed, lots of data

• Profiling gives you a statistical report from sampled events

o Useful for long-running programs

1 / 2 8 / 2 0 2 5

3

What can be profiled? (non-exhaustive)

• Kernel Executions

o Time Taken

o Grid Dimensions

o Register/Shared Memory Usage

o Occupancy

• Memory Transfers

o Time Taken

o Source/Dest. Type

o Throughput

• Communication

o MPI/OpenSHMEM/UCX/NCCL API Calls

o InfiniBand Transfer Metrics

• GPU Hardware Metrics

o GPU Context Switches

o GPU I/O

o Clock Speed

o Kernels in Flight

o Power Draw

• OS Metrics

o CPU Context Switches

o CPU Instruction Pointer Sampling

o System Calls

1 / 2 8 / 2 0 2 5

4

How to profile

• Nsight Systems GUI

o Can be used for profiling programs on the
same machine

o Can open profiler reports generated by the
CLI

• nsys CLI utility

o Useful for servers/clusters with separate
GPU nodes

o nsys profile [options] <program> <args...>

o Generates an .nsys-rep file containing
results

• More information in the User Guide

1 / 2 8 / 2 0 2 5

5

https://docs.nvidia.com/nsight-systems/UserGuide/index.html

Example: Adding two vectors
• Out = A + B (Element-wise)

• A, B are 1GB FP32 vectors (N = 228)

• Starting from Naïve implementation, profile and optimize

• Tested on an Nvidia V100 GPU

1 / 2 8 / 2 0 2 5

6

1 2 3 4 5 6 7 8 9 ...

10 20 30 40 50 60 70 80 90 ...

+

Naïve
Implementation

__global__ void add_naive(...) {
for (int i = 0; i < N; i += 1) {
out[i] = a[i] + b[i];

}
}

// ...

int main() {
add_naive<<<1, 1>>>(
N, dev_a, dev_b, dev_out

);
}

• Direct copy of CPU code

• No GPU-specific optimizations done

• Note the kernel launch arguments:

o Grid size: 1

o Block size: 1

• Launched as nsys profile ./main

1 / 2 8 / 2 0 2 5

7

Naïve
Implementation

• Overall time: 15.26 seconds

o GPU Time: 14.53 seconds

• Practically no speedup

• Reason: Only one thread used

1 / 2 8 / 2 0 2 5

8

One Block
Implementation

__global__ void add_one_block(...) {

int start = threadIdx.x;

int stride = blockDim.x;

for (int i = start; i < N; i += stride) {

out[i] = a[i] + b[i];

}

}

// ...

int main() {

const int BLOCK_SIZE = 256;

add_one_block<<<1, BLOCK_SIZE>>>(...);

}

• Use one block of threads

o Here, 256

• Per-thread loop now jumps ahead by

block size

1 / 2 8 / 2 0 2 5

9

One Block
Implementation

• Overall time: 1.06 seconds

o GPU Time: 407 milliseconds

• Significant Speedup, but can be

improved

1 / 2 8 / 2 0 2 5

1 0

Multi Block Grid
Implementation

__global__ void add_grid(...) {

int start = (blockDim.x * blockIdx.x)

+ threadIdx.x;

int stride = gridDim.x * blockDim.x;

for (int i = start; i < N; i += stride) {

out[i] = a[i] + b[i];

}

}

// ...

int main() {

const int BLOCK_SIZE = 256;

add_grid<<<N / BLOCK_SIZE, BLOCK_SIZE>>>(...);

}

• Use a grid of multiple blocks

o Launch as many blocks needed to

cover vectors

o Effectively 268,435,456 threads

• Per-thread loop now jumps ahead by

grid size

1 / 2 8 / 2 0 2 5

1 1

Multi Block Grid
Implementation

• Overall time: 661 milliseconds

o GPU Time: 4 milliseconds

• Compute is practically instant, but

data transfers are slow

1 / 2 8 / 2 0 2 5

1 2

Memcpy Delay

• A, B, Out Copies: ~200 milliseconds each

o Throughput: ~4 GB/s

o Vector copies are to/from Pageable

memory

• Driver makes an internal copy to ensure

data is guaranteed to be in memory

during transfer

• Solution: Create host vectors in pinned

memory (cudaMallocHost)

1 / 2 8 / 2 0 2 5

1 3

Pinned Memcpy

• Overall time: 258 milliseconds

o A, B, Out copies: ~80 milliseconds

o Throughput: ~11 GB/s

• Many GPU applications are

bottlenecked by transfers

• Further optimizations possible (ex.

Multi-stream pipelining)

1 / 2 8 / 2 0 2 5

1 4

Extras

• nsys stats <report file>

o Prints a summarized report of program statistics

• nsys analyze <report file>

o Provides suggestions for improving performance based on the report

1 / 2 8 / 2 0 2 5

1 5

References

• Nvidia Nsight Systems Homepage: https://developer.nvidia.com/nsight-systems

• User Guide: https://docs.nvidia.com/nsight-systems/UserGuide

• Sample Program (Older Profiler): https://developer.nvidia.com/blog/even-easier-

introduction-cuda/

1 / 2 8 / 2 0 2 5

1 6

https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-systems/UserGuide
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/

	Slide 1: Profiling CUDA Applications with Nvidia Nsight Systems
	Slide 2: What is Nsight?
	Slide 3: Why Profiling/Tracing?
	Slide 4: What can be profiled? (non-exhaustive)
	Slide 5: How to profile
	Slide 6: Example: Adding two vectors
	Slide 7: Naïve Implementation
	Slide 8: Naïve Implementation
	Slide 9: One Block Implementation
	Slide 10: One Block Implementation
	Slide 11: Multi Block Grid Implementation
	Slide 12: Multi Block Grid Implementation
	Slide 13: Memcpy Delay
	Slide 14: Pinned Memcpy
	Slide 15: Extras
	Slide 16: References

