
Collective Communication
Implementations

Sathish Vadhiyar

Binomial Tree

 Definition (Binomial Tree) The binomial tree of
order k≥0 with root R is the tree Bk defined as follows

1. If k=0, Bk ={R}. i.e., the binomial tree of order
zero consists of a single node, R.

2. If k>0, Bk ={R, B0, B1,…Bk-1}. i.e., the binomial
tree of order k>0 comprises the root R, and k
binomial subtrees, B0 - Bk-1.

 Bk contains 2k nodes

 The height of Bk is k

 The number of nodes at level l in Bk, where 0≤l≤k, is
given by the binomial coefficient kCl

Binomial Trees

B0

0 0

1

B1

0

1 2

3

0

0 0

1

0

1 2

3
B2

B3

Binomial Trees

B0

1 2

3

B1

4

5 6

7

8

9 10

11

12

13 14

15
B2

B3

0
B4

Binomial Trees

1 2

3

4

5 6

7

8

9 10

11

12

13 14

15

0

•Broadcast, Scatter and Gather usually
implemented by binomial

•Takes logP communication steps
instead of 2(logP-1) in binary

Barrier Algorithms

 Butterfly barrier by Eugene Brooks II

 In round k, i synchronizes with i 2k pairwise.

 If p not power of 2, existing procs. stand for missing
ones.

 Worstcase – 2logP pairwise synchronizations by a
processor

+

0 1 2 3 4 5 6 7 8 9 10 11

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Barrier Algorithms

 Dissemination barrier by Hensgen, Finkel and Manser

 In round k, i signals (i+2k)modP

 No pairwise synchronization

 Atmost log(next power of 2 > P) on critical path
irrespective of P

0 1 2 3 4 5 6 7 8 9 10 11

Stage 0

Stage 1

Stage 2
Stage 3
– 1 more
round

Barrier Algorithms

 MPICH Barrier (pairwise exchange with recursive doubling)
 Same as butterfly barrier.
 If nodes not equal to power, find the nearest power of 2, i.e. m =

2n

 The last surfeit nodes, i.e. surfeit = size – m, initially send
messages to the first surfeit number of nodes

 The first m nodes then perform butterfly barrier
 Finally, the first surfeit nodes send messages to the last surfeit

nodes

0 1 2 3 4 5 6 7 8 9 10 11

Stage 0

Stage 1

Stage 2

Stage first

Stage last

Allgather implementation

 In general, optimized allxxx operations depend on
hardware topology, network contentions etc.

 Circular/ring allgather

 Each process receives from left and sends to right

 P steps

0 1 2 3 4 5 6 7
A0 A1 A2 A3 A4 A5 A6 A7

Stage 0

A0

Stage 1

A1

A7

A0

A1
A2 A2

A3

A4

A3

A4

A5 A5
A6 A6

A7

A6
A7

A0
A1

A2

A3

A4

A5

A6
A7

A0
A1

A2

A3

A4
A5

A4
A5

A6
A7

A0
A1

A2

A3A3

A4
A5

A6
A7

A0
A1

A2A2

A3

A4
A5

A6
A7

A0
A1A1

A2

A3

A4
A5

A6
A7

A0

Bruck’s Allgather

 Similar to dissemination barrier

 logP steps

0 1 2 3 4 5
A0 A1 A2 A3 A4 A5

A0

A2

A1

A3

A4 A5

A0

A2

A1

A3

A4

A2

A4

A0

A2

A3

A5

A1

A5

A4

A0

A4

A0

A3

A5

A1

A5

A2

A4

A0

A2

A1

A3

A5

A1

A3

AlltoAll

 The naive implementation

for all procs. i in order{

if i # my proc., then send to i and recv from i

}

 MPICH implementation – similar to
naïve, but doesn’t do it in order

for all procs. i in order{

dest = (my_proc+i)modP

src = (myproc-i+P)modP

send to dest and recv from src

}

Reduce and AllReduce

 Reduce and allreduce can be
implemented with tree algorithms,
e.g. binary tree

 But in tree based algorithms, some
processors are not involved in
computation

 Rolf Rabenseifner of Stuttgart –
algorithms for reduce and allreduce

Rabenseifner algorithm
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

 This algorithm is explained with the example of 13
nodes.

 The nodes are numbered 0, 1, 2, ... 12.

 The sendbuf content is a, b, c, ... m.

 Each buffer array is notated with ABCDEFGH, this
means that e.g. 'C' is the third 1/8 of the buffer

 size := number of nodes in the communicator.

 2**n := the power of 2 that is next smaller or equal
to the size.

 r := size - 2**n

 e.g., size=13, n=3, r=5

Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

1. compute n and r
2. if myrank < 2*r

split the buffer into ABCD and EFGH
even myrank:

send buffer EFGH to myrank+1
receive buffer ABCD from myrank+1
compute op for ABCD
receive result EFGH

odd myrank:
send buffer ABCD to myrank-1
receive buffer EFGH from myrank-1
compute op for EFGH send result EFGH

Result:
node: 0 2 4 6 8 10 11 12
value: a+b c+d e+f g+h i+j k l m

Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

3. if(myrank is even && myrank < 2*r) || (myrank >=
2*r)

4. define NEWRANK(old) := (old < 2*r ? old/2 : old-r)

define OLDRANK(new) := (new < r ? new*2 : new+r)

Result:

old: 0 2 4 6 8 10 11 12

new: 0 1 2 3 4 5 6 7

val: a+b c+d e+f g+h i+j k l m

Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.1 Split the buffer (ABCDEFGH) in the middle,
the lower half (ABCD) is computed on even (new) ranks,
the upper half (EFGH) is computed on odd (new) ranks.

exchange:
ABCD from 1 to 0, from 3 to 2, from 5 to 4 and from 7 to 6
EFGH from 0 to 1, from 2 to 3, from 4 to 5 and from 6 to 7
compute op in each node on its half

Result:
node 0: (a+b)+(c+d) for ABCD
node 1: (a+b)+(c+d) for EFGH
node 2: (e+f)+(g+h) for ABCD
node 3: (e+f)+(g+h) for EFGH
node 4: (i+j)+ k for ABCD
node 5: (i+j)+ k for EFGH
node 6: l + m for ABCD
node 7: l + m for EFGH

Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.2 Same with double distance and one more the half of
the buffer.

Result:

node 0: [(a+b)+(c+d)] + [(e+f)+(g+h)] for AB

node 1: [(a+b)+(c+d)] + [(e+f)+(g+h)] for EF

node 2: [(a+b)+(c+d)] + [(e+f)+(g+h)] for CD

node 3: [(a+b)+(c+d)] + [(e+f)+(g+h)] for GH

node 4: [(i+j)+ k] + [l + m] for AB

node 5: [(i+j)+ k] + [l + m] for EF

node 6: [(i+j)+ k] + [l + m] for CD

node 7: [(i+j)+ k] + [l + m] for GH

Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.3 Same with double distance and one more the half of the buffer.

Result:
node 0: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for A
node 1: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for E
node 2: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for C
node 3: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for G
node 4: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for B
node 5: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for F
node 6: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for D
node 7: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for H

Rabenseifner algorithm
- Steps (for reduce)
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

6. Last step is gather

a. Gather is by an algorithm similar to tournament
algorithm.

b. In each round, one process gathers from another

c. The players are P/2 at the initial step and the
distance is halved every step till 1.

node 0: recv B => AB

node 1: recv F => EF

node 2: recv D => CD

node 3: recv H => GH

node 4: send B

node 5: send F

node 6: send D

node 7: send H

node 0: recv CD => ABCD

node 1: recv GH => EFGH

node 2: send CD

node 3: send GH

node 0: recv EFGH => ABCDEFGH

Rabenseifner algorithm
- Steps (for allreduce)
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

6. Similar to reduce, but

a. Instead of gather by one process, both the processes
exchange

b. Both the players move to the next round

c. Finally, transfer the result from the even to odd
nodes in the old ranks.

node 0: AB

node 1: EF

node 2: CD

node 3: GH

node 4: AB

node 5: EF

node 6: CD

node 7: GH

node 0: ABCD

node 1: EFGH

node 2: ABCD

node 3: EFGH

node 4: ABCD

node 5: EFGH

node 6: ABCD

node 7: EFGH

node 0: ABCDEFGH

node 1: ABCDEFGH

node 2: ABCDEFGH

node 3: ABCDEFGH

node 4: ABCDEFGH

node 5: ABCDEFGH

node 6: ABCDEFGH

node 7: ABCDEFGH

General Notes on Optimizing
Collectives

 2 components for collective
communications – latency and bandwidth

 Latency(α) – time when the collective
completes with the first byte (or) number
of time steps

 Bandwidth(β) – rate at which collective
proceeds after the first byte transmission
(or) total time for all messages

 Cost for communication – α+nβ

 Latency is critical for small message sizes
and bandwidth for large message sizes

Example - Broadcast

 Binomial Broadcast
 log p steps
 Amount of data communicated at each step - n
 cost = log p (α+nβ)

 scatter and allgather
 Divide message into p segments
 Scatter the p segments to p processes using binomial

scatter – log p α + (n/p)(p-1) β
 Scattered data collected at all processes using ring

allgather – (p-1) α + (n/p)(p-1) β
 cost = (log p + p-1) α + 2(n/p)(p-1) β

 Hence binomial broadcast for small messages and
(scatter+allgather) for long messages

MPICH Algorithms

 Allgather
 Bruck Algorithm (variation of dissemination) (< 80 KB) and

non-power-of-two
 Recursive doubling (< 512 KB) for power-of-2 processes
 ring (> 512 KB) and (80-512 KB) for any processes

 Broadcast
 Binomial (< 12 KB), binomial scatter + ring all_gather (> 512

KB)

 Alltoall
 Bruck’s algorithm (for < 256 bytes)
 Post all irecvs and isends (for medium size messages. 256

bytes – 32 KB)
 Pairwise exchange (for long messages and power-of-2

processors) – p-1 steps. In each step k, each process i
exchanges data with (i xor k)

 For non-power of 2, an algorithm in which in each step, k,
process i sends data to (i+k) and receives from (i-k)

MPICH Algorithms

 Reduce-scatter
 For commutative operations:

 Recursive halving (< 512 KB), pairwise exchange (> 512 KB;
p-1 steps; rank+i at step i)

 For non-commutative:
 Recursive doubling (< 512 bytes), pairwise exchange (> 512

bytes)

 Reduce
 For pre-defined operations

 Binomial algorithm (< 2 KB), Rabenseifner (> 2 KB)

 For user-defined operations)
 Binomial algorithm

 AllReduce
 For pre-defined operations

 Recursive doubling (short) , Rabenseifner (long messages)

 For user-defined operations
 Recursive doubling

On Real Network Topologies

 Two communicating processes may
be mapped onto two processors that
are more than 1-hop away

 Or different edges in the algorithm
graph can map onto a same shared
link, leading to contention

Mapping Process Topologies
Onto Network Topologies

 Definition: Dilation – Let ø be the
function that embeds graph G=(V,E) into
graph G’=(V’,E’). The dilation of the
embedding is defined as
dil(ø)=max{dist(ø(u), ø(v))|(u,v)εE}

 Ring onto 2-D mesh:
 A dilation-1 embedding exists if the mesh

has an even number of rows and/or columns

Binary Tree Onto 2-D mesh

 A dilation-1 embedding can exist for a
tree of height 3 or less

 H-tree is a common way of
embedding a binary tree onto a mesh

 A complete binary tree of height n
has a dilation cap(n/2) embedding in
a 2-D mesh

 Similarly, a binomial tree of height n
has a dilation cap(n/2) embedding in
a 2-D mesh

References

 Thakur et. al. – Optimization of
Collective Communication Operations
in MPICH. IJHPCA 2005.

 Thakur et. al. - Improving the
Performance of Collective Operations
in MPICH. EuroPVM/MPI 2003.

 Section 5.1 in the book by Quinn

Barrier Algorithms
 Tournament barrier by Hensgen, Finkel and Manser
 In the 1st round, each pair of nodes (players) synchronize (play a game)
 The receiver will be considered as the winner of the game
 In the 2nd round, the winners of the 1st round will synchronize (play games)
 The receiver in the 2nd round will advance to the 3rd round
 This process continues till there is 1 winner left in the tournament
 The single winner then broadcasts a message to all the other nodes
 At each round k, proc. j receives a message from proc. i, where i = j - 2k

0 1 2 3 4 5 6 7 8 9 10 11

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

AlltoAll implementation

 Circular alltoall

 For step k in {1..P}, proc. i sends to
(i+k)modP and receives from (i-
k+P)modP

0 1 2 3 4 5 6 7

Stage 1

Stage 2

A0
B1

C2
D3

E4
F5

G6
H7H0

A1
B2

C3
D4

E5
F6

G7

A2
B3

C4
D5

E6
F7

H1

G0

A3
B4

C5
D6

E7
F0

G1
H2

A4

B5
C6

D7
E0

F1
G2

A5
B6

C7
D0

E1

F2
G3
H3 H4

A6
B7

C0
D1

E2
F3

G4
H5

A7
B0

C1
D2

E3

F4
G5

H6

Reduce-Scatter for commutative
operations: Recursive halving
algorithm
 Recursive doubling – in the first step, communication

is with the neighboring process. In each step, the
communication distance doubles

 Recursive halving – reverse of recursive doubling

 At the first step

 a process communicates with another process P/2
away

 sends data needed by the other half

 Receives data needed by its half

 Performs operation

 Next step – distance P/4 away and so on…

 lgP steps

Reduce-Scatter for non-
commutative operations: Recursive
doubling algorithm

 In the first step, data (all data except the
one needed for its result) is exchanged with
the neighboring process

 In the next step, (n-2n/p) data (all except
the one needed by it and the one needed
by process it communicated with the
previous step) is communicated with
process that is distance 2 apart

 In the third step (n-4n/p) data with process
that is distance 4 apart and so on…

 lgP steps

