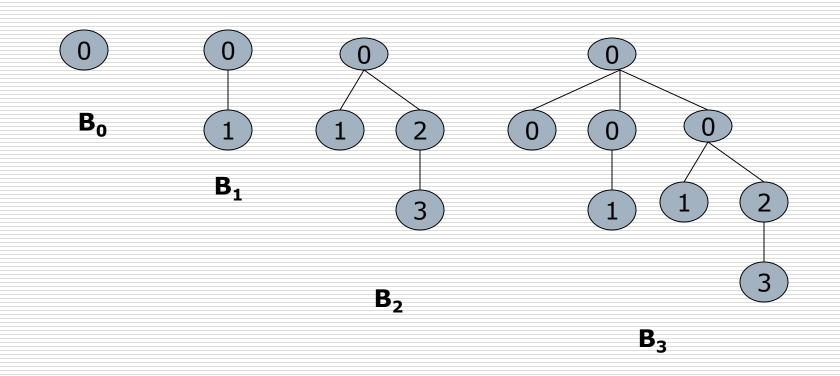
Collective Communication Implementations

Sathish Vadhiyar

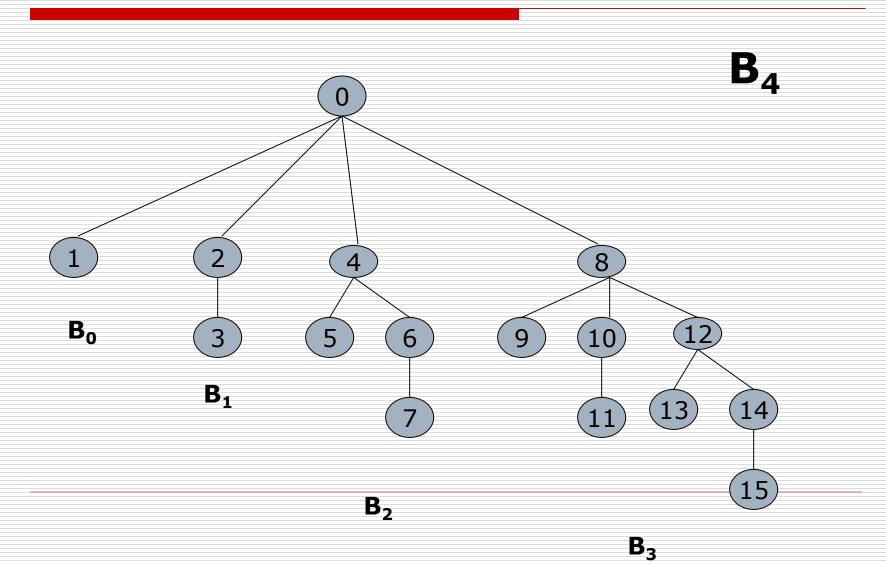
Binomial Tree

- Definition (Binomial Tree) The binomial tree of order k≥0 with root R is the tree B_k defined as follows
 1. If k=0, B_k ={R}. i.e., the binomial tree of order zero consists of a single node, R.
 2. If k>0, B_k ={R, B₀, B₁,...B_{k-1}}. i.e., the binomial tree of order k>0 comprises the root R, and k
 - binomial subtrees, $B_0 B_{k-1}$.
- \square B_k contains 2^k nodes
- $\Box \quad \text{The height of } B_k \text{ is } k$
- □ The number of nodes at level / in B_k, where 0≤l≤k, is given by the *binomial coefficient* ^kC_l

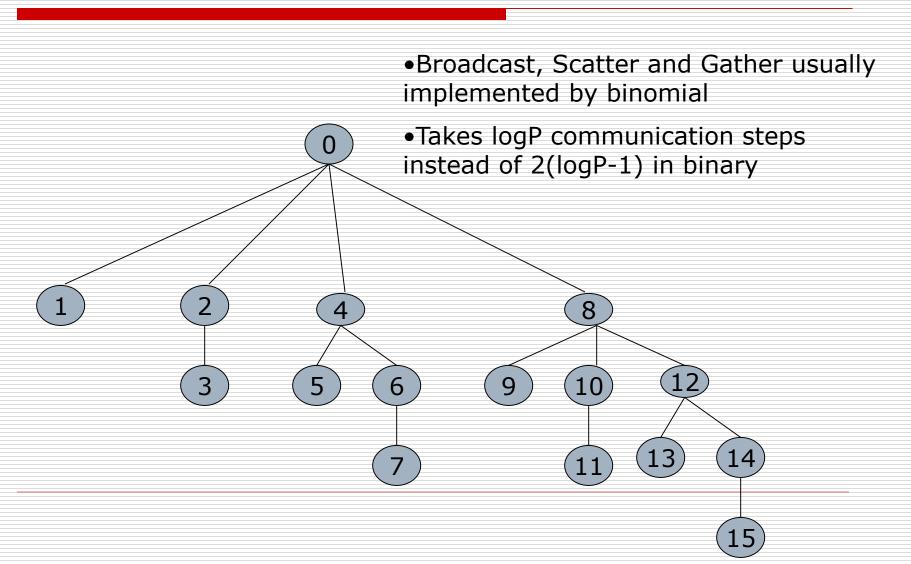
Binomial Trees



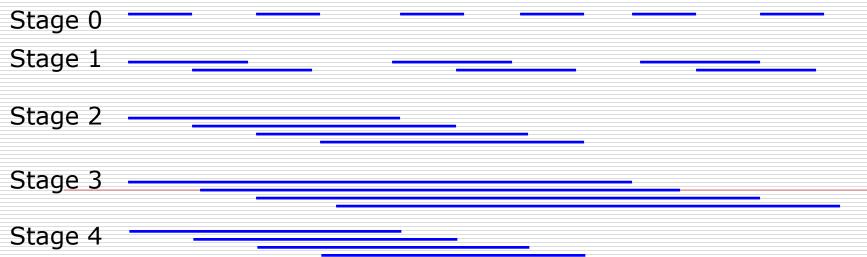
Binomial Trees



Binomial Trees

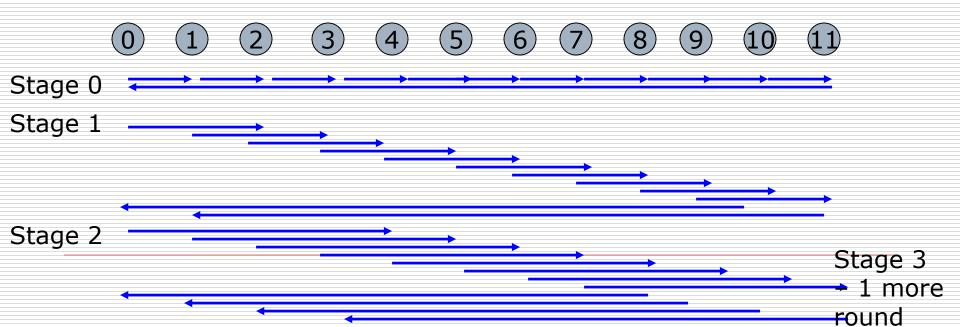


- Butterfly barrier by Eugene Brooks II
- □ In round k, i synchronizes with $i \oplus 2^k$ pairwise.
- If p not power of 2, existing procs. stand for missing ones.
- Worstcase 2logP pairwise synchronizations by a processor



Dissemination barrier by Hensgen, Finkel and Manser

- In round k, i signals (i+2^k)modP
- □ No pairwise synchronization
- Atmost log(next power of 2 > P) on critical path irrespective of P



- MPICH Barrier (pairwise exchange with recursive doubling)
- □ Same as butterfly barrier.
- □ If nodes not equal to power, find the nearest power of 2, i.e. $m = 2^n$
- The last surfeit nodes, i.e. surfeit = size m, initially send messages to the first surfeit number of nodes
- □ The first m nodes then perform butterfly barrier
- Finally, the first surfeit nodes send messages to the last surfeit nodes

Sta	ge	first	· • • • • • • • • • • • • • • • • • • •

- Stage 0 _____ ____ _____
- Stage 2 _____

Stage last

Allgather implementation

- In general, optimized allxxx operations depend on hardware topology, network contentions etc.
- Circular/ring allgather
- Each process receives from left and sends to right
- P steps

Stage 0

Stage 1

Bruck's Allgather

Similar to dissemination barrier logP steps

 A_1 A_2 A_3 A_4 A_0 As A_3 A_4 A_1 A₂ As A_0 A₃ A₄ A_0 A_1 A_2 A₅ A₃ A₄ A_5 A_0 A_1 A_2 A_5 A₀ A_2 A_3 A₄ A_1

 $A_5 \quad A_0 \quad A_1 \quad A_2 \quad A_3 \quad A_4$

AlltoAll

The naive implementation

for all procs. i in order{

if i # my proc., then send to i and recv from i

MPICH implementation – similar to naïve, but doesn't do it in order

for all procs. i in order{
dest = (my_proc+i)modP
src = (myproc-i+P)modP
send to dest and recv from src

Reduce and AllReduce

- Reduce and allreduce can be implemented with tree algorithms, e.g. binary tree
- But in tree based algorithms, some processors are not involved in computation
- Rolf Rabenseifner of Stuttgart algorithms for reduce and allreduce

- This algorithm is explained with the example of 13 nodes.
- \Box The nodes are numbered 0, 1, 2, ... 12.
- □ The sendbuf content is a, b, c, ... m.
- Each buffer array is notated with ABCDEFGH, this means that e.g. 'C' is the third 1/8 of the buffer
- \Box size := number of nodes in the communicator.
- 2**n := the power of 2 that is next smaller or equal to the size.
- □ r := size 2**n
- e.g., size=13, n=3, r=5

- Steps

1.	compute n and r
2.	if myrank < 2*r
	split the buffer into ABCD and EFGH
	even myrank:
	send buffer EFGH to myrank+1
	receive buffer ABCD from myrank+1
	compute op for ABCD
	receive result EFGH
	odd myrank:
	send buffer ABCD to myrank-1
	receive buffer EFGH from myrank-1
	compute op for EFGH send result EFGH

Resu	+ •
IVE 20	L.

node: 0	2	4	6	8	10	11	12
value: a+b	c+d	e+f	g+h	i+j	k		m

- Steps

- 3. if(myrank is even && myrank < 2*r) || (myrank >= 2*r)
- 4. define NEWRANK(old) := (old < 2*r ? old/2 : old-r)
 define OLDRANK(new) := (new < r ? new*2 : new+r)</pre>

Result:							
old: 0	2	4	6	8	10	11	12
new: 0	1	2	3	4	5	6	7
val: a+b	c+d	e+f	g+h	i+j	k		m

- Steps

from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.1 Split the buffer (ABCDEFGH) in the middle, the lower half (ABCD) is computed on even (new) ranks, the upper half (EFGH) is computed on odd (new) ranks.

exchange: ABCD from 1 to 0, from 3 to 2, from 5 to 4 and from 7 to 6 EFGH from 0 to 1, from 2 to 3, from 4 to 5 and from 6 to 7 compute op in each node on its half

Result:

node 0: (a+b)+(c+d) for ABCD node 1: (a+b)+(c+d) for EFGH node 2: (e+f)+(g+h) for ABCD node 3: (e+f)+(g+h) for EFGH node 4: (i+j)+k for ABCD node 5: (i+j)+k for EFGH node 6: l + m for ABCD node 7: l + m for EFGH

- Steps

from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.2 Same with double distance and one more the half of the buffer.

Result:

node 0: [(a+b)+(c+d)] + [(e+f)+(g+h)] for AB node 1: [(a+b)+(c+d)] + [(e+f)+(g+h)] for EF node 2: [(a+b)+(c+d)] + [(e+f)+(g+h)] for CD node 3: [(a+b)+(c+d)] + [(e+f)+(g+h)] for GH node 4: [(i+j)+k] + [l+m] for AB node 5: [(i+j)+k] + [l+m] for EF node 6: [(i+j)+k] + [l+m] for CD node 7: [(i+j)+k] + [l+m] for GH

- Steps

from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.3 Same with double distance and one more the half of the buffer.

Result:

node 0: { [(a+b)+(c+d)] + [(e+f)+(g+h)] + { [(i+j)+k] + [l+m]} for A node 1: { [(a+b)+(c+d)] + [(e+f)+(g+h)] + { [(i+j)+k] + [l+m]} for E node 2: { [(a+b)+(c+d)] + [(e+f)+(g+h)] + { [(i+j)+k] + [l+m]} for C node 3: { [(a+b)+(c+d)] + [(e+f)+(g+h)] + { [(i+j)+k] + [l+m]} for G node 4: { [(a+b)+(c+d)] + [(e+f)+(g+h)] + { [(i+j)+k] + [l+m]} for B node 5: { [(a+b)+(c+d)] + [(e+f)+(g+h)] + { [(i+j)+k] + [l+m]} for F node 6: { [(a+b)+(c+d)] + [(e+f)+(g+h)] + { [(i+j)+k] + [l+m]} for D node 7: { [(a+b)+(c+d)] + [(e+f)+(g+h)] + { [(i+j)+k] + [l+m]} for H

- Steps (for reduce)

from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

6. Last step is gather

- a. Gather is by an algorithm similar to tournament algorithm.
- **b.** In each round, one process gathers from another
- c. The players are P/2 at the initial step and the distance is halved every step till 1.

node 0: recv $B => AB$	node 0: recv CD => ABCD	node 0: recv EFGH => ABCDEFGH
node 1: recv F => EF	node 1: recv GH => EFGH	
node 2: recv D => CD	node 2: send CD	
node 3: recv H => GH	node 3: send GH	
node 4: send B		
node 5: send F		
node 6: send D		
node 7: send H		

- Steps (for allreduce)

- 6. Similar to reduce, but
- a. Instead of gather by one process, both the processes exchange
- b. Both the players move to the next round
- c. Finally, transfer the result from the even to odd nodes in the old ranks.

node 0: AB	node 0: ABCD	node 0: ABCDEFGH
node 1: EF	node 1: EFGH	node 1: ABCDEFGH
node 2: CD	node 2: ABCD	node 2: ABCDEFGH
node 3: GH	node 3: EFGH	node 3: ABCDEFGH
node 4: AB	node 4: ABCD	node 4: ABCDEFGH
node 5: EF	node 5: EFGH	node 5: ABCDEFGH
node 6: CD	node 6: ABCD	node 6: ABCDEFGH
node 7: GH	node 7: EFGH	node 7: ABCDEFGH

General Notes on Optimizing Collectives

- 2 components for collective communications – latency and bandwidth
- Latency(a) time when the collective completes with the first byte (or) number of time steps
- Bandwidth(β) rate at which collective proceeds after the first byte transmission (or) total time for all messages
- \Box Cost for communication $a+n\beta$
- Latency is critical for small message sizes and bandwidth for large message sizes

Example - Broadcast

Binomial Broadcast

log p steps

- Amount of data communicated at each step n
- $cost = \log p (a+n\beta)$
- scatter and allgather
 - Divide message into p segments
 - Scatter the p segments to p processes using binomial scatter log p a + (n/p)(p-1) β
 - Scattered data collected at all processes using ring allgather (p-1) α + (n/p)(p-1) β
 - $cost = (log p + p-1) a + 2(n/p)(p-1) \beta$
- Hence binomial broadcast for small messages and (scatter+allgather) for long messages

MPICH Algorithms

Allgather

- Bruck Algorithm (variation of dissemination) (< 80 KB) and non-power-of-two
- Recursive doubling (< 512 KB) for power-of-2 processes
- ring (> 512 KB) and (80-512 KB) for any processes

Broadcast

Binomial (< 12 KB), binomial scatter + ring all_gather (> 512 KB)

Alltoall

- Bruck's algorithm (for < 256 bytes)</p>
- Post all irecvs and isends (for medium size messages. 256 bytes – 32 KB)
- Pairwise exchange (for long messages and power-of-2 processors) p-1 steps. In each step k, each process i exchanges data with (i xor k)
- For non-power of 2, an algorithm in which in each step, k, process i sends data to (i+k) and receives from (i-k)

MPICH Algorithms

- Reduce-scatter
 - For commutative operations:
 - Recursive halving (< 512 KB), pairwise exchange (> 512 KB; p-1 steps; rank+i at step i)
 - For non-commutative:
 - Recursive doubling (< 512 bytes), pairwise exchange (> 512 bytes)
- Reduce
 - For pre-defined operations
 - □ Binomial algorithm (< 2 KB), Rabenseifner (> 2 KB)
 - For user-defined operations)
 - Binomial algorithm
- □ AllReduce
 - For pre-defined operations
 - Recursive doubling (short) , Rabenseifner (long messages)
 - For user-defined operations
 - Recursive doubling

On Real Network Topologies

- Two communicating processes may be mapped onto two processors that are more than 1-hop away
- Or different edges in the algorithm graph can map onto a same shared link, leading to contention

Mapping Process Topologies Onto Network Topologies

- Definition: Dilation Let ø be the function that embeds graph G=(V,E) into graph G'=(V',E'). The dilation of the embedding is defined as dil(ø)=max{dist(ø(u), ø(v))|(u,v)ɛE}
- □ Ring onto 2-D mesh:
 - A dilation-1 embedding exists if the mesh has an even number of rows and/or columns

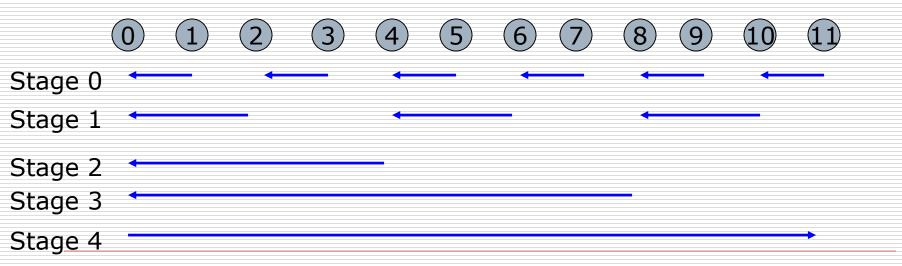
Binary Tree Onto 2-D mesh

- A dilation-1 embedding can exist for a tree of height 3 or less
- H-tree is a common way of embedding a binary tree onto a mesh
- A complete binary tree of height n has a dilation cap(n/2) embedding in a 2-D mesh
- Similarly, a binomial tree of height n has a dilation cap(n/2) embedding in a 2-D mesh

References

- Thakur et. al. Optimization of Collective Communication Operations in MPICH. IJHPCA 2005.
- Thakur et. al. Improving the Performance of Collective Operations in MPICH. EuroPVM/MPI 2003.
- Section 5.1 in the book by Quinn

- **Tournament barrier** by Hensgen, Finkel and Manser
- □ In the 1st round, each pair of nodes (players) synchronize (play a game)
- The receiver will be considered as the winner of the game
- In the 2^{nd} round, the winners of the 1^{st} round will synchronize (play games)
- The receiver in the 2nd round will advance to the 3rd round
- □ This process continues till there is 1 winner left in the tournament
- □ The single winner then broadcasts a message to all the other nodes
- At each round k, proc. j receives a message from proc. i, where $i = j 2^k$



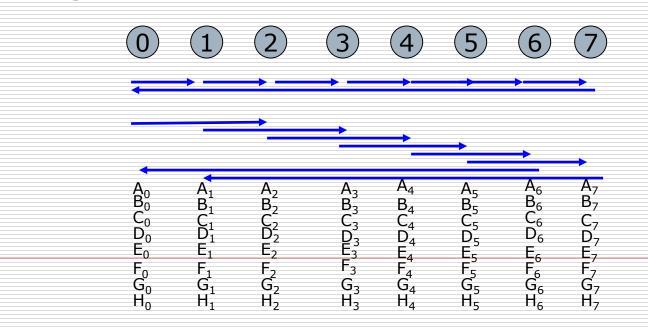
AlltoAll implementation

Circular alltoall

Stage 1

Stage 2

For step k in {1..P}, proc. i sends to (i+k)modP and receives from (ik+P)modP



Reduce-Scatter for commutative operations: Recursive halving algorithm

- Recursive doubling in the first step, communication is with the neighboring process. In each step, the communication distance doubles
- Recursive halving reverse of recursive doubling
- □ At the first step
 - a process communicates with another process P/2 away
 - sends data needed by the other half
 - Receives data needed by its half
 - Performs operation
- Next step distance P/4 away and so on...
- IgP steps

Reduce-Scatter for noncommutative operations: Recursive doubling algorithm

- In the first step, data (all data except the one needed for its result) is exchanged with the neighboring process
- In the next step, (n-2n/p) data (all except the one needed by it and the one needed by process it communicated with the previous step) is communicated with process that is distance 2 apart
- In the third step (n-4n/p) data with process that is distance 4 apart and so on...

□ IgP steps