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Binomial Tree

 Definition (Binomial Tree) The binomial tree of 
order k≥0 with root R is the tree Bk defined as follows 

1. If k=0, Bk ={R}. i.e., the binomial tree of order 
zero consists of a single node, R. 

2. If k>0, Bk ={R, B0, B1,…Bk-1}. i.e., the binomial 
tree of order k>0 comprises the root R, and k
binomial subtrees, B0 - Bk-1. 

 Bk contains 2k nodes

 The height of Bk is k

 The number of nodes at level l in Bk, where  0≤l≤k, is 
given by the binomial coefficient kCl
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Binomial Trees
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•Broadcast, Scatter and Gather usually 
implemented by binomial

•Takes logP communication steps 
instead of 2(logP-1) in binary



Barrier Algorithms

 Butterfly barrier by Eugene Brooks II

 In round k, i synchronizes with i   2k pairwise.

 If p not power of 2, existing procs. stand for missing 
ones.

 Worstcase – 2logP pairwise synchronizations by a 
processor
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Barrier Algorithms

 Dissemination barrier by Hensgen, Finkel and Manser

 In round k, i signals (i+2k)modP

 No pairwise synchronization

 Atmost log(next power of 2 > P) on critical path 
irrespective of P
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Barrier Algorithms

 MPICH Barrier (pairwise exchange with recursive doubling)
 Same as butterfly barrier.
 If nodes not equal to power, find the nearest power of 2, i.e. m = 

2n

 The last surfeit nodes, i.e. surfeit = size – m, initially send 
messages to the first surfeit number of nodes

 The first m nodes then perform butterfly barrier
 Finally, the first surfeit nodes send messages to the last surfeit 

nodes
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Allgather implementation

 In general, optimized allxxx operations depend on 
hardware topology, network contentions etc.

 Circular/ring allgather

 Each process receives from left and sends to right

 P steps
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Bruck’s Allgather

 Similar to dissemination barrier

 logP steps
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AlltoAll

 The naive implementation

for all procs. i in order{

if i # my proc., then send to i and recv from i

}

 MPICH implementation – similar to 
naïve, but doesn’t do it in order

for all procs. i in order{

dest = (my_proc+i)modP

src = (myproc-i+P)modP

send to dest and recv from src

}



Reduce and AllReduce

 Reduce and allreduce can be 
implemented with tree algorithms, 
e.g. binary tree

 But in tree based algorithms, some 
processors are not involved in 
computation

 Rolf Rabenseifner of Stuttgart –
algorithms for reduce and allreduce



Rabenseifner algorithm
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

 This algorithm is explained with the example of 13 
nodes.

 The nodes are numbered 0, 1, 2, ... 12.

 The sendbuf content is a, b, c, ... m.

 Each buffer array is notated with ABCDEFGH, this 
means that e.g. 'C' is the third 1/8 of the buffer

 size := number of nodes in the communicator.

 2**n := the power of 2 that is next smaller or equal 
to the size.

 r := size - 2**n 

 e.g., size=13, n=3, r=5



Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

1. compute n and r
2. if myrank < 2*r

split the buffer into ABCD and EFGH
even myrank:

send buffer EFGH to myrank+1 
receive buffer ABCD from myrank+1
compute op for ABCD
receive result EFGH

odd myrank:
send buffer ABCD to myrank-1
receive buffer EFGH from myrank-1
compute op for EFGH send result EFGH

Result:
node: 0 2 4 6 8 10 11 12
value: a+b c+d e+f g+h i+j k l m 



Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

3. if(myrank is even && myrank < 2*r) || (myrank >= 
2*r)

4. define NEWRANK(old) := (old < 2*r ? old/2 : old-r)

define OLDRANK(new) := (new < r ? new*2 : new+r)

Result:

old:  0 2 4 6 8 10 11 12

new: 0 1 2 3 4 5 6 7

val: a+b c+d e+f g+h i+j k l m 



Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.1 Split the buffer (ABCDEFGH) in the middle,
the lower half (ABCD) is computed on even (new) ranks,
the upper half (EFGH) is computed on odd (new) ranks.

exchange:
ABCD from 1 to 0, from 3 to 2, from 5 to 4 and from 7 to 6
EFGH from 0 to 1, from 2 to 3, from 4 to 5 and from 6 to 7 
compute op in each node on its half

Result:
node 0: (a+b)+(c+d) for ABCD
node 1: (a+b)+(c+d) for EFGH
node 2: (e+f)+(g+h) for ABCD
node 3: (e+f)+(g+h) for EFGH
node 4: (i+j)+ k for ABCD
node 5: (i+j)+ k for EFGH
node 6: l + m for ABCD
node 7: l + m for EFGH 



Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.2 Same with double distance and one more the half of 
the buffer.

Result:

node 0: [(a+b)+(c+d)] + [(e+f)+(g+h)] for AB

node 1: [(a+b)+(c+d)] + [(e+f)+(g+h)] for EF

node 2: [(a+b)+(c+d)] + [(e+f)+(g+h)] for CD

node 3: [(a+b)+(c+d)] + [(e+f)+(g+h)] for GH

node 4: [(i+j)+ k ] + [ l + m ] for AB

node 5: [(i+j)+ k ] + [ l + m ] for EF

node 6: [(i+j)+ k ] + [ l + m ] for CD

node 7: [(i+j)+ k ] + [ l + m ] for GH 



Rabenseifner algorithm
- Steps
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

5.3 Same with double distance and one more the half of the buffer.

Result:
node 0: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for A 
node 1: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for E 
node 2: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for C 
node 3: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for G 
node 4: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for B 
node 5: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for F
node 6: { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for D 
node 7:  { [(a+b)+(c+d)] + [(e+f)+(g+h)] } + { [(i+j)+k] + [l+m] } for H 



Rabenseifner algorithm
- Steps (for reduce)
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

6. Last step is gather

a. Gather is by an algorithm similar to tournament 
algorithm.

b. In each round, one process gathers from another

c. The players are P/2 at the initial step and the 
distance is halved every step till 1.

node 0: recv B => AB

node 1: recv F => EF

node 2: recv D => CD

node 3: recv H => GH

node 4: send B

node 5: send F

node 6: send D

node 7: send H

node 0: recv CD => ABCD

node 1: recv GH => EFGH

node 2: send CD

node 3: send GH

node 0: recv EFGH => ABCDEFGH



Rabenseifner algorithm
- Steps (for allreduce)
from http://www.hlrs.de/organization/par/services/models/mpi/myreduce.c

6. Similar to reduce, but

a. Instead of gather by one process, both the processes 
exchange

b. Both the players move to the next round

c. Finally, transfer the result from the even to odd 
nodes in the old ranks.
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General Notes on Optimizing 
Collectives

 2 components for collective 
communications – latency and bandwidth

 Latency(α) – time when the collective 
completes with the first byte (or) number 
of time steps

 Bandwidth(β) – rate at which collective 
proceeds after the first byte transmission 
(or) total time for all messages

 Cost for communication – α+nβ

 Latency is critical for small message sizes 
and bandwidth for large message sizes



Example - Broadcast

 Binomial Broadcast
 log p steps
 Amount of data communicated at each step - n
 cost = log p (α+nβ)

 scatter and allgather
 Divide message into p segments
 Scatter the p segments to p processes using binomial 

scatter – log p α + (n/p)(p-1) β
 Scattered data collected at all processes using ring 

allgather – (p-1) α + (n/p)(p-1) β
 cost = (log p + p-1) α + 2(n/p)(p-1) β

 Hence binomial broadcast for small messages and 
(scatter+allgather) for long messages



MPICH Algorithms

 Allgather
 Bruck Algorithm (variation of dissemination) (< 80 KB) and 

non-power-of-two
 Recursive doubling (< 512 KB) for power-of-2 processes
 ring (> 512 KB) and (80-512 KB) for any processes

 Broadcast
 Binomial (< 12 KB), binomial scatter + ring all_gather (> 512 

KB)

 Alltoall
 Bruck’s algorithm (for < 256 bytes)
 Post all irecvs and isends (for medium size messages. 256 

bytes – 32 KB)
 Pairwise exchange (for long messages and power-of-2 

processors) – p-1 steps. In each step k, each process i 
exchanges data with (i xor k)

 For non-power of 2, an algorithm in which in each step, k, 
process i sends data to (i+k) and receives from (i-k)



MPICH Algorithms

 Reduce-scatter
 For commutative operations:

 Recursive halving (< 512 KB), pairwise exchange (> 512 KB; 
p-1 steps; rank+i at step i)

 For non-commutative:
 Recursive doubling (< 512 bytes), pairwise exchange (> 512 

bytes)

 Reduce
 For pre-defined operations

 Binomial algorithm (< 2 KB), Rabenseifner (> 2 KB)

 For user-defined operations)
 Binomial algorithm

 AllReduce
 For pre-defined operations

 Recursive doubling (short) , Rabenseifner (long messages)

 For user-defined operations
 Recursive doubling



On Real Network Topologies

 Two communicating processes may 
be mapped onto two processors that 
are more than 1-hop away

 Or different edges in the algorithm 
graph can map onto a same shared 
link, leading to contention



Mapping Process Topologies 
Onto Network Topologies

 Definition: Dilation – Let ø be the 
function that embeds graph G=(V,E) into 
graph G’=(V’,E’). The dilation of the 
embedding is defined as 
dil(ø)=max{dist(ø(u), ø(v))|(u,v)εE}

 Ring onto 2-D mesh:
 A dilation-1 embedding exists if the mesh 

has an even number of rows and/or columns



Binary Tree Onto 2-D mesh

 A dilation-1 embedding can exist for a 
tree of height 3 or less

 H-tree is a common way of 
embedding a binary tree onto a mesh

 A complete binary tree of height n 
has a dilation cap(n/2) embedding in 
a 2-D mesh

 Similarly, a binomial tree of height n 
has a dilation cap(n/2) embedding in 
a 2-D mesh
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Barrier Algorithms
 Tournament barrier by Hensgen, Finkel and Manser
 In the 1st round, each pair of nodes (players) synchronize (play a game)
 The receiver will be considered as the winner of the game
 In the 2nd round, the winners of the 1st round will synchronize (play games)
 The receiver in the 2nd round will advance to the 3rd round
 This process continues till there is 1 winner left in the tournament
 The single winner then broadcasts a message to all the other nodes
 At each round k, proc. j receives a message from proc. i, where i = j - 2k
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AlltoAll implementation

 Circular alltoall

 For step k in {1..P}, proc. i sends to 
(i+k)modP and receives from (i-
k+P)modP
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Reduce-Scatter for commutative 
operations: Recursive halving 
algorithm
 Recursive doubling – in the first step, communication 

is with the neighboring process. In each step, the 
communication distance doubles

 Recursive halving – reverse of recursive doubling

 At the first step

 a process communicates with another process P/2 
away

 sends data needed by the other half

 Receives data needed by its half

 Performs operation

 Next step – distance P/4 away and so on…

 lgP steps



Reduce-Scatter for non-
commutative operations: Recursive 
doubling algorithm

 In the first step, data (all data except the 
one needed for its result) is exchanged with 
the neighboring process

 In the next step, (n-2n/p) data (all except 
the one needed by it and the one needed 
by process it communicated with the 
previous step) is communicated with 
process that is distance 2 apart

 In the third step (n-4n/p) data with process 
that is distance 4 apart and so on…

 lgP steps


