
Class Pointers

Code for joining Microsoft Teams
for the class:

Form to be filled

Syllabus
Architecture: computer organization, single-core optimizations

including exploiting cache hierarchy and vectorization, parallel

architectures including multi-core, shared memory, distributed memory

and GPU architectures

Algorithms and Data Structures: algorithmic analysis, overview of

trees and graphs, algorithmic strategies, concurrent data structures

Parallelization Principles: motivation, challenges, metrics,

parallelization steps, data distribution, PRAM model

Parallel Programming Models and Languages: OpenMP, MPI,

CUDA;

Distributed Computing: Commodity cluster and cloud computing;

Distributed Programming: MapReduce/Hadoop model.

Syllabus
Architecture: computer organization, single-core optimizations

including exploiting cache hierarchy and vectorization, parallel

architectures including multi-core, shared memory, distributed memory

and GPU architectures

Algorithms and Data Structures: algorithmic analysis, overview of

trees and graphs, algorithmic strategies, concurrent data structures

Parallelization Principles: motivation, challenges, metrics,

parallelization steps, data distribution, PRAM model

Parallel Programming Models and Languages: OpenMP, MPI,

CUDA;

Distributed Computing: Commodity cluster and cloud computing;

Distributed Programming: MapReduce/Hadoop model.

Reference
Bryant, O’Hallaron. Computer Systems – A Programmer’s Perspective

Culler, Singh. Parallel Computing Architecture. A Hardware/Software

Approach

Quinn. Parallel Computing. Theory and Practice

Sahni. Data Structures, Algorithms, and Applications in C++

Grama, Gupta, Karypis, Kumar. Introduction to Parallel Computing

Pacheco. An Introduction to Parallel Programming

Hwang, Dongarra, Fox. Distributed and Cloud Computing: From

Parallel Processing to the Internet of Things

Lin, Dyer. Data-Intensive Text Processing with MapReduce

Reference
Bryant, O’Hallaron. Computer Systems – A Programmer’s Perspective,

Pearson Education Limited 2016, 3rd Global Edition

Culler, Singh. Parallel Computing Architecture. A Hardware/Software

Approach

Quinn. Parallel Computing. Theory and Practice

Sahni. Data Structures, Algorithms, and Applications in C++

Grama, Gupta, Karypis, Kumar. Introduction to Parallel Computing

Pacheco. An Introduction to Parallel Programming

Hwang, Dongarra, Fox. Distributed and Cloud Computing: From

Parallel Processing to the Internet of Things

Lin, Dyer. Data-Intensive Text Processing with MapReduce

Computer Organization:
Memory Hierarchy and Cache Memories

Basic Computer Organization

Main

Memory

I/O

Bus

I/OI/O

ALU Registers

Processor or CPU

Control

Inside the Processor…

◼ Control hardware: Hardware to manage
instruction execution

◼ ALU: Arithmetic and Logical Unit
(hardware to do arithmetic, logical
operations)

Inside the Processor…

◼ Control hardware: Hardware to manage
instruction execution

◼ ALU: Arithmetic and Logical Unit
(hardware to do arithmetic, logical
operations)

◼ Registers: small units of memory to hold
data/instructions temporarily during
execution

Hardware that

can remember

things

Inside the Processor…

◼ Control hardware: Hardware to manage
instruction execution

◼ ALU: Arithmetic and Logical Unit (hardware
to do arithmetic, logical operations)

◼ Registers: small units of memory to hold
data/instructions temporarily during
execution

◼ Two kinds of registers
1. Special purpose registers

2. General purpose registers

Hardware that

can remember

things

General Purpose Registers
◼ Available for use by programmer, possibly for

keeping frequently used data

◼ Why? Since there is a large speed disparity
between processor and main memory
❑ 2 GHz Processor: 0.5 nanosecond time scale

❑ Main memory: ~ 50-100 nsec time scale

◼ Machine instruction operands can come from
registers or from main memory

◼ But CPUs do not provide a large number of
general purpose registers

Problem: Slow Speed of Main Memory

◼ Main Memory is much slower (around 100x)
than the CPU and only a few CPU registers

– CPU will be waiting for data most of the time

◼ Solution: Cache Memory
❑ Fast memory that is part of CPU

❑ Design principle: Locality of Reference

❑ Temporal locality: least recently accessed memory
locations are least likely to be referenced in the near
future

❑ Spatial locality: neighbours of recently accessed
memory locations are most likely to be referenced in
the near future

Memory Address and Cache
Composition

• When a CPU refers to a data or

instruction, it gives a memory address

where the data/instruction is present

• The memory address is used to check if

the contents are in the cache.

• But how?

Memory Address and Cache
Composition

• Memory is divided into multiple blocks of

addresses or words

• A cache is decomposed into multiple sets

• Each set consists of multiple cache lines

• Each cache line consists of

• A valid bit

• A tag (set of bits)

• A data block of B bytes

Cache Lookup

• Memory address divided into tag, index, offset

• Index – to identify the set number

• Then, all the cache lines in the particular set are
searched

• The tag in the cache line checked with the tag
part of the memory address

• If valid bit is set and the tag matches, then
cache hit, else cache miss

• Offset used to fetch a particular word from the
data block in the cache line

• Depending on the number of sets and lines,
caches can be of different kinds

Cache Lookup and Access

Tag V D

=

AND Cache Hit

To CPU

Tag

18 bits

Index

9 bits

Offset

5 bits

Cache Directory Cache RAM

Direct-Mapped Caches

• Number of cache lines in a set = 1

• Refer figures 6.27-6.29 in book

• Disadvantages of direct-mapped caches?

• Conflict misses are more.

• Why?

• Problem is with a single cache line: A simple dot
product example.

1. Alternative to Direct Mapping

⚫ Set associative mapping

– e.g., 2 way set associative: Number of cache
lines = 2

– Idea: A given memory block can be present in
either of 2 lines of the cache

Set Associative Caches

• Number of cache lines, m, in a set greater than 1
• Called m-way associative cache

• Refer figures 6.32-6.34 in the book

Fully Associative Caches

• Only one set having all cache lines

• Refer figures 6.35-6.37 in the book

Cache and Programming

◼ Objective: Learn how to assess cache related
performance issues for important parts of our
programs

◼ Will look at some examples of programs

◼ Will consider only data cache, assuming
separate instruction and data caches

◼ Data cache configuration:
❑ Direct mapped 16 KB with 32B block size

Offset: 5bIndex: 9bTag : 18b

Example 1: Vector Sum Reduction

double A[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i];

• To do analysis, must view program close to
machine code form (to see loads/stores)

• Will assume that both loop index i and variable
sum are implemented in registers

• Will consider only accesses to array
elements

Example 1: Reference Sequence

◼ load A[0] load A[1] load A[2] … load
A[2047]

◼ Assume base address of A (i.e., address of
A[0]) is 0xA000

Example 1: Reference Sequence

◼ load A[0] load A[1] load A[2] … load
A[2047]

◼ Assume base address of A (i.e., address of
A[0]) is 0xA000, 1010 0000 0000 0000
❑ Cache index bits: 100000000 (value = 256)

◼ Size of an array element (double) = 8B
◼ So, 4 consecutive array elements fit into

each cache block (block size is 32B)
❑ A[0] – A[3] have index of 256

❑ A[4] – A[7] have index of 257 and so on

Example 1: Cache Misses and Hits
Cold start: we assume

that the cache is initially

empty

Hit ratio of our loop is

75% -- there are 1536

hits out of 2048 memory

accesses

This is entirely due to

spatial locality of

reference.

What if we precede the

loop by a loop that

accesses all relevant

memory blocks?

Hit ratio of our loop would

then be 100%. 25% due

to temporal locality and

75% due to spatial

locality

A[0] 0xA000 256 Miss Cold Start

A[1] 0xA008 256 Hit

A[2] 0xA010 256 Hit

A[3] 0xA018 256 Hit

A[4] 0xA020 257 Miss Cold Start

for (i=0; i<2048; i+=4) tmp=A[i];

for (i=0; i<2048, i++)

 sum = sum +A[i];

Example 1 with double A[4096]

Why should it make a difference?

◼ Consider the case where the loop is preceded by
another loop that accesses all array elements in
order

◼ The entire array no longer fits into the cache – cache
size: 16KB, array size: 32KB

◼ After execution of the previous loop, the second half
of the array will be in cache

◼ Analysis: our loop will see misses as we had
calculated

Example 1: Vector Sum Reduction

double A[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i];

• To estimate data cache hit rate

– we ignored accesses to sum, i

– assumed address of A[0] is 0xA000

– assumed only load/store instructions
reference memory operands (others take their
operands from registers)

Example 2: Vector Dot Product

double A[2048], B[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i] * B[i];

• Reference sequence:

• load A[0] load B[0] load A[1] load B[1] …

• Assume base addresses of A and B are 0xA000
and 0xE000

• Again, size of array elements is 8B so that 4
consecutive array elements fit into each cache
block

Example 2: Vector Dot Product

Base addresses 0xA000 and 0xE000

.....1010000000000000

Index: 256

.....1110000000000000

Index: 256

Example 2: Cache Hits and Misses

Conflict: A miss due to

conflict in cache block

requirements caused by

memory accesses of the

same program

Hit ratio for our program:

0%

Source of the problem: the

elements of arrays A and B

are accessed in order and

have the same cache index

Hit ratio would be better if

the base address of array A

was different from that of

array B

A[0] 0xA000 256 Miss Cold Start

B[0] 0xE000 256 Miss Conflict

A[1] 0xA008 256 Miss Conflict

B[1] 0xE008 256 Miss Conflict

A[2] 0xA010 256 Miss Conflict

Is this a contrived example?

double A[2048], B[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i] * B[i];

• How are variable addresses assigned?

• Start with some address, say 0xA000

• Assign addresses to variables in order of their
declarations

• Array A: starting at 0xA000

• Array B: starting at 0xA000+ 2048*8
= 0xE000

1010 0000 0000 0000

 100 0000 0000 0000

1110 0000 0000 0000

Example 2: Cache Hits and Misses

Conflict: A miss due to

conflict in cache block

requirements caused by

memory accesses of the

same program

Hit ratio for our program:

0%

Source of the problem: the

elements of arrays A and B

are accessed in order and

have the same cache index

Hit ratio would be better if

the base address of array A

was different from that of

array B

A[0] 0xA000 256 Miss Cold Start

B[0] 0xE000 256 Miss Conflict

A[1] 0xA008 256 Miss Conflict

B[1] 0xE008 256 Miss Conflict

A[2] 0xA010 256 Miss Conflict

Example 2 with Packing

• Assume that addresses are assigned as
variables are encountered in declarations

• Our objective: to shift base address of B
enough to make cache index of B[0] different
from that of A[0]
double A[2052], B[2048];

• Base address of B is now 0xE020
• 0xE020 is 1110 0000 0010 0000

❑ Cache index of B[0] is 257; B[0] and A[0] do not
conflict for the same cache block

◼ Hit ratio of our loop will rise to 75%

Example 2 with Array Merging

Alternatively, declare the arrays as

 struct {double A, B;} array[2048];

 for (i=0; i<2048, i++)

 sum += array[i].A*array[i].B;

Hit ratio: 75%

Example 3: DAXPY

◼ Double precision Y = aX + Y, where X and Y
are vectors and a is a scalar

double X[2048], Y[2048], a;

for (i=0; i<2048;i++) Y[i] = a*X[i]+Y[i];

◼ Reference sequence

❑ load X[0] load Y[0] store Y[0] load X[1] load
Y[1] store Y[1] …

◼ Hits and misses: Assuming that base
addresses of X and Y don’t conflict in cache,
hit ratio of 83.3%

Example 4: 2-d Matrix Sum

double A[1024][1024], B[1024][1024];

for (j=0;j<1024;j++)

for (i=0;i<1024;i++)

 B[i][j] = A[i][j] + B[i][j];

◼ Reference Sequence:

load A[0,0] load B[0,0] store B[0,0]

load A[1,0] load B[1,0] store B[1,0] …

◼ Question: In what order are the elements of
a multidimensional array stored in memory?

Storage of Multi-dimensional Arrays

◼ Row major order

❑ Example: for a 2-dimensional array, the
elements of the first row of the array are
followed by those of the 2nd row of the array,
then the 3rd row, and so on

❑ This is what is used in C

◼ Column major order

❑ A 2-dimensional array is stored column by
column in memory

❑ Used in FORTRAN

Example 4: 2-d Matrix Sum

double A[1024][1024], B[1024][1024];

for (j=0;j<1024;j++)

for (i=0;i<1024;i++)

 B[i][j] = A[i][j] + B[i][j];

◼ Reference Sequence:

load A[0,0] load B[0,0] store B[0,0]

load A[1,0] load B[1,0] store B[1,0] …

◼ Question: In what order are the elements of
a multidimensional array stored in memory?

Example 4: Hits and Misses
◼ Reference order and storage order for

our arrays are not the same

◼ Our loop will show no spatial locality

❑ Assume that packing has been done to
eliminate conflict misses due to base
addresses

❑ Miss(cold), Miss(cold), Hit for each array
element

❑ Hit ratio: 33.3%

❑ Question: Will A[0,1] be in the cache when
required later in the loop?

A

B

Example 4 with Loop Interchange

double A[1024][1024], B[1024][1024];

for (i=0;i<1024;i++)

for (j=0;j<1024;j++)

 B[i][j] = A[i][j] + B[i][j];

◼ Reference Sequence:

load A[0,0] load B[0,0] store B[0,0]

load A[0,1] load B[0,1] store B[0,1]

Hit ratio: 83.3%

Is Loop Interchange Always Safe?

for (i=1; i<2048; i++)

for (j=1; j<2048; j++)

A[i][j] = A[i+1][j-1] + A[i][j-1];

A[1,1] = A[2,0]+A[1,0]

A[2,1] = A[3,0]+A[2,0]

…

A[1,2] = A[2,1]+A[1,1]

Is Loop Interchange Always Safe?

A[i][j] = A[i+1][j-1] + A[i][j-1];

A[1,1] = A[2,0]+A[1,0]

A[2,1] = A[3,0]+A[2,0]

…

A[1,2] = A[2,1]+A[1,1]

for (i=1; i<2048; i++) / interchanged

for (j=1; j<2048; j++)

A[1,1] = A[2,0]+A[1,0]

A[1,2] = A[2,1]+A[1,1]

…

A[2,1] = A[3,0]+A[2,0]

NO!

Analysis of loop interchange

• Will the result change?
• Will the total operations remain the same?
• Will the number of times X and Y are read

remain the same?

• What about performance?

• Assumptions:
• Elements are double elements – 8 bytes
• Cache has 32-byte block size (B=32)

3 loops (i,j,k) - Can come up with 6
different versions
ijk variant

for(i=0; i<N; i++)

 for(j=0; j<N; j++)

 sum=0.0;

 for(k=0;k<N; k++)

 sum += A[i][k]*B[k][j]

 C[i][j] = sum;

• Loads per iteration – 2

• Stores per iteration – 0

• A misses per iteration – 0.25 (stride?)

• B misses per iteration – 1.00 (stride)

• C misses per iteration – 0.00

• Total misses per iteration – 1.25

jik variant

for(j=0; j<N; j++)

 for(i=0; i<N; i++)

 sum=0.0;

 for(k=0;k<N; k++)

 sum += A[i][k]*B[k][j]

 C[j][j] = sum;

• Loads per iteration – 2

• Stores per iteration – 0

• A misses per iteration – 0.25

• B misses per iteration – 1.00

• C misses per iteration – 0.00

• Total misses per iteration – 1.25

• Same as ijk variant

jki variant

for(j=0; j<N; j++)

 for(k=0; k<N; k++)

 r=B[k][j];

 for(i=0;i<N; i++)

 C[i][j] += A[i][k]*r

• Loads per iteration – 2

• Stores per iteration – 1

• A misses per iteration – 1.00 (stride?)

• B misses per iteration – 0.00

• C misses per iteration – 1.00 (stride?)

• Total misses per iteration – 2.00

kji variant

for(k=0; k<N; k++)

 for(j=0; j<N; j++)

 r=B[k][j];

 for(i=0;i<N; i++)

 C[i][j] += A[i][k]*r

• Loads per iteration – 2

• Stores per iteration – 1

• A misses per iteration – 1.00

• B misses per iteration – 0.00

• C misses per iteration – 1.00

• Total misses per iteration – 2.00

• Same as jki variant

kij variant

for(k=0; k<N; k++)

 for(i=0; i<N; i++)

 r=A[i][k];

 for(j=0;j<N; j++)

 C[i][j] += r*B[k][j]

• Loads per iteration – 2

• Stores per iteration – 1

• A misses per iteration – 0.00

• B misses per iteration – 0.25 (stride?)

• C misses per iteration – 0.25 (stride?)

• Total misses per iteration – 0.50

ikj variant

for(i=0; i<N; i++)

 for(k=0; k<N; k++)

 r=A[i][k];

 for(j=0;j<N; j++)

 C[i][j] += r*B[k][j]

• Loads per iteration – 2

• Stores per iteration – 1

• A misses per iteration – 0.00

• B misses per iteration – 0.25 (stride?)

• C misses per iteration – 0.25 (stride?)

• Total misses per iteration – 0.50

• Same as kij variant

Summary

Finding the best performance involves trade-
off between
Cache performance

Number of memory accesses

How to improve the cache hits and
performance further?
Loop unrolling and blocking

Vector Operations

Example: Vector Sum

double A[2048], B[2048], C[2048];

for (i=0; i<2048, i++) C[i] = A[i] + B[i];

• What if a CPU has 4 adders?

• It can be designed to support an
instruction to do 4 iterations of the Vector
Sum loop at a time

VADD v1_A[0:3], v2_B[0:3], v3_C[0:3]

• Called a vector instruction

Multimedia Extensions

• Hardware support for operations on “short
vectors” is provided in existing
microprocessors

• Example: 256 bit registers, each split into
4x64b (or 8x32b)

– Maximum vector length

• Example: Intel “x86” processors

– SSE (Streaming SIMD Extension)

– AVX (Advanced Vector Extension)

Vectorization of Loops

We will use a generic notation

Instead of

VADD C[0:3], A[0:3], B[0:3]

C[0:3] = A[0:3] + B[0:3]

An example of vectorization
⚫ Given maximum vector length, VL

 for (i=0; i < N; i++)

 A[i] = A[i] + B[i];

for (i=0; i < N; i+=VL)

 A[i:i+VL-1] = A[i:i+VL-1] + B[i:i+VL-1];

What if N is not divisible by VL?

for (i=0; i < (N – N%VL); i+=VL)

 A[i:i+VL-1] = A[i:i+VL-1] + B[i:i+VL-1];

for (; i<N; i++) A[i] = A[i] + B[i];

⚫ This technique is called Stripmining

Possible complications

⚫ Dependences between statements within
the loop

Example 1

for (i=0; i < N; i++) {

 A[i] = B[i] + C[i];

 D[i] = (A[i] + A[i+1])/2;

 }

for (i=0; i < (N – N%VL); i+=VL){

 A[i:i+VL-1] = B[i:i+VL-1] + C[i:i+VL-1];

 D[i: ... will get wrong value of A[i+1], etc

Example 1

for (i=0; i < N; i++) {

 A[i] = B[i] + C[i];

 D[i] = (A[i] + A[i+1])/2;

 }

for (i=0; i < N; i++) {

 temp[i] = A[i+1];

 A[i] = B[i] + C[i];

 D[i] = (A[i] + temp[i])/2;

}

⚫ This loop transformation, through copying of data,
is called Node Splitting

Example 2

for (i=0; i < N; i++) {

 X = A[i] + 1;

 B[i] = X + C[i];

 }

for (i=0; i < N; i++) {

 temp[i] = A[i] + 1;

 B[i] = temp[i] + C[i];

}

⚫ Scalar expansion

Example 3

for (i=0; i < N; i++) {

 A[i] = B[i];

 C[i] = C[i-1] + 1;

 }

for (i=0; i < N; i++) A[i] = B[i];

for (i=0; i<N; i++) C[i] = C[i-1] +1;

⚫ Loop fission

Example 4

for (j=1; i < N; j++)

 for (i=2; i < N; i++)

 A[i,j] = A[i-1, j] + B[i];

for (i=2; i < N; i++)

 for (j=1; j<N; j++)

 A[i,j] = A[i-1,j] + B[i];

⚫ Loop interchange

Data Representation

Integer Data

◼ Signed vs Unsigned integer

◼ Representing a signed integer

❑ 2s complement representation

The n bit quantity

represents the signed integer value

−𝑥𝑛−12
𝑛−1 +෍

i=0

𝑛−2

𝑥𝑖2
𝑖

least significant bit

𝑥𝑛−1𝑥𝑛−2. . . 𝑥2𝑥1𝑥0

Example: 2s complement

◼ The signed integer -1410 (decimal) is
represented as

⚫ 10010 in 5 bits (i.e., -16 + 2)

⚫ 110010 in 6 bits (i.e., -32 + 16 + 2)

⚫ 111...1110010 in 32 bits

Aside: Hexadecimal (base 16)

⚫ Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 0001 0010 ... 1101 1110 1111

⚫ Binary sequences can be written more
compactly in hexadecimal
1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Example: 2s complement

⚫ The signed integer -1410 (decimal) is
represented as

10010 in 5 bits (-16 + 2)

110010 in 6 bits (-32 + 16 + 2)

111...1110010 in 32 bits

1111 1111 1111 ... 0010

FFFFFFF2

Usually written as 0xFFFFFFF2

Real Data

• How to represent real data?

• Fixed point representation
• (sign bit) (Integer part – 23 bits)(Fraction – 8 bits)

• Disadvantage?
• The range of numbers not adequate for

many practical problems
• Hence, floating point representation

Normalized floating point
numbers
• Consists of two parts
• Mantissa with sign

• Exponent with sign

• Floating point represented as
• (sign) x mantissa x 2+/-exponent

• Mantissa (23 bits) – a binary fraction with non-zero leading

bit

• Exponent (8 bits) – 1 bit used for sign of the exponent,

other 7 bits used for the exponent magnitude

• Range of exponent?: -127 to +127

• Disadvantage: Two representation for 0
exponent: -0 and +0

Excess representation or bias
format

• Exponent has no sign bit
• 8 bits of exponent divided as
• (0-127) and (128-255)

• (0-126): negative

• 127: represents 0

• (128-255): positive

• Called as bias 127 for exponent

• Given an exponent, exp, value of
exponent will be (exp – 127)

• Largest and smallest floating point
numbers that can be represented?

Example

Representing 52.21875 in 32-bit floating point format.

Step 1 – Represent using binary: 110100.00111

Step 2 – Normalized representation: 1.1010000111 x 25

Exponent of 5 represented as (127+5=132) = 10000100

Floating point represented as (sign)(exponent-8
bits)(mantissa – 23 bits)

0 10000100 10100001110000000000000

Note that the leading 1 in the normalized representation
is ignored in the mantissa.

IEEE 754 Floating Point
Standard

The scheme that is just described is IEEE 754
floating point standard

Mantessa is called significand as per the
standard

The standard uses a normalized significand –
most significant bit is always 1

Thus significand is 24 bits long – 1 is implied +
23 explicit

Floating point number represented by:
(-1)s x (1.f)2 x 2(exponent-127)

Special Cases (B&O 2.4.2)

⚫ Representation of 0: All 31 (exponent and
mantissa/significand/fraction) bits are 0’s

⚫ +0: 0 for the sign bit

⚫ -0: 1 for the sign bit

⚫ All 0’s for the exponents is not allowed to be
used for any other number

⚫ Infinity: All 1’s in the exponent and all 0’s in the
mantissa

⚫ +infinity: 0 for the sign bit

⚫ -infinity: 1 for the sign bit

Largest and Smallest Positive
Numbers?

Rounding (B&O 2.4.4)
⚫ When mathematical operations are
performed with two floating point numbers,
the significand of the result may exceed 23
bits after the adjustment of the exponent.

⚫ Rounding:

⚫ Rounding upwards:

⚫ e.g., significand: 0.110…01,

⚫ overflow: 1,

⚫ significand after rounding: 0.110….10,
i.e., add 1 to LSB.

⚫ Rounding downwards: extra bits ignored

Summary (from notes by Prof.
Rajaraman)

Summary (from notes by Prof.
Rajaraman)

IEEE-754 Standard for 64-bit
floating point numbers

⚫ s: 1 bit

⚫ e: 11 bits

⚫ f: 52 bits

◼ Read sections in Bryant and O’Hallaron on
the topics we have discussed in class

⚫ Bryant, O’Hallaron. Computer Systems – A Programmer’s

Perspective, Pearson Education Limited 2016, 3rd Global Edition

◼ Try to solve some of the problems

Reading

	Slide 1: Class Pointers
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Memory Address and Cache Composition
	Slide 14: Memory Address and Cache Composition
	Slide 15: Cache Lookup
	Slide 16
	Slide 17: Direct-Mapped Caches
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Set Associative Caches
	Slide 23: Fully Associative Caches
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Analysis of loop interchange
	Slide 51: 3 loops (i,j,k) - Can come up with 6 different versions ijk variant
	Slide 52: jik variant
	Slide 53: jki variant
	Slide 54: kji variant
	Slide 55: kij variant
	Slide 56: ikj variant
	Slide 57: Summary
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Vector Operations
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Real Data
	Slide 81: Normalized floating point numbers
	Slide 82: Excess representation or bias format
	Slide 83: Example
	Slide 84: IEEE 754 Floating Point Standard
	Slide 85
	Slide 86: Largest and Smallest Positive Numbers?
	Slide 87
	Slide 88: Summary (from notes by Prof. Rajaraman)
	Slide 89: Summary (from notes by Prof. Rajaraman)
	Slide 90
	Slide 91

