Class Pointers

Code for joining Microsoft Teams for the class:

Form to be filled

Syllabus

Architecture: computer organization, single-core optimizations including exploiting cache hierarchy and vectorization, parallel architectures including multi-core, shared memory, distributed memory and GPU architectures

Algorithms and Data Structures: algorithmic analysis, overview of trees and graphs, algorithmic strategies, concurrent data structures

Parallelization Principles: motivation, challenges, metrics, parallelization steps, data distribution, PRAM model

Parallel Programming Models and Languages: OpenMP, MPI, CUDA;

Distributed Computing: Commodity cluster and cloud computing; Distributed Programming: MapReduce/Hadoop model.

Syllabus

Architecture: computer organization, single-core optimizations including exploiting cache hierarchy and vectorization, parallel architectures including multi-core, shared memory, distributed memory and GPU architectures

Algorithms and Data Structures: algorithmic analysis, overview of trees and graphs, algorithmic strategies, concurrent data structures

Parallelization Principles: motivation, challenges, metrics, parallelization steps, data distribution, PRAM model

Parallel Programming Models and Languages: OpenMP, MPI, CUDA;

Distributed Computing: Commodity cluster and cloud computing;
Distributed Programming: MapReduce/Hadoop model.

Reference

Bryant, O'Hallaron. Computer Systems – A Programmer's Perspective Culler, Singh. Parallel Computing Architecture. A Hardware/Software Approach

Quinn. Parallel Computing. Theory and Practice

Sahni. Data Structures, Algorithms, and Applications in C++

Grama, Gupta, Karypis, Kumar. Introduction to Parallel Computing

Pacheco. An Introduction to Parallel Programming

Hwang, Dongarra, Fox. Distributed and Cloud Computing: From Parallel Processing to the Internet of Things

Lin, Dyer. Data-Intensive Text Processing with MapReduce

Reference

Bryant, O'Hallaron. Computer Systems – A Programmer's Perspective, Pearson Education Limited 2016, 3rd Global Edition

Culler, Singh. Parallel Computing Architecture. A Hardware/Software

Approach

Quinn. Parallel Computing. Theory and Practice

Sahni. Data Structures, Algorithms, and Applications in C++

Grama, Gupta, Karypis, Kumar. Introduction to Parallel Computing

Pacheco. An Introduction to Parallel Programming

Hwang, Dongarra, Fox. Distributed and Cloud Computing: From Parallel Processing to the Internet of Things

Lin, Dyer. Data-Intensive Text Processing with MapReduce

Computer Organization: Memory Hierarchy and Cache Memories

Basic Computer Organization

Inside the Processor...

- Control hardware: Hardware to manage instruction execution
- ALU: Arithmetic and Logical Unit (hardware to do arithmetic, logical operations)

Inside the Processor...

- Control hardware: Hardware to manage instruction execution
- ALU: Arithmetic and Logical Unit (hardware to do arithmetic, logical operations)
- Registers: small units of memory to hold data/instructions temporarily during execution

Hardware that can remember things

Inside the Processor...

- Control hardware: Hardware to manage instruction execution
- ALU: Arithmetic and Logical Unit (hardware to do arithmetic, logical operations)
- Registers: small units of memory to hold data/instructions temporarily during execution
- Two kinds of registers
 - Special purpose registers
 - 2. General purpose registers

Hardware that can remember things

General Purpose Registers

- Available for use by programmer, possibly for keeping frequently used data
- Why? Since there is a large speed disparity between processor and main memory
 - □ 2 GHz Processor: 0.5 nanosecond time scale
 - Main memory: ~ 50-100 nsec time scale
- Machine instruction operands can come from registers or from main memory
- But CPUs do not provide a large number of general purpose registers

Problem: Slow Speed of Main Memory

- Main Memory is much slower (around 100x)
 than the CPU and only a few CPU registers
 - CPU will be waiting for data most of the time
- Solution: Cache Memory
 - Fast memory that is part of CPU
 - Design principle: Locality of Reference
 - Temporal locality: least recently accessed memory locations are least likely to be referenced in the near future
 - Spatial locality: neighbours of recently accessed memory locations are most likely to be referenced in the near future

Memory Address and Cache Composition

 When a CPU refers to a data or instruction, it gives a memory address where the data/instruction is present

 The memory address is used to check if the contents are in the cache.

But how?

Memory Address and Cache Composition

- Memory is divided into multiple blocks of addresses or words
- A cache is decomposed into multiple sets
- Each set consists of multiple cache lines
- Each cache line consists of
- A valid bit
- A tag (set of bits)
- A data block of B bytes

Cache Lookup

- Memory address divided into tag, index, offset
- Index to identify the set number
- Then, all the cache lines in the particular set are searched
- The tag in the cache line checked with the tag part of the memory address
- If valid bit is set and the tag matches, then cache hit, else cache miss
- Offset used to fetch a particular word from the data block in the cache line
- Depending on the number of sets and lines, caches can be of different kinds

Cache Lookup and Access

Direct-Mapped Caches

- Number of cache lines in a set = 1
- Refer figures 6.27-6.29 in book
- Disadvantages of direct-mapped caches?
- Conflict misses are more.
- Why?
- Problem is with a single cache line: A simple dot product example.

1. Alternative to Direct Mapping

- Set associative mapping
 - e.g., 2 way set associative: Number of cachelines = 2
 - Idea: A given memory block can be present in either of 2 lines of the cache

Set Associative Cache

A memory block can to be loaded into any cache block within a unique set of cache blocks

- Assume 16KB cache, 32B block size
 - 16KB/32B = 512 blocks
 - 512/4 = 128 sets of blocks
 log₂ 128 = 7 set index bits
- $log_2 32 = 5$ offset bits

	_		Z						-	Ŧ	_		
		t			Т	ag					S	et	
						⊷ _o hi					In	ıde	X

e.g., 2-way Set Associative Cache Set Index Offset Tag 8 bits 5 bits 19 bits Tag VD OR Data Cache Hit Tag VD

Set Associative Caches

- Number of cache lines, m, in a set greater than 1
- Called m-way associative cache
- Refer figures 6.32-6.34 in the book

Fully Associative Caches

- Only one set having all cache lines
- Refer figures 6.35-6.37 in the book

Cache and Programming

- Objective: Learn how to assess cache related performance issues for important parts of our programs
- Will look at some examples of programs
- Will consider only data cache, assuming separate instruction and data caches
- Data cache configuration:
 - Direct mapped 16 KB with 32B block size

Tag : 18b Index: 9b Offset: 5b

Example 1: Vector Sum Reduction

```
double A[2048], sum=0.0;
for (i=0; i<2048, i++) sum = sum +A[i];
```

- To do analysis, must view program close to machine code form (to see loads/stores)
 - Will assume that both loop index i and variable sum are implemented in registers
- Will consider only accesses to array elements

Example 1: Reference Sequence

- load A[0] load A[1] load A[2] ... load A[2047]
- Assume base address of A (i.e., address of A[0]) is 0xA000

Example 1: Reference Sequence

- load A[0] load A[1] load A[2] ... load A[2047]
- Assume base address of A (i.e., address of A[0]) is 0xA000, 1010 0000 0000 0000
 Cache index bits: 100000000 (value = 256)
- Size of an array element (double) = 8B
- So, 4 consecutive array elements fit into each cache block (block size is 32B)
 - A[0] A[3] have index of 256
 - \Box A[4] A[7] have index of 257 and so on

Example 1: Cache Misses and Hits

A[0]	0xA000	256	Miss	Cold Start
A[1]	0xA008	256	Hit	
A[2]	0xA010	256	Hit	
A[3]	0xA018	256	Hit	
A[4]	0xA020	257	Miss	Cold Start
fc	or (i=0; i< or (i=0; i< sum = sui	2048,	i++)	tmp=A[i];

Cold start: we assume that the cache is initially empty

Hit ratio of our loop is 75% -- there are 1536 hits out of 2048 memory accesses

This is entirely due to spatial locality of reference.

What if we precede the loop by a loop that accesses all relevant memory blocks?

Hit ratio of our loop would then be 100%. 25% due to temporal locality and 75% due to spatial locality

Example 1 with double A[4096]

Why should it make a difference?

- Consider the case where the loop is preceded by another loop that accesses all array elements in order
- The entire array no longer fits into the cache cache size: 16KB, array size: 32KB
- After execution of the previous loop, the second half of the array will be in cache
- Analysis: our loop will see misses as we had calculated

Example 1: Vector Sum Reduction

```
double A[2048], sum=0.0;
for (i=0; i<2048, i++) sum = sum +A[i];
```

- To estimate data cache hit rate
 - we ignored accesses to sum, i
 - assumed address of A[0] is 0xA000
 - assumed only load/store instructions
 reference memory operands (others take their operands from registers)

Example 2: Vector Dot Product

```
double A[2048], B[2048], sum=0.0;
for (i=0; i<2048, i++) sum = sum +A[i] * B[i];
```

- Reference sequence:
 - load A[0] load B[0] load A[1] load B[1] ...
- Assume base addresses of A and B are 0xA000 and 0xE000
- Again, size of array elements is 8B so that 4 consecutive array elements fit into each cache block

Example 2: Vector Dot Product

Base addresses 0xA000 and 0xE000

....101000000000000

Index: 256

.....1110000000000000

Index: 256

Example 2: Cache Hits and Misses

A[0] 0xA000	256	Miss	Cold Start	Conflict: A miss due to conflict in cache block requirements caused by
B[0] 0xE000	256	Miss	Conflict	memory accesses of the same program
A[1] 0xA008	256	Miss	Conflict	Hit ratio for our program:
B[1] 0xE008	256	Miss	Conflict	Source of the problem: the elements of arrays A and B
A[2] 0xA010	256	Miss	Conflict	are accessed in order and have the same cache index
				Hit ratio would be better if the base address of array A was different from that of array B

Is this a contrived example?

```
double A[2048], B[2048], sum=0.0;
for (i=0; i<2048, i++) sum = sum +A[i] * B[i];
```

- How are variable addresses assigned?
- Start with some address, say 0xA000
- Assign addresses to variables in order of their declarations
- Array A: starting at 0xA000

 100 0000 0000 0000
 1110 0000 0000 0000
- Array B: starting at 0xA000+ 2048*8
 = 0xE000

Example 2: Cache Hits and Misses

A[0] 0xA000	256	Miss	Cold Start	Conflict: A miss due to conflict in cache block requirements caused by
B[0] 0xE000	256	Miss	Conflict	memory accesses of the same program
A[1] 0xA008	256	Miss	Conflict	Hit ratio for our program:
B[1] 0xE008	256	Miss	Conflict	Source of the problem: the elements of arrays A and B
A[2] 0xA010	256	Miss	Conflict	are accessed in order and have the same cache index
				Hit ratio would be better if the base address of array A was different from that of array B

Example 2 with Packing

- Assume that addresses are assigned as variables are encountered in declarations
- Our objective: to shift base address of B enough to make cache index of B[0] different from that of A[0] double A[2052], B[2048];
- Base address of B is now 0xE020
 - 0xE020 is 1110 0000 0010 0000
 - Cache index of B[0] is 257; B[0] and A[0] do not conflict for the same cache block
- Hit ratio of our loop will rise to 75%

Example 2 with Array Merging

Alternatively, declare the arrays as

```
struct {double A, B;} array[2048];
for (i=0; i<2048, i++)
sum += array[i].A*array[i].B;
```

Hit ratio: 75%

Example 3: DAXPY

- Double precision Y = aX + Y, where X and Y are vectors and a is a scalar double X[2048], Y[2048], a; for (i=0; i<2048;i++) Y[i] = a*X[i]+Y[i];</p>
- Reference sequence
 - load X[0] load Y[0] store Y[0] load X[1] load Y[1] store Y[1] ...
- Hits and misses: Assuming that base addresses of X and Y don't conflict in cache, hit ratio of 83.3%

Example 4: 2-d Matrix Sum

```
double A[1024][1024], B[1024][1024];
for (j=0;j<1024;j++)
for (i=0;i<1024;i++)
B[i][j] = A[i][j] + B[i][j];
```

- Reference Sequence:load A[0,0] load B[0,0] store B[0,0]load A[1,0] load B[1,0] store B[1,0] ...
- Question: In what order are the elements of a multidimensional array stored in memory?

Storage of Multi-dimensional Arrays

Row major order

- Example: for a 2-dimensional array, the elements of the first row of the array are followed by those of the 2nd row of the array, then the 3rd row, and so on
- □ This is what is used in C
- Column major order
 - A 2-dimensional array is stored column by column in memory
 - Used in FORTRAN

Example 4: 2-d Matrix Sum

```
double A[1024][1024], B[1024][1024];
for (j=0;j<1024;j++)
for (i=0;i<1024;i++)
B[i][j] = A[i][j] + B[i][j];
```

- Reference Sequence:load A[0,0] load B[0,0] store B[0,0]load A[1,0] load B[1,0] store B[1,0] ...
- Question: In what order are the elements of a multidimensional array stored in memory?

Example 4: Hits and Misses

- Reference order and storage order for our arrays are not the same
- Our loop will show no spatial locality
 - Assume that packing has been done to eliminate conflict misses due to base addresses
 - Miss(cold), Miss(cold), Hit for each array element
 - Hit ratio: 33.3%
 - Question: Will A[0,1] be in the cache when required later in the loop?

Example 4 with Loop Interchange

```
double A[1024][1024], B[1024][1024];
for (i=0;i<1024;i++)
for (j=0;j<1024;j++)
B[i][j] = A[i][j] + B[i][j];
```

Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]
load A[0,1] load B[0,1] store B[0,1]
Hit ratio: 83.3%

Is Loop Interchange Always Safe?

```
for (j=1; j<2048; j++)
for (i=1; i<2048; i++)
A[i][j] = A[i+1][j-1] + A[i][j-1];
```

$$A[1,1] = A[2,0]+A[1,0]$$

 $A[2,1] = A[3,0]+A[2,0]$

• • •

$$A[1,2] = A[2,1] + A[1,1]$$

Is Loop Interchange Always Safe?

```
for (i=1; i<2048; i++) / interchanged
for (j=1; j<2048; j++)
A[i][j] = A[i+1][j-1] + A[i][j-1]; NO!
```

$$A[1,1] = A[2,0]+A[1,0]$$
 $A[1,1] = A[2,0]+A[1,0]$
 $A[2,1] = A[3,0]+A[2,0]$ $A[1,2] = A[2,1]+A[1,1]$

$$A[1,2] = A[2,1] + A[1,1]$$
 $A[2,1] = A[3,0] + A[2,0]$

```
Example 5: Matrix Multiplication double X[N][N], Y[N][N], Z[N][N]; for (i=0; i<N; i++) for (j=0; j<N; j++) for (k=0; k<N; k++)
```

X[i][j] += Y[i][k] * Z[k][j];

```
Example 5: Matrix Multiplication
double X[N][N], Y[N][N], Z[N][N], tmp;
for (i=0; i< N; i++)
  for (j=0; j<N; j++){
    tmp = 0;
    for (k=0; k<N; k++)
       tmp += Y[i][k] * Z[k][j];
   X[i][j] = tmp; / Dot product inner loop
  } Y[0,0], Z[0,0], Y[0,1], Z[1,0], Y[0,2], Z[2,0] ... X[0,0],
     Y[1,0], Z[0,1], Y[1,1], Z[1,1], Y[1,2], Z[2,1] ... X[0,1],
    Y[2,0], Z[0,2], Y[2,1], Z[1,2], Y[2,2], Z[2,2] ... X[0,2],
```

```
Example 5: Matrix Multiplication
double X[N][N], Y[N][N], Z[N][N], tmp;
for (i=0; i< N; i++)
  for (j=0; j<N; j++){
    tmp = 0;
    for (k=0; k<N; k++)
       tmp += Y[i][k] * Z[k][j];
   X[i][j] = tmp; / Dot product inner loop
   } Y[0,0], Z[0,0], Y[0,1], Z[1,0], Y[0,2], Z[2,0] ... X[0,0],
     Y[1,0], Z[0,1], Y[1,1], Z[1,1], Y[1,2], Z[2,1] ... X[0,1],
    Y[2,0], Z[0,2], Y[2,1], Z[1,2], Y[2,2], Z[2,2] ... X[0,2],
```

Matmul: Loop Interchange

- We can interchange the 3 loops
- Example: Interchange i and k loops make the loops "kji" instead of "ijk"

```
double X[N][N], Y[N][N], Z[N][N];
```

$$X[i][j] += Y[i][k] * Z[k][j];$$

For the innermost loop: Z[k][j] can be loaded into register once for each (k,j), reducing the number of memory references

Analysis of loop interchange

- Will the result change?
- Will the total operations remain the same?
- Will the number of times X and Y are read remain the same?
- What about performance?
- Assumptions:
- Elements are double elements 8 bytes
- Cache has 32-byte block size (B=32)

3 loops (i,j,k) - Can come up with 6 different versions ijk variant

```
for(i=0; i<N; i++)
for(j=0; j<N; j++)
sum=0.0;
for(k=0;k<N; k++)
sum += A[i][k]*B[k][j]
C[i][j] = sum;
```

- Loads per iteration 2
- Stores per iteration 0
- A misses per iteration 0.25 (stride?)
- B misses per iteration 1.00 (stride)
- C misses per iteration 0.00
- Total misses per iteration 1.25

jik variant

```
for(j=0; j<N; j++)

for(i=0; i<N; i++)

sum=0.0;

for(k=0;k<N; k++)

sum += A[i][k]*B[k][j]

C[j][j] = sum;
```

- Loads per iteration 2
- Stores per iteration 0
- A misses per iteration 0.25
- B misses per iteration 1.00
- C misses per iteration 0.00
- Total misses per iteration 1.25
- Same as ijk variant

jki variant

```
for(j=0; j<N; j++)
for(k=0; k<N; k++)
r=B[k][j];
for(i=0;i<N; i++)
C[i][j] += A[i][k]*r
```

- Loads per iteration 2
- Stores per iteration 1
- A misses per iteration 1.00 (stride?)
- B misses per iteration 0.00
- C misses per iteration 1.00 (stride?)
- Total misses per iteration 2.00

kji variant

```
for(k=0; k<N; k++)
for(j=0; j<N; j++)
r=B[k][j];
for(i=0;i<N; i++)
C[i][j] += A[i][k]*r
```

- Loads per iteration 2
- Stores per iteration 1
- A misses per iteration 1.00
- B misses per iteration 0.00
- C misses per iteration 1.00
- Total misses per iteration 2.00
- Same as jki variant

kij variant

```
for(k=0; k<N; k++)
for(i=0; i<N; i++)
r=A[i][k];
for(j=0;j<N; j++)
C[i][j] += r*B[k][j]
```

- Loads per iteration 2
- Stores per iteration 1
- A misses per iteration 0.00
- B misses per iteration 0.25 (stride?)
- C misses per iteration 0.25 (stride?)
- Total misses per iteration 0.50

ikj variant

```
for(i=0; i<N; i++)
for(k=0; k<N; k++)
r=A[i][k];
for(j=0;j<N; j++)
C[i][j] += r*B[k][j]
```

- Loads per iteration 2
- Stores per iteration 1
- A misses per iteration 0.00
- B misses per iteration 0.25 (stride?)
- C misses per iteration 0.25 (stride?)
- Total misses per iteration 0.50
- Same as kij variant

Summary

Finding the best performance involves tradeoff between

Cache performance
Number of memory accesses

How to improve the cache hits and performance further?

Loop unrolling and blocking

```
"Loop Unrolling"
```

```
double X[10];
for (i=0; i<10; i++)
X[i] = X[i] - 1;
```

Unrolled once:

Fully unrolled:

$$X[0] = X[0] - 1;$$

 $X[1] = X[1] - 1;$

$$X[2] = X[2] - 1;$$

$$X[9] = X[9] - 1;$$

Unrolling Matrix Multiplication double X[N][N], Y[N][N], Z[N][N]; for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

Let us unroll the k loop once

Matmul: k loop unrolled double X[N][N], Y[N][N], Z[N][N]; for (i=0; i<N; i++) for (j=0; j<N; j++) for (k=0; k<N; k+=2) /* k loop unrolled once X[i][j] += Y[i][k] * Z[k][j] + Y[i][k+1] * Z[k+1][j];

Now, let us also unroll the j loop once

Matmul: k and j loops unrolled

```
double X[N][N], Y[N][N], Z[N][N];
for (i=0; i<N; i++)
  for (j=0; j<N; j+=2)
     for (k=0; k<N; k+=2){ /* j and k loops unrolled once
       X[i][j] += Y[i][k] * Z[k][j]+Y[i][k+1] * Z[k+1][j];
       X[i][[j+1]+=Y[i][k] * Z[k][j+1]+Y[i][k+1] * Z[k+1][j+1];
```

Exploits spatial locality for arrays Y, Z

Exploits temporal locality for array Y

Provides a programming idea for enhancing locality


```
Matmul: "Blocking" or "Tiling"
double X[N][N], Y[N][N], Z[N][N];
for (jj=0; jj<N; jj+=B)
  for (kk=0; kk<N; kk+=B)
   for (i=0; i< N, i++)
     for (j=jj; j < min(jj+B, N); j++){
       sum = 0.0;
       for (k=kk; k < min(kk+B, N), k++)
        sum += Y[i][k] * Z[k][j];
        X[i][j] += sum;
     } /* for j */
   } /* for i */
                                   101
```


Example: Vector Sum

```
double A[2048], B[2048], C[2048];
for (i=0; i<2048, i++) C[i] = A[i] + B[i];
```

- What if a CPU has 4 adders?
- It can be designed to support an instruction to do 4 iterations of the Vector Sum loop at a time

VADD v1_A[0:3], v2_B[0:3], v3_C[0:3]

Called a vector instruction

Multimedia Extensions

- Hardware support for operations on "short vectors" is provided in existing microprocessors
- Example: 256 bit registers, each split into 4x64b (or 8x32b)
 - Maximum vector length
- Example: Intel "x86" processors
 - SSE (Streaming SIMD Extension)
 - AVX (Advanced Vector Extension)

Vectorization of Loops

We will use a generic notation Instead of

VADD C[0:3], A[0:3], B[0:3]

C[0:3] = A[0:3] + B[0:3]

An example of vectorization

 Given maximum vector length, VL for (i=0; i < N; i++)A[i] = A[i] + B[i];for (i=0; i < N; i+=VL)A[i:i+VL-1] = A[i:i+VL-1] + B[i:i+VL-1];What if N is not divisible by VL? for (i=0; i < (N - N%VL); i+=VL)A[i:i+VL-1] = A[i:i+VL-1] + B[i:i+VL-1];for (; i < N; i++) A[i] = A[i] + B[i];

This technique is called Stripmining

Possible complications

 Dependences between statements within the loop

Example 1

```
for (i=0; i < N; i++) {
   A[i] = B[i] + C[i];
    D[i] = (A[i] + A[i+1])/2;
for (i=0; i < (N - N\%VL); i+=VL){
   A[i:i+VL-1] = B[i:i+VL-1] + C[i:i+VL-1];
   D[i: ... will get wrong value of A[i+1], etc
```

Example 1

```
for (i=0; i < N; i++) {
   A[i] = B[i] + C[i];
   D[i] = (A[i] + A[i+1])/2;
for (i=0; i < N; i++) {
   temp[i] = A[i+1];
   A[i] = B[i] + C[i];
   D[i] = (A[i] + temp[i])/2;
```

This loop transformation, through copying of data, is called Node Splitting

Example 2

```
for (i=0; i < N; i++) {
   X = A[i] + 1;
   B[i] = X + C[i];
for (i=0; i < N; i++) {
   temp[i] = A[i] + 1;
   B[i] = temp[i] + C[i];
  Scalar expansion
```

Example 3

```
for (i=0; i < N; i++) {
   A[i] = B[i];
   C[i] = C[i-1] + 1;
for (i=0; i < N; i++) A[i] = B[i];
for (i=0; i<N; i++) C[i] = C[i-1] +1;

    Loop fission
```

Example 4

```
for (j=1; i < N; j++)
   for (i=2; i < N; i++)
       A[i,j] = A[i-1, j] + B[i];
for (i=2; i < N; i++)
   for (j=1; j<N; j++)
      A[i,j] = A[i-1,j] + B[i];

    Loop interchange
```


Integer Data

- Signed vs Unsigned integer
- Representing a signed integer
 - 2s complement representation

The *n* bit quantity

 $x_{n-1}x_{n-2}\dots x_2x_1x_0$

least significant bit

represents the signed integer value

$$-x_{n-1}2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

Example: 2s complement

- The signed integer -14₁₀ (decimal) is represented as
 - 10010 in 5 bits (i.e., -16 + 2)
 - 110010 in 6 bits (i.e., -32 + 16 + 2)
 - 111...1110010 in 32 bits

Aside: Hexadecimal (base 16)

- Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0000 0001 0010 ... 1101 1110 1111
- Binary sequences can be written more compactly in hexadecimal

```
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
```

1111

Example: 2s complement

```
    The signed integer -14<sub>10</sub> (decimal) is

 represented as
 10010 in 5 bits (-16 + 2)
 110010 in 6 bits (-32 + 16 + 2)
 111...1110010 in 32 bits
 1111 1111 1111 ... 0010
 FFFFFFF2
 Usually written as 0xFFFFFFF2
```

Real Data

- How to represent real data?
- Fixed point representation
- (sign bit) (Integer part 23 bits)(Fraction 8 bits)
- Disadvantage?
- The range of numbers not adequate for many practical problems
- Hence, floating point representation

Normalized floating point numbers

- Consists of two parts
- Mantissa with sign
- Exponent with sign
- Floating point represented as
- (sign) x mantissa x 2+/-exponent
- Mantissa (23 bits) a binary fraction with non-zero leading bit
- Exponent (8 bits) 1 bit used for sign of the exponent,
 other 7 bits used for the exponent magnitude
- Range of exponent?: -127 to +127
- Disadvantage: Two representation for 0 exponent: -0 and +0

Excess representation or bias format

- Exponent has no sign bit
- 8 bits of exponent divided as
- (0-127) and (128-255)
- (0-126): negative
- 127: represents 0
- (128-255): positive
- Called as bias 127 for exponent
- Given an exponent, exp, value of exponent will be (exp – 127)
- Largest and smallest floating point numbers that can be represented?

Example

Representing 52.21875 in 32-bit floating point format.

Step 1 – Represent using binary: 110100.00111

Step 2 – Normalized representation: 1.1010000111 x 2⁵

Exponent of 5 represented as (127+5=132) = 10000100

Floating point represented as (sign)(exponent-8 bits)(mantissa – 23 bits)

0 10000100 1010000111000000000000

Note that the leading 1 in the normalized representation is ignored in the mantissa.

IEEE 754 Floating Point Standard

- The scheme that is just described is IEEE 754 floating point standard
- Mantessa is called *significand* as per the standard
- The standard uses a normalized significand most significant bit is always 1
- Thus significand is 24 bits long 1 is implied + 23 explicit
- Floating point number represented by: (-1)s x (1.f)² x 2^(exponent-127)

Special Cases (B&O 2.4.2)

- Representation of 0: All 31 (exponent and mantissa/significand/fraction) bits are 0's
 - +0: 0 for the sign bit
 - -0: 1 for the sign bit
 - All 0's for the exponents is not allowed to be used for any other number
- Infinity: All 1's in the exponent and all 0's in the mantissa
 - +infinity: 0 for the sign bit
 - -infinity: 1 for the sign bit

Largest and Smallest Positive Numbers?

Rounding (B&O 2.4.4)

- When mathematical operations are performed with two floating point numbers, the significand of the result may exceed 23 bits after the adjustment of the exponent.
- Rounding:
 - Rounding upwards:
 - e.g., significand: 0.110...01,
 - overflow: 1,
 - significand after rounding: 0.110....10, i.e., add 1 to LSB.
 - Rounding downwards: extra bits ignored

Summary (from notes by Prof. Rajaraman)

Value	Sign	Exponent (8 bits)	Significand (23 bits)	
+0	0	00000000	0000	(all 23 bits 0)
- 0	1	00000000	0000	(all 23 bits 0)
$+1.f \times 2^{(e-b)}$	0	00000001to	a a a a	(a = 0 or 1)
e exponent, b bias		11111110		
$-1.f \times 2^{(e-b)}$	1	00000001to	a a a a	(a = 0 or 1)
		11111110		
+ ∞	0	11111111	000 00	(all 23 bits 0)
- ∞	1	11111111	000 00	(all 23 bits 0)
SNaN	0 or 1	11111111	000 01 to	leading bit 0
			011 11	(at least one 1 in
				the rest)
QNaN	0 or 1	11111111	1000 10	leading bit 1
Positive subnormal	0	00000000	000 01 to	(at least one 1)
$0.f \times 2^{x+1-b}$ (x is			111 11	
the number of				
leading 0s in				
significand)				

Summary (from notes by Prof. Rajaraman)

Operation	Result	Operation	Result
$n/\pm\infty$	0	$\pm 0 / \pm 0$	NaN
$\pm \infty / \pm \infty$	$\pm \infty$	$\infty - \infty$	NaN
$\pm n/0$	$\pm \infty$	$\pm \infty / \pm \infty$	NaN
$\infty + \infty$	∞	$\pm \infty imes 0$	NaN

IEEE-754 Standard for 64-bit floating point numbers

•s: 1 bit

• e: 11 bits

• f: 52 bits

Reading

- Read sections in Bryant and O'Hallaron on the topics we have discussed in class
 - Bryant, O'Hallaron. Computer Systems A Programmer's Perspective, Pearson Education Limited 2016, 3rd Global Edition
- Try to solve some of the problems