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Computer Organization:
Memory Hierarchy and Cache Memories



Basic Computer Organization
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Inside the Processor…

◼ Control hardware: Hardware to manage 
instruction execution

◼ ALU: Arithmetic and Logical Unit 
(hardware to do arithmetic, logical 
operations)
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Inside the Processor…

◼ Control hardware: Hardware to manage 
instruction execution

◼ ALU: Arithmetic and Logical Unit (hardware 
to do arithmetic, logical operations)

◼ Registers: small units of memory to hold 
data/instructions temporarily during 
execution

◼ Two kinds of registers
1. Special purpose registers

2. General purpose registers

Hardware that 

can remember 

things



General Purpose Registers
◼ Available for use by programmer, possibly for 

keeping frequently used data

◼ Why? Since there is a large speed disparity 
between processor and main memory
❑ 2 GHz Processor: 0.5 nanosecond time scale

❑ Main memory: ~ 50-100 nsec time scale

◼ Machine instruction operands can come from 
registers or from main memory

◼ But CPUs do not provide a large number of 
general purpose registers



Problem: Slow Speed of Main Memory

◼ Main Memory is much slower (around 100x) 
than the CPU and only a  few CPU registers

– CPU will be waiting for data most of the time

◼ Solution: Cache Memory
❑ Fast memory that is part of CPU

❑ Design principle: Locality of Reference

❑ Temporal locality: least recently accessed memory 
locations are least likely to be referenced in the near 
future

❑ Spatial locality: neighbours of recently accessed 
memory locations are most likely to be referenced in 
the near future



Memory Address and Cache 
Composition

• When a CPU refers to a data or 

instruction, it gives a memory address 

where the data/instruction is present

• The memory address is used to check if 

the contents are in the cache.

• But how?



Memory Address and Cache 
Composition

• Memory is divided into multiple blocks of 

addresses or words

• A cache is decomposed into multiple sets

• Each set consists of multiple cache lines

• Each cache line consists of

• A valid bit

• A tag (set of bits)

• A data block of B bytes



Cache Lookup

• Memory address divided into tag, index, offset

• Index – to identify the set number

• Then, all the cache lines in the particular set are 
searched

• The tag in the cache line checked with the tag 
part of the memory address

• If valid bit is set and the tag matches, then 
cache hit, else cache miss

• Offset used to fetch a particular word from the 
data block in the cache line

• Depending on the number of sets and lines, 
caches can be of different kinds



Cache Lookup and Access
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Direct-Mapped Caches

• Number of cache lines in a set = 1

• Refer figures 6.27-6.29 in book

• Disadvantages of direct-mapped caches?

• Conflict misses are more.

• Why?

• Problem is with a single cache line: A simple dot 
product example.



1. Alternative to Direct Mapping

⚫ Set associative mapping

– e.g., 2 way set associative: Number of cache 
lines = 2

– Idea: A given memory block can be present in 
either of 2 lines of the cache









Set Associative Caches

• Number of cache lines, m, in a set greater than 1
• Called m-way associative cache

• Refer figures 6.32-6.34 in the book



Fully Associative Caches

• Only one set having all cache lines

• Refer figures 6.35-6.37 in the book



Cache and Programming

◼ Objective: Learn how to assess cache related 
performance issues for important parts of our 
programs

◼ Will look at some examples of programs

◼ Will consider only data cache, assuming 
separate instruction and data caches

◼ Data cache configuration:
❑ Direct mapped 16 KB with 32B block size

Offset: 5bIndex: 9bTag : 18b



Example 1: Vector Sum Reduction

double A[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i];

• To do analysis, must view program close to 
machine code form (to see loads/stores)

• Will assume that both loop index i and variable 
sum are implemented in registers

• Will consider only accesses to array 
elements



Example 1: Reference Sequence

◼ load A[0] load A[1] load A[2] … load 
A[2047]

◼ Assume base address of A (i.e., address of 
A[0]) is 0xA000



Example 1: Reference Sequence

◼ load A[0] load A[1] load A[2] … load 
A[2047]

◼ Assume base address of A (i.e., address of 
A[0]) is 0xA000, 1010 0000 0000 0000
❑ Cache index bits: 100000000 (value = 256)

◼ Size of an array element (double) = 8B
◼ So, 4 consecutive array elements fit into 

each cache block (block size is 32B)
❑ A[0] – A[3] have index of 256

❑ A[4] – A[7] have index of 257 and so on



Example 1: Cache Misses and Hits
Cold start: we assume 

that the cache is initially 

empty

Hit ratio of our loop is 

75% -- there are 1536 

hits out of 2048 memory 

accesses

This is entirely due to 

spatial locality of 

reference.

What if we precede the 

loop by a loop that 

accesses all relevant 

memory blocks?

Hit ratio of our loop would 

then be 100%. 25% due 

to temporal locality and 

75% due to spatial 

locality

A[0] 0xA000 256 Miss Cold Start

A[1] 0xA008 256 Hit

A[2] 0xA010 256 Hit

A[3] 0xA018 256 Hit

A[4] 0xA020 257 Miss Cold Start

for (i=0; i<2048; i+=4) tmp=A[i];

for (i=0; i<2048, i++)

  sum = sum +A[i];



Example 1 with double A[4096]

Why should it make a difference?

◼ Consider the case where the loop is preceded by 
another loop that accesses all array elements in 
order

◼ The entire array no longer fits into the cache – cache 
size: 16KB, array size: 32KB

◼ After execution of the previous loop, the second half 
of the array will be in cache

◼ Analysis: our loop will see misses as we had 
calculated



Example 1: Vector Sum Reduction

double A[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i];

• To estimate data cache hit rate

– we ignored accesses to sum, i

– assumed address of A[0] is 0xA000

– assumed only load/store instructions 
reference memory operands (others take their 
operands from registers)



Example 2: Vector Dot Product

double A[2048], B[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i] * B[i];

• Reference sequence:

• load A[0] load B[0] load A[1] load B[1] …

• Assume base addresses of A and B are 0xA000 
and 0xE000

• Again, size of array elements is 8B so that 4 
consecutive array elements fit into each cache 
block



Example 2: Vector Dot Product

Base addresses 0xA000 and 0xE000

.....1010000000000000

Index: 256

.....1110000000000000

Index: 256



Example 2: Cache Hits and Misses

Conflict: A miss due to 

conflict in cache block 

requirements caused by 

memory accesses of the 

same program

Hit ratio for our program: 

0%

Source of the problem: the 

elements of arrays A and B 

are accessed in order and 

have the same cache index

Hit ratio would be better if 

the base address of array A 

was different from that of 

array B

A[0] 0xA000 256 Miss Cold Start

B[0] 0xE000 256 Miss Conflict

A[1] 0xA008 256 Miss Conflict

B[1] 0xE008 256 Miss Conflict

A[2] 0xA010 256 Miss Conflict



Is this a contrived example?

double A[2048], B[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i] * B[i];

• How are variable addresses assigned?

• Start with some address, say 0xA000

• Assign addresses to variables in order of their 
declarations

• Array A: starting at 0xA000

• Array B: starting at 0xA000+ 2048*8
= 0xE000

1010 0000 0000 0000

  100 0000 0000 0000

1110 0000 0000 0000



Example 2: Cache Hits and Misses

Conflict: A miss due to 

conflict in cache block 

requirements caused by 

memory accesses of the 

same program

Hit ratio for our program: 

0%

Source of the problem: the 

elements of arrays A and B 

are accessed in order and 

have the same cache index

Hit ratio would be better if 

the base address of array A 

was different from that of 

array B

A[0] 0xA000 256 Miss Cold Start

B[0] 0xE000 256 Miss Conflict

A[1] 0xA008 256 Miss Conflict

B[1] 0xE008 256 Miss Conflict

A[2] 0xA010 256 Miss Conflict



Example 2 with Packing

• Assume that addresses are assigned as 
variables are encountered in declarations

• Our objective: to shift base address of B 
enough to make cache index of B[0] different 
from that of A[0]
double A[2052], B[2048];

• Base address of B is now 0xE020
• 0xE020 is 1110 0000 0010 0000

❑ Cache index of B[0] is 257; B[0] and A[0] do not 
conflict for the same cache block

◼ Hit ratio of our loop will rise to 75%



Example 2 with Array Merging

Alternatively, declare the arrays as

 struct {double A, B;} array[2048];

 for (i=0; i<2048, i++)

          sum += array[i].A*array[i].B;

Hit ratio: 75%



Example 3: DAXPY

◼ Double precision Y = aX + Y, where X and Y 
are vectors and a is a scalar

double  X[2048],  Y[2048],  a;

for (i=0; i<2048;i++) Y[i] = a*X[i]+Y[i];

◼  Reference sequence

❑ load X[0] load Y[0] store Y[0] load X[1] load 
Y[1] store Y[1] …

◼ Hits and misses: Assuming that base 
addresses of X and Y don’t conflict in cache, 
hit ratio of 83.3%



Example 4: 2-d Matrix Sum

double A[1024][1024], B[1024][1024];

for (j=0;j<1024;j++)

for (i=0;i<1024;i++)

 B[i][j] = A[i][j] + B[i][j];

◼ Reference Sequence:

load A[0,0] load B[0,0] store B[0,0]

load A[1,0] load B[1,0] store B[1,0] …

◼ Question: In what order are the elements of 
a multidimensional array stored in memory?



Storage of Multi-dimensional Arrays

◼ Row major order

❑ Example: for a 2-dimensional array, the 
elements of the first row of the array are 
followed by those of the 2nd row of the array, 
then the 3rd row, and so on

❑ This is what is used in C

◼ Column major order

❑ A 2-dimensional array is stored column by 
column in memory

❑ Used in FORTRAN



Example 4: 2-d Matrix Sum

double A[1024][1024], B[1024][1024];

for (j=0;j<1024;j++)

for (i=0;i<1024;i++)

 B[i][j] = A[i][j] + B[i][j];

◼ Reference Sequence:

load A[0,0] load B[0,0] store B[0,0]

load A[1,0] load B[1,0] store B[1,0] …

◼ Question: In what order are the elements of 
a multidimensional array stored in memory?



Example 4: Hits and Misses
◼ Reference order and storage order for 

our arrays are not the same

◼ Our loop will show no spatial locality

❑ Assume that packing has been done to 
eliminate conflict misses due to base 
addresses

❑ Miss(cold), Miss(cold), Hit for each array 
element

❑ Hit ratio: 33.3%

❑ Question: Will A[0,1] be in the cache when 
required later in the loop?

A

B



Example 4 with Loop Interchange

double A[1024][1024], B[1024][1024];

for (i=0;i<1024;i++)

for (j=0;j<1024;j++)

 B[i][j] = A[i][j] + B[i][j];

◼ Reference Sequence:

load A[0,0] load B[0,0] store B[0,0]

load A[0,1] load B[0,1] store B[0,1]

Hit ratio: 83.3%



Is Loop Interchange Always Safe?

for (i=1; i<2048; i++)

for (j=1; j<2048; j++)

A[i][j] = A[i+1][j-1] + A[i][j-1];

A[1,1] = A[2,0]+A[1,0]

A[2,1] = A[3,0]+A[2,0] 

…

A[1,2] = A[2,1]+A[1,1]



Is Loop Interchange Always Safe?

A[i][j] = A[i+1][j-1] + A[i][j-1];

A[1,1] = A[2,0]+A[1,0]

A[2,1] = A[3,0]+A[2,0] 

…

A[1,2] = A[2,1]+A[1,1]

for (i=1; i<2048; i++)   / interchanged

for (j=1; j<2048; j++)

A[1,1] = A[2,0]+A[1,0]

A[1,2] = A[2,1]+A[1,1] 

…

A[2,1] = A[3,0]+A[2,0]

NO!











Analysis of loop interchange

• Will the result change?
• Will the total operations remain the same?
• Will the number of times X and Y are read 

remain the same?

• What about performance?

• Assumptions:
• Elements are double elements – 8 bytes
• Cache has 32-byte block size (B=32)



3 loops (i,j,k) - Can come up with 6 
different versions
ijk variant

for(i=0; i<N; i++)

  for(j=0; j<N; j++)

    sum=0.0;

    for(k=0;k<N; k++)

      sum += A[i][k]*B[k][j]

    C[i][j] = sum;

• Loads per iteration – 2

• Stores per iteration – 0

• A misses per iteration – 0.25 (stride?)

• B misses per iteration – 1.00 (stride)

• C misses per iteration – 0.00

• Total misses per iteration – 1.25



jik variant

for(j=0; j<N; j++)

  for(i=0; i<N; i++)

    sum=0.0;

    for(k=0;k<N; k++)

      sum += A[i][k]*B[k][j]

    C[j][j] = sum;

• Loads per iteration – 2

• Stores per iteration – 0

• A misses per iteration – 0.25

• B misses per iteration – 1.00

• C misses per iteration – 0.00

• Total misses per iteration – 1.25

• Same as ijk variant



jki variant

for(j=0; j<N; j++)

  for(k=0; k<N; k++)

    r=B[k][j];

    for(i=0;i<N; i++)

      C[i][j] += A[i][k]*r

• Loads per iteration – 2

• Stores per iteration – 1

• A misses per iteration – 1.00 (stride?)

• B misses per iteration – 0.00

• C misses per iteration – 1.00 (stride?)

• Total misses per iteration – 2.00



kji variant

for(k=0; k<N; k++)

  for(j=0; j<N; j++)

    r=B[k][j];

    for(i=0;i<N; i++)

      C[i][j] += A[i][k]*r

• Loads per iteration – 2

• Stores per iteration – 1

• A misses per iteration – 1.00

• B misses per iteration – 0.00

• C misses per iteration – 1.00

• Total misses per iteration – 2.00

• Same as jki variant



kij variant

for(k=0; k<N; k++)

  for(i=0; i<N; i++)

    r=A[i][k];

    for(j=0;j<N; j++)

      C[i][j] += r*B[k][j]

• Loads per iteration – 2

• Stores per iteration – 1

• A misses per iteration – 0.00

• B misses per iteration – 0.25 (stride?)

• C misses per iteration – 0.25 (stride?)

• Total misses per iteration – 0.50



ikj variant

for(i=0; i<N; i++)

  for(k=0; k<N; k++)

    r=A[i][k];

    for(j=0;j<N; j++)

      C[i][j] += r*B[k][j]

• Loads per iteration – 2

• Stores per iteration – 1

• A misses per iteration – 0.00

• B misses per iteration – 0.25 (stride?)

• C misses per iteration – 0.25 (stride?)

• Total misses per iteration – 0.50

• Same as kij variant



Summary

Finding the best performance involves trade-
off between
Cache performance

Number of memory accesses

How to improve the cache hits and 
performance further?
Loop unrolling and blocking















Vector Operations



Example: Vector Sum

double A[2048], B[2048], C[2048];

for (i=0; i<2048, i++) C[i] = A[i] + B[i];

• What if a CPU has 4 adders?

• It can be designed to support an 
instruction to do 4 iterations of the Vector 
Sum loop at a time

VADD v1_A[0:3], v2_B[0:3], v3_C[0:3]

• Called a vector instruction



Multimedia Extensions

• Hardware support for operations on “short 
vectors” is provided in existing 
microprocessors

• Example: 256 bit registers, each split into 
4x64b (or 8x32b)

– Maximum vector length 

• Example: Intel “x86” processors

– SSE (Streaming SIMD Extension)

– AVX (Advanced Vector Extension)



Vectorization of Loops

We will use a generic notation

Instead of

VADD C[0:3], A[0:3], B[0:3]

C[0:3] = A[0:3] + B[0:3]



An example of vectorization
⚫  Given maximum vector length, VL

 for (i=0; i < N; i++)

     A[i] = A[i] + B[i];

for (i=0; i < N; i+=VL)

     A[i:i+VL-1] = A[i:i+VL-1] + B[i:i+VL-1];

What if N is not divisible by VL?

for (i=0; i < (N – N%VL); i+=VL)

     A[i:i+VL-1] = A[i:i+VL-1] + B[i:i+VL-1];

for (; i<N; i++) A[i] = A[i] + B[i];

⚫  This technique is called Stripmining



Possible complications

⚫  Dependences between statements within 
the loop



Example 1

for (i=0; i < N; i++) {

     A[i] = B[i] + C[i];

     D[i] = (A[i] + A[i+1])/2;

 }

for (i=0; i < (N – N%VL); i+=VL){

     A[i:i+VL-1] = B[i:i+VL-1] + C[i:i+VL-1];

     D[i: ... will get wrong value of A[i+1], etc



Example 1

for (i=0; i < N; i++) {

     A[i] = B[i] + C[i];

     D[i] = (A[i] + A[i+1])/2;

 }

for (i=0; i < N; i++) {

     temp[i] = A[i+1];

     A[i] = B[i] + C[i];

     D[i] = (A[i] + temp[i])/2;

}

⚫  This loop transformation, through copying of data, 
is called Node Splitting



Example 2

for (i=0; i < N; i++) {

     X = A[i] + 1;

     B[i] = X + C[i];

 }

for (i=0; i < N; i++) {

     temp[i] = A[i] + 1;

     B[i] = temp[i] + C[i];

}

⚫  Scalar expansion



Example 3

for (i=0; i < N; i++) {

     A[i] = B[i];

     C[i] = C[i-1] + 1;

 }

for (i=0; i < N; i++) A[i] = B[i];

for (i=0; i<N; i++) C[i] = C[i-1] +1;

⚫  Loop fission



Example 4

for (j=1; i < N; j++)

     for (i=2; i < N; i++)

          A[i,j] = A[i-1, j] + B[i];

for (i=2; i < N; i++)

     for (j=1; j<N; j++)

         A[i,j] = A[i-1,j] + B[i];

⚫  Loop interchange



Data Representation



Integer Data

◼ Signed vs Unsigned integer

◼ Representing a signed integer

❑ 2s complement representation

The n bit quantity

represents the signed integer value

−𝑥𝑛−12
𝑛−1 +෍

i=0

𝑛−2

𝑥𝑖2
𝑖

least significant bit

𝑥𝑛−1𝑥𝑛−2. . . 𝑥2𝑥1𝑥0



Example: 2s complement

◼ The signed integer -1410 (decimal) is 
represented as

⚫ 10010 in 5 bits (i.e., -16 + 2)

⚫ 110010 in 6 bits (i.e., -32 + 16 + 2)

⚫ 111...1110010 in 32 bits



Aside: Hexadecimal (base 16)

⚫  Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 0001 0010 ... 1101 1110 1111

⚫  Binary sequences can be written more 
compactly in hexadecimal
1001   9

1010   A

1011   B

1100   C

1101   D

1110   E

1111   F



Example: 2s complement

⚫  The signed integer -1410 (decimal) is 
represented as

10010 in 5 bits (-16 + 2)

110010 in 6 bits (-32 + 16 + 2)

111...1110010 in 32 bits

1111 1111 1111 ... 0010

FFFFFFF2

Usually written as 0xFFFFFFF2



Real Data

• How to represent real data?

• Fixed point representation
• (sign bit) (Integer part – 23 bits)(Fraction – 8 bits)

• Disadvantage?
• The range of numbers not adequate for 

many practical problems
• Hence, floating point representation



Normalized floating point 
numbers
• Consists of two parts
• Mantissa with sign

•   Exponent with sign

• Floating point represented as
• (sign) x mantissa x 2+/-exponent

• Mantissa (23 bits) – a binary fraction with non-zero leading 

bit

• Exponent (8 bits) – 1 bit used for sign of the exponent, 

other 7 bits used for the exponent magnitude

• Range of exponent?: -127 to +127

• Disadvantage: Two representation for 0 
exponent: -0 and +0



Excess representation or bias 
format

• Exponent has no sign bit
• 8 bits of exponent divided as
• (0-127) and (128-255)

• (0-126): negative

• 127: represents 0

• (128-255): positive

• Called as bias 127 for exponent

• Given an exponent, exp, value of 
exponent will be (exp – 127)

• Largest and smallest floating point 
numbers that can be represented?



Example

Representing 52.21875 in 32-bit floating point format.

Step 1 – Represent using binary: 110100.00111

Step 2 – Normalized representation: 1.1010000111 x 25

Exponent of 5 represented as (127+5=132) = 10000100

Floating point represented as (sign)(exponent-8 
bits)(mantissa – 23 bits)

0 10000100 10100001110000000000000

Note that the leading 1 in the normalized representation 
is ignored in the mantissa.



IEEE 754 Floating Point 
Standard

The scheme that is just described is IEEE 754 
floating point standard

Mantessa is called significand as per the 
standard

The standard uses a normalized significand – 
most significant bit is always 1

Thus significand is 24 bits long – 1 is implied + 
23 explicit

Floating point number represented by:
(-1)s x (1.f)2 x 2(exponent-127)



Special Cases (B&O 2.4.2)

⚫  Representation of 0: All 31 (exponent and 
mantissa/significand/fraction) bits are 0’s

⚫ +0: 0 for the sign bit

⚫ -0: 1 for the sign bit

⚫ All 0’s for the exponents is not allowed to be 
used for any other number

⚫ Infinity: All 1’s in the exponent and all 0’s in the 
mantissa

⚫ +infinity: 0 for the sign bit

⚫ -infinity: 1 for the sign bit



Largest and Smallest Positive 
Numbers?



Rounding (B&O 2.4.4)
⚫  When mathematical operations are 
performed with two floating point numbers, 
the significand of the result may exceed 23 
bits after the adjustment of the exponent.

⚫ Rounding:

⚫ Rounding upwards:

⚫ e.g., significand: 0.110…01,

⚫ overflow: 1,

⚫ significand after rounding: 0.110….10, 
i.e., add 1 to LSB.

⚫ Rounding downwards: extra bits ignored



Summary (from notes by Prof. 
Rajaraman)



Summary (from notes by Prof. 
Rajaraman)



IEEE-754 Standard for 64-bit 
floating point numbers

⚫ s: 1 bit

⚫ e: 11 bits

⚫ f: 52 bits 



◼ Read sections in Bryant and O’Hallaron on 
the topics we have discussed in class

⚫ Bryant, O’Hallaron. Computer Systems – A Programmer’s 

Perspective, Pearson Education Limited 2016, 3rd Global Edition

◼ Try to solve some of the problems

Reading
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