
CUDA

Sathish Vadhiyar

High Performance Computing

Hierarchical Parallelism

◼ Parallel computations arranged as grids

◼ One grid executes after another

◼ Grid consists of blocks

◼ Blocks assigned to SM. A single block

assigned to a single SM. Multiple blocks can

be assigned to a SM.

❑ Max thread blocks executed concurrently per SM

= 16

Hierarchical Parallelism

◼ Block consists of elements

◼ Elements computed by threads

❑ Max threads per thread block = 1024

◼ A thread executes on a GPU core

Thread Blocks

◼ Thread block – an array of concurrent

threads that execute the same program and

can cooperate to compute the result

◼ Has shape and dimensions (1d, 2d or 3d) for

threads

◼ A thread ID has corresponding 1,2 or 3d

indices

◼ Threads of a thread block share memory

CUDA Programming Language

◼ Programming language for threaded
parallelism for GPUs

◼ Minimal extension of C

◼ A serial program that calls parallel kernels

◼ Serial code executes on CPU

◼ Parallel kernels executed across a set of
parallel threads on the GPU

◼ Programmer organizes threads into a
hierarchy of thread blocks and grids

CUDA C

◼ Built-in variables:

❑ threadIdx.{x,y,z} – thread ID within a block

❑ blockIDx.{x,y,z} – block ID within a grid

❑ blockDim.{x,y,z} – number of threads within a
block

❑ gridDim.{x,y,z} – number of blocks within a grid

◼ kernel<<<nBlocks,nThreads>>>(args)

❑ Invokes a parallel kernel function on a grid of
nBlocks where each block instantiates nThreads
concurrent threads

Example: Summing Up
kernel function

grid of kernels

General CUDA Steps

1. Copy data from CPU to GPU

2. Compute on GPU

3. Copy data back from GPU to CPU

◼ By default, execution on host doesn’t wait for

kernel to finish

◼ General rules:

❑ Minimize data transfer between CPU & GPU

❑ Maximize number of threads on GPU

CUDA Elements

◼ cudaMalloc – for allocating memory in device

◼ cudaMemCopy – for copying data to

allocated memory from host to device, and

from device to host

◼ cudaFree – freeing allocated memory

◼ void syncthreads__() – synchronizing all

threads in a block like barrier

EXAMPLE 1: MATRIX VECTOR

MULTIPLICATION

Kernel

Host Program

Host Program

EXAMPLE 1, VERSION 2:

ACCESS FROM SHARED

MEMORY

EXAMPLE 2: MATRIX

MULTIPLICATION

Example 1: Matrix Multiplication

Example 1

Example 1

Example 1

Example 1

EXAMPLE 3: REDUCTION

Example: Reduction

◼ Tree based approach used within each

thread block

◼ In this case, partial results need to be

communicated across thread blocks

◼ Hence, global synchronization needed across

thread blocks

Reduction

◼ But CUDA does not have global

synchronization –

❑ expensive to build in hardware for large number of

GPU cores

◼ Solution

• Decompose into multiple kernels

• Kernel launch serves as a global

synchronization point

Illustration

Host Code

int main(){

int* h_idata, h_odata; /* host data*/

Int *d_idata, d_odata; /* device data*/

/* copying inputs to device memory */

cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice) ;

cudaMemcpy(d_odata, h_idata, numBlocks*sizeof(int),

cudaMemcpyHostToDevice) ;

int numThreadsperBlock = (n < maxThreadsperBlock) ? n : maxThreadsperBlock;

int numBlocks = n / numThreadsperBlock;

dim3 dimBlock(numThreads, 1, 1); dim3 dimGrid(numBlocks, 1, 1);

reduce<<< dimGrid, dimBlock >>>(d_idata, d_odata);

Host Code

int s=numBlocks;

while(s > 1) {

 numThreadsperBlock = (s< maxThreadsperBlock) ? s :

maxThreadsperBlock;

 numBlocks = s / numThreadsperBlock;

 dimBlock(numThreads, 1, 1); dimGrid(numBlocks, 1, 1);

 reduce<<< dimGrid, dimBlock, smemSize >>>(d_idata,

d_odata);

 s = s / numThreadsperBlock;

}

}

Device Code

__global__ void reduce(int *g_idata, int *g_odata)

{

 extern __shared__ int sdata[];

 // load shared mem

 unsigned int tid = threadIdx.x;

 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 sdata[tid] = g_idata[i];

 __syncthreads();

 // do reduction in shared mem

 for(unsigned int s=1; s < blockDim.x; s *= 2) {

 if ((tid % (2*s)) == 0)

 sdata[tid] += sdata[tid + s];

 __syncthreads();

 }

 // write result for this block to global mem

 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

◼ For more information…

◼ CUDA SDK code samples – NVIDIA -

http://www.nvidia.com/object/cuda_get_samp

les.html

http://www.nvidia.com/object/cuda_get_samples.html
http://www.nvidia.com/object/cuda_get_samples.html

	Slide 1: CUDA
	Slide 2: Hierarchical Parallelism
	Slide 3: Hierarchical Parallelism
	Slide 4: Thread Blocks
	Slide 5
	Slide 6: CUDA Programming Language
	Slide 7
	Slide 8: CUDA C
	Slide 9: Example: Summing Up
	Slide 10
	Slide 11: General CUDA Steps
	Slide 12: CUDA Elements
	Slide 13: Example 1: Matrix Vector multiplication
	Slide 14: Kernel
	Slide 15: Host Program
	Slide 16: Host Program
	Slide 17: Example 1, Version 2: Access from shared memory
	Slide 18
	Slide 19: Example 2: Matrix multiplication
	Slide 20
	Slide 21: Example 1: Matrix Multiplication
	Slide 22: Example 1
	Slide 23: Example 1
	Slide 24: Example 1
	Slide 25: Example 1
	Slide 26: Example 3: Reduction
	Slide 27: Example: Reduction
	Slide 28: Reduction
	Slide 29: Illustration
	Slide 30: Host Code
	Slide 31: Host Code
	Slide 32: Device Code
	Slide 33

