CUDA

Sathish Vadhiyar
High Performance Computing

Hierarchical Parallelism

Parallel computations arranged as grids
One grid executes after another
Grid consists of blocks

Blocks assigned to SM. A single block
assigned to a single SM. Multiple blocks can
be assigned to a SM.

o Max thread blocks executed concurrently per SM
=16

Hierarchical Parallelism

Block consists of elements

Elements computed by threads
o Max threads per thread block = 1024

A thread executes on a GPU core

Thread Blocks

Thread block — an array of concurrent
threads that execute the same program and
can cooperate to compute the result

Has shape and dimensions (1d, 2d or 3d) for
threads

A thread ID has corresponding 1,2 or 3d
iIndices
Threads of a thread block share memory

CUDA Programming Model

A kernel is executed by a
grid of thread blocks

® A thread block is a batch
of threads that can
cooperate with each
other by:

® Sharing data through
shared memory

® Synchronizing their
execution

® Threads from different
blocks cannot cooperate

Kernel

e]
‘

Device

Grid 1

Block
(0, 0)

B Iﬂl:-'l";__-' i

(0, 1]

Thread | Thread
2 | (LY

| Grid2

Block (1, 1P
Thread | Thread | Thread | Thread | Thread
(0, oy (1, (LI (3o 4,
Thread | Thread | Thread | Thread | Thread
(0, 1) (1, 1) (L 1) (3 1) i4, 1)

Thread

(L2

Block
(1, 0)

(1, 1)

Block |
P (2. 1)

<3

nviDiA

Block
(2, 0)

Block

Thread | Thread
Z (32 | 4D

CUDA Programming Language

Programming language for threaded
parallelism for GPUs

Minimal extension of C
A serial program that calls parallel kernels
Serial code executes on CPU

Parallel kernels executed across a set of
narallel threads on the GPU

Programmer organizes threads into a
nierarchy of thread blocks and grids

CUDA Kernels and Threads <X

nVvIDIA

® Parallel portions of an application are executed on
the device as kernels
® One kernel is executed at a time
® Many threads execute each kernel

® Differences between CUDA and CPU threads
® CUDA threads are extremely lightweight

® Very little creation overhead
® Instant switching

® CUDA uses 1000s of threads to achieve efficiency

#® Multi-core CPUs can use only a fow

Definitions:
Device = GPU; Host = CPU
Kernel = function that runs on the device

CUDA C

Built-in variables:
o threadldx.{x,y,z} — thread ID within a block
o blocklDx.{x,y,z} — block ID within a grid

o blockDim.{x,y,z} — number of threads within a
nlock

o gridDim.{x,y,z} — number of blocks within a grid

kernel<<<nBlocks,nThreads>>>(args)

o Invokes a parallel kernel function on a grid of
nBlocks where each block instantiates nThreads
concurrent threads

‘ Example: Summing Up

kernel function

void addMatrix _9global__ void addMatrixG
(float *a, float *b, flocat *c, int N) (float *a, flcat *b, float *¢, int N)
{ {
int i, 9§, idx; int i = blockIdx.x*blockDim.x + threadIdx.x;
for (i = 0; i < N; i++) { int j = blockIdx.y*blockDim.y + threadldx.y;
for (§ = 0; 3 < N; j++) { int idx = 1 + j*N;
idx = i + j*N; if (i < N & j < N)
cl[idx] = alidx] + b[idx]; clidx]) = afidx] + bliax];
} }
}
) void main()
void main() {
{ dim3 dimBlock (blocksize, blocksize);
1S (e dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
addMatrix(a, b, c, N); addMatrixGe<<dimGrid, dimBlocks>>>{(a, b, ¢, N);
} }
(@) (b)

Figure 8. Serial C (a) and CUDA C (b) examples of programs that add arrays.

grid of kernels

Variable Qualifiers (GPU code) <3

nvibDliA

® device
® stored in device memory (large, high latency, no cache)
® Allocated with cudaMalloc (_ device qualifier implied)
® accessible by all threads
® lifetime: application

® constant
® same as _device , but cached and read-only by GPU
® written by CPU via cudaMemcpyToSymbol(...) call
® lifetime: application

® shared
® stored in on-chip shared memory (very low latency)
® accessible by all threads in the same thread block
® lifetime: kernel launch

® Unqualified variables:
® scalars and built-in vector types are stored in registers
® arrays of more than 4 elements stored in device memory

General CUDA Steps

Copy data from CPU to GPU
Compute on GPU
Copy data back from GPU to CPU

By default, execution on host doesn’t wait for
kernel to finish

General rules:
o Minimize data transfer between CPU & GPU
o Maximize number of threads on GPU

CUDA Elements

cudaMalloc — for allocating memory in device

cudaMemCopy — for copying data to
allocated memory from host to device, and
from device to host

cudaFree — freeing allocated memory

void syncthreads () — synchronizing all
threads in a block like barrier

EXAMPLE 1: MATRIX VECTOR
MULTIPLICATION

‘ Kernel

:_ {

—-global__

void matvec_mul(int m. int n. double *A., double =x,
double =v)

int row, col;
double sum:;

row =blockldx .x*blockDim.x+threadldx .x;

sum=»0;
if (row << m){
for(col=0; col<n:; col++){
sum += A|rowsn+col |*x[col];
}

}

y| row |=sum;

Host Program

int main(int argc, chars+ argv){

size_t size_ A, size_x, size_y;
double =*A, #x. =y:

| double #dA., =dx, =*dy:

m= ... [+ rows */; n= ... [+ cols =/

s1ze_A = si1zeof(double)#sm+*n; size_x = sizeof(double)=n;
size_y = sizeof (double)sm;

A = (double*)malloc(size _A):; x = (doublex)malloc(size_x):

(double*)malloc(size_vy);

/+ Allocate on the device memory =/
cudaMalloc (({ void =#=%) &dA, si1ze_A);
cudaMalloc ({ void #=#) &dx, size_x);
cudaMalloc ((void #*=%) &dy, size_y);

f+ Initialize A and x =/
[+ Initialize y =*/
for(i1=0; 1<m; 1++) y[1] = 0;

—

y

‘ Host Program

[+ Copy A and x to the device =/
cudaMemcpy(dA, A, size_A, cudaMemcpyHostToDevice)
cudaMemcpy(dx, x, size_x , cudaMemcpyHostToDevice);

numThreadsPerBlock = 1024: numBlocks m/ numThreadsPerBlock ;

dim3 dimGrid{ numBlocks) ;

dim3 dimBlock (numThreadsPerBlock);

matvec_mul<<< dimGrid, dimBlock >>>(m.n.dA.dx , dy):
cudaMemcpy(y, dy., size_y , cudaMemcpyDeviceToHost)
cudaFree(dA): cudaFree(dx); cudaFree(dy):;

free(A); free(x); freel(y):

EXAMPLE 1, VERSION 2:
ACCESS FROM SHARED
MEMORY

__global__ void matvec_mul(int m. int n, double %A, double =x.
double =v)
i

int row. col;
double sum:;

| __shared__ int sx [BLOCK.SIZE]:

g sx [threadldx .x] = x[threadldx.x];
__syncthreads ()

row =blockldx .x*blockDim.x+threadldx .x;

sum=»0;
if (row << m){
for(col=0; col<n: col++){
& sum += Alrowsn+col]#sx[col];
' }

4)

ol y|row]=sum:

EXAMPLE 2: MATRIX
MULTIPLICATION

Matrix Multiplication Example <3

nvibDliA

+

® Computing the product
C of two matrices:
A: (WA, hA)
B : (wB, wA).

&
>
Iﬁ
]
1] Wi
TE
o]
|3

® Each thread block
computes one square
sub-matrix Csub of C;

SIZE

-+
BLOCK

® Each thread within the
block computes one “—— e — «»
EIEITIEITI: Df Csub BLOCK_SIZE BLOCK_SIFE BLOCK_SIZE

Example 1: Matrix Multiplication

Host matrix multiplication code

NVIDIA

void Mul(const float* A, const float* B, int hA, int wA, int wB, float* C)
{ . »

int sze;

/I Load Input matrices A and B to the device

float* Ad;

size = hA * wA * sizeof(float);

cudaMalloc{(void™)&Ad, size);

cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);

/I Allocate memory for output matrix C on the device
float* Cd;

size = hA * wB * sizeof{float);
cudaMalloc{(void**)&Cd, size);

Example 1

Il Compute the execution configuration assuming

I the matrix dimensions are multiples of BLOCK_SIZE
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(wB / dimBlock.x, hA / dimBlock.y);

Il Launch the device computation

Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

Il Read Quput matrix C from the device
cudaMemepy(C, Cd, size, cudaMemcpyDeviceToHost);
I Free device memory

cudaFree(Ad);

Example 1

Device matrix multiplication function X

__global__ void Muld (float” A, float” B, int wA, int wB, float” C) nviDiA

{
Il Setup aBegin, aEnd, aSiep bBegin, bStep based on Block index and Block size

Il The element of the block sub-matrix that is computed by the thread

float Csub = 0;
Il Loop over all the sub-matrices of A and B required to compute the block sub-matrix
for (int a = aBegin, b = bBegin; a <= aEnd; a += aSiep, b += bSiep) |

il Shared memory for the sub-matrices of A and B
_ shared__ float As [BLOCK_SIEZE] [BLOCK_SIZE J;
_ shared _ float Bs [BLOCK_SIZE] [BLOCK_SIZE];

Example 1

/I Load the matrices from global memory to shared memory; each thread loads one element of each matrix
As[ty][tx]=A[a+wA*ly+ix];
Bs[ty][tx]=B[b+wB"ty+ix];

I Synchronize to make sure the matrices are loaded
__syncthreads();

I/ Multiply the two matrices together; each thread computes one element/ of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += As{ty][k] * Bs[k][tx];

Example 1

Il Synchronize to make sure that the preceding computation is done before loading two new
Il sub-matrices of A and B in the next iteration

__ syncthreads();

}

/I Write the block sub-matrix to global memory; each thread writes one element
int ¢ = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
Clc +wB " ty + ix] = Csub;

EXAMPLE 3: REDUCTION

Example: Reduction

Tree based approach used within each
thread block

In this case, partial results need to be
communicated across thread blocks

Hence, global synchronization needed across
thread blocks

Reduction

But CUDA does not have global
synchronization —

o expensive to build in hardware for large number of
GPU cores

Solution

* Decompose into multiple kernels

« Kernel launch serves as a global
synchronization point

‘ [ustration

Host Code

iInt main(){

Int* h_idata, h_odata; /* host data*/
Int *d_idata, d_odata; /* device data*/

[* copying inputs to device memory */
cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice) ;

cudaMemcpy(d_odata, h_idata, numBlocks*sizeof(int),
cudaMemcpyHostToDevice) ;

int numThreadsperBlock = (n < maxThreadsperBlock) ? n : maxThreadsperBlock;
iInt numBlocks = n / numThreadsperBlock;
dim3 dimBlock(numThreads, 1, 1); dim3 dimGrid(hnumBlocks, 1, 1);

reduce<<< dimGrid, dimBlock >>>(d_idata, d_odata);

Host Code

Int s=numBlocks:
while(s > 1) {

numThreadsperBlock = (s< maxThreadsperBlock) ? s :
maxThreadsperBlock;

numBlocks = s / numThreadsperBlock;
dimBlock(numThreads, 1, 1); dimGrid(numBlocks, 1, 1);

reduce<<< dimGrid, dimBlock, smemSize >>>(d _idata,
d_odata);

s =s / numThreadsperBlock;

Device Code

{

global __ void reduce(int *g_idata, int *g_odata)
extern __shared__ int sdata]];

// load shared mem

unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idatal[i];

__syncthreads();

// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if ((tid % (2*s)) == 0)
sdata[tid] += sdata]tid + s];
__syncthreads();

}

/[write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

= For more information...

= CUDA SDK code samples — NVIDIA -
http://www.nvidia.com/object/cuda get samp
les.html

http://www.nvidia.com/object/cuda_get_samples.html
http://www.nvidia.com/object/cuda_get_samples.html

	Slide 1: CUDA
	Slide 2: Hierarchical Parallelism
	Slide 3: Hierarchical Parallelism
	Slide 4: Thread Blocks
	Slide 5
	Slide 6: CUDA Programming Language
	Slide 7
	Slide 8: CUDA C
	Slide 9: Example: Summing Up
	Slide 10
	Slide 11: General CUDA Steps
	Slide 12: CUDA Elements
	Slide 13: Example 1: Matrix Vector multiplication
	Slide 14: Kernel
	Slide 15: Host Program
	Slide 16: Host Program
	Slide 17: Example 1, Version 2: Access from shared memory
	Slide 18
	Slide 19: Example 2: Matrix multiplication
	Slide 20
	Slide 21: Example 1: Matrix Multiplication
	Slide 22: Example 1
	Slide 23: Example 1
	Slide 24: Example 1
	Slide 25: Example 1
	Slide 26: Example 3: Reduction
	Slide 27: Example: Reduction
	Slide 28: Reduction
	Slide 29: Illustration
	Slide 30: Host Code
	Slide 31: Host Code
	Slide 32: Device Code
	Slide 33

