
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS221 | 19 Sep – 19 Oct, 2017

Data Structures,
Algorithms & Data
Science Platforms

Yogesh Simmhan
s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

L2: More on Basic
Data Structures
Sparse Matrices, Stack, Queue, Trees

21-Sep-17 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

n-D Arrays

 Arrays can have more than 1-dimension
‣ 2-D Arrays are also called matrices

 Mapping from n-D to 1-D array
‣ Convert A[i][j] to B[k] … i=row index, j=column index
‣ Row Major Order of indexing: k=map(i,j)=i*C+j
‣ Column Major Order of indexing: k=map(i,j)=j*R+I

 Extend to 3+ dimension arrays?

21-Sep-17 3
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

n-D Arrays

 Array of Arrays representation

 First find pointer for row array

 Then lookup value at column offset in row array

 Pros & cons relative to using 1-D array
representation?

21-Sep-17 4
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Matrix Multiplication
// Given a[n][n], b[n][n]

// c[n][n] initialized to 0

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < N; k++)

c[i][j] += a[i][k] * b[k][j];

21-Sep-17 5

C

https://en.wikipedia.org/wiki/Matrix_multiplication

What is the time complexity?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices

Only a small subset of items are populated in
matrix
‣ Students and courses taken, faculty and courses taught

• Product gives…

‣ Adjacency matrix of social network graph
• vertices are people, edges are “friends”

• Rows and columns are people, cell has 0/1 value

Why not use regular 2-D matrix?
‣ 1-D representation

‣ Array of arrays representation

21-Sep-17 6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices:
Linear List representation
 Each non-zero item has one entry in list
‣ index: <row, column, value>

‣ index is the (i-1)th non-zero item in row-major order

21-Sep-17 7
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices: Addition
while(p < pMax && q < qMax) { // C is no. of cols in orig. matrix

p1 = A[p].r*C + A[p].c // get index for A in orig. matrix

q1 = B[q].r*C + B[q].c

if(p1 < q1) // Only A has that index

C[k] = <A[p].r, A[p].c, A[p].val> // Copy val

p++

else if(p1==q1) // Both A & B have that index

C[k] = <A[p].r, A[p].c, A[p].val+B[q].val> // Add vals

p++

q++

else // Only B has that index

C[k] = <B[q].r, B[q].c, B[q].val> // Copy vals

q++

k++

}

21-Sep-17 8
See Sahni, Program 7.17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Stacks

• Add a cup to the stack.

• Remove a cup from new stack.

• A stack is a LIFO list: Last in, First out

21-Sep-17 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

Stacks

• Container of objects that are inserted and
removed according to the LIFO principle

• Objects can be inserted at any time, but only the
last object can be removed.

• Inserting :“pushing”

• Removing : “Popping”

21-Sep-17 11

CDS.IISc.ac.in | Department of Computational and Data Sciences

Stacks - ADT

 New() creates a new stack

 Push(item) inserts the item onto top of stack

 item Pop() removes and returns the top item of
stack

 item Top() returns (but retains) the top item of
stack

 int Size() returns number of objects in stack

 Invariants
– S.Pop(S.Push(v)) = S

– S.Top(S.Push(v)) = v

21-Sep-17 12

CDS.IISc.ac.in | Department of Computational and Data Sciences

Parenthesis Matching

• Problem: Match the left and right parentheses in a
character string

 (a*(b+c)+d)
– Left parentheses: positions 0 and 3
– Right parentheses: positions 7 and 10
– Left at position 0 matches with right at position 10

 (a+b))*((c+d)
– (0,4) match

– (8,12) match
– Right parenthesis at 5 has no matching left parenthesis
– Left parenthesis at 7 has no matching right parenthesis

21-Sep-17 29

CDS.IISc.ac.in | Department of Computational and Data Sciences

Parenthesis Matching

(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)
– Output pairs (u,v) such that the left parenthesis at

position u is matched with the right parenthesis at v.
– (2,6) (1,13) (15,19) (21,25) (27,31) (0,32) (34,38)

• How do we implement this using a stack?
1. Scan expression from left to right

2. When a left parenthesis is encountered, add
its position to the stack

3. When a right parenthesis is encountered,
remove matching position from the stack

21-Sep-17 30

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example

 (a*(b+c)+d)

21-Sep-17 31

0 1 2 3 4 5 6 7 8 9 10

(a * (b + c) + d)

0 3

0

0

3,7 0,10

CDS.IISc.ac.in | Department of Computational and Data Sciences

(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)

1
0

2stack

output

1
0 0

(2,6) (1,13)

15
0 0

(15,19)

21
0 0

(21,25)…

…

Example

21-Sep-17 32

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue ADT

• FIFO Principle: First in, First Out

• Elements inserted only at rear (enqueued) end and
removed from front (dequeued)

• Also called “Head” and “Tail”

5 4 7 7 2 8 0 9

Rear

6

Enqueue(6)

Rear

Dequeue()→2

Front

2

Front

21-Sep-17 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue -Methods

• queue New() – Creates and returns an empty
queue

• Enqueue(item v) – Inserts object v at the rear
of the queue

• item Dequeue() – Removes the object from front of
the queue. Error occurs if the queue is empty

• item Front() – Returns, but does not remove the
front element. An error occurs if the queue is
empty

• int Size() – number of items in queue

21-Sep-17 34

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue –Invariants

 Front(Enqueue(New(),v)) = v

 Dequeue(Enqueue(New(), v)) = New()

 Front(Enqueue(Enqueue(Q, w), v)) =
Front(Enqueue(Q, w))

 Dequeue(Enqueue(Enqueue(Q, w), v))=
Enqueue(Dequeue(Enqueue(Q, w)), v)

21-Sep-17 35

CDS.IISc.ac.in | Department of Computational and Data Sciences

Array Implementation of Queue
• Using array in circular fashion

– Wraparound using mapping function (recollect from List
ADT discussion)

• A max size N is specified

• Q consists of an N element array and 2 integer
variables having array index:
– f: index of the front element (head, for dequeue)
– r: index of the element after the rear one (tail, for

enqueue)

f r

0 N-1Q

21-Sep-17 36

CDS.IISc.ac.in | Department of Computational and Data Sciences

Q

fr

0 N-1

Array Implementation of Queue

• What does f=r mean ?

• Resolve Ambiguity:

 We will never add nth element to Queue (declare full if
the size of queue is N-1) .

21-Sep-17 37

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo Code

• int size()
Return (N-f+r) mod N

• bool isEmpty()
Return(f==r)

• int front()
If isEmpty() then Return QueueEmptyException
Else Return Q[f]

21-Sep-17 38

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo Code
int front()
If isEmpty() then Return QueueEmptyException
Else Return Q[f]

int Dequeue()
If isEmpty() then Return QueueEmptyException
v = Q[f]
Q[f] = null
f = (f+1) mod N
Return v

Enqueue(v)
If size()==n-1 then Return QueueFullException
Q[r] = v
r = (r+1) mod N

int size()

Return (N-f+r) mod N
Compute Complexity? Storage Complexity?21-Sep-17 39

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List

 Problem with array: Requires the number of
elements a priori.

DATA DATA NULL

21-Sep-17 40

CDS.IISc.ac.in | Department of Computational and Data Sciences

Implementation with linked
List

Head Tail

Φ

Nodes (data, pointer) connected in a chain by links

• Maintain two pointers, to head and tail of linked list.
• The head of the list is FRONT of the queue, the tail of the list is REAR of the queue.
• Why not the opposite?

NOTE: Different
from what was
mentioned in

class.

FRONT of Queue REAR of Queue

21-Sep-17 41

CDS.IISc.ac.in | Department of Computational and Data Sciences

4
9

Linear Lists vs. Trees

• Linear lists are useful for serially ordered data
– (e1,e2,e3,…,en)

– Days of week

– Months in a year

– Students in a class

• Trees are useful for hierarchically ordered data
– Joe’s descendants

– Corporate structure

– Government Subdivisions

– Software structure

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Joe’s Descendants

5
0

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

5
1

Definition of Tree

• A tree t is a finite non-empty set of elements

• One of these elements is called the root

• The remaining elements, if any, are
partitioned into trees, which are called the
subtrees of t.

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Subtrees

5
2

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tree Terminology

• The element at the top of the
hierarchy is the root.

• Elements next in the hierarchy
are the children of the root.

• Elements next in the hierarchy
are the grandchildren of the
roo and so on.

• Elements at the lowest level of
the hierarchy are the leaves.

5
3

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tree Terminology

• Leaves, Parent, Grandparent, Siblings,
Ancestors, Descendents

Leaves = {Mike,AI,Sue,Chris}

Parent(Mary) = Joe

Grandparent(Sue) = Mary

Siblings(Mary) = {Ann,John}

Ancestors(Mike) = {Ann,Joe}

Descendents(Mary)={Mark,Sue}

5
4

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tree Terminology
• Depth of Node = No. of edges from the root to that node
• Height of Tree = No. of edges from root to farthest leaf
• Number of Levels of a Tree = Height + 1
• Node degree is the number of children it has

level 1

level 2

level 3

level 4 5
5

Height = 3

Depth(Al) = 2

Depth(Joe) = 0

degree=3

degree=1
degree=2

degree=021-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree

• A finite (possibly empty) collection of
elements

• A non-empty binary tree has a root element
and the remaining elements (if any) are
partitioned into two binary trees

• They are called the left and right sub-trees of
the binary tree

21-Sep-17 56

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree for Expressions

5721-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Properties
1. The drawing of every binary tree with n

elements, n > 0, has exactly n-1 edges.

– Each node has exactly 1 parent (except root)

2. A binary tree of height h, h >= 0, has at least h+1 and

at most 2h+1-1 elements in it.
‣ h+1 levels; at least 1 element at each level

#elements = h+1

‣ At most 2i-1 elements at i-th level Σ 2i-1 = 2h+1 -1

a+ar1+ar2+…+ arn = a(rn+1-1)/(r-1)
Note: Some tree definitions

differ between computer
science & discrete math21-Sep-17 58

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Properties
3. The height of a binary tree that contains n elements,

n >= 0, is at least log2 𝑛 and at most n-1.

– At least one element at each level hmax = #elements - 1

– From prev: hmin = ceil(log(n+1))

minimum number of elements maximum number of elements

5921-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Full Binary Tree
• A full binary tree of height h has exactly 2h+1-1 nodes

• Numbering the nodes in a full binary tree
– Number the nodes 1 through 2h+1-1

– Number by levels from top to bottom

– Within a level, number from left to right

60

Note: Some definitions
of full, complete trees
are NOT consistently

used everywhere

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

20

Complete Binary Tree with N
Nodes

 Start with a full binary tree that has at least n nodes

Number the nodes as described earlier

 The binary tree defined by the nodes numbered 1
through n is the n-node complete binary tree

 A full binary tree is a special case of a complete
binary tree

21-Sep-17 61

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complete Binary Tree

• Complete binary tree with 10 nodes.

• Same node number properties (as in full
binary tree) also hold here.

6221-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

63

Binary Tree Representation

• Array representation

• Linked representation

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Array Representation

• The binary tree is represented in an array by
storing each element at the array position
corresponding to the number assigned to it.

21-Sep-17 64

CDS.IISc.ac.in | Department of Computational and Data Sciences

Incomplete Binary Trees
Complete binary tree with some missing elements

6521-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Right-Skewed Binary Tree

• An n node binary tree needs an array whose
length is between n+1 and 2n.

• Right-skewed binary tree wastes the most space

• What about left-skewed binary tree?

• Equally bad, though with trailing blanks that
could be trimmed if known ahead 6621-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

67

Linked Representation

• The most popular way to present a binary tree

• Each element is represented by a node that has
two link fields (leftChild and rightChild) plus an
item field

• Each binary tree node is represented as an
object whose data type is BinTreeNode

• The space required by an n node binary
tree is n*sizeof(BinTreeNode)

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked Representation

6821-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Node Class For Linked Binary Tree

class BinTreeNode {

int item;

BinTreeNode *left, *right;

BinTreeNode() {

left = right = NULL;

}

}

6921-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

30

Binary Tree Traversal

Many binary tree operations are done by
performing a traversal of the binary tree

 In a traversal, each element of the binary tree is
visited exactly once

 During the visit of an element, all actions (make a
copy, display, evaluate the operator, etc.) with
respect to this element are taken

21-Sep-17 70

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Traversal Methods

 Preorder
‣ The root of the subtree is processed first before going into the left

then right subtree (root, left, right)

 Inorder
‣ After the complete processing of the left subtree first the root is

processed followed by the processing of the complete right subtree
(left, root, right)

 Postorder
‣ The left and right subtree are completely processed, before the

root is processed (left, right, root)

 Level order
‣ The tree is processed one level at a time
‣ First all nodes in level i are processed from left to right
‣ Then first node of level i+1 is visited, and rest of level i+1 processed

7121-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Preorder Traversal

void preOrder(BinTreeNode *t) {

if (t != NULL) {

visit(t); // Visit root 1st

preOrder(t->left); // Left Subtree

preOrder(t->right); // Right Subtree

}

}

7221-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

a b d g h e i c f j

Preorder Example
(visit action = print)

7321-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Inorder Traversal

void inOrder(BinTreeNode *t) {

if (t != NULL) {

inOrder(t->left); // Left Subtree 1st

visit(t); // Visit root

inOrder(t->right); // Right Subtree last

}

}

7421-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

g d h b e i a f j c

Inorder example

3621-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Postorder Traversal

void postOrder(BinTreeNode *t) {

if (t != NULL) {

postOrder(t->left); // Left Subtree 1st

postOrder(t->right);// Right Subtree

visit(t); // Visit root last

}

}

7621-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

g h d i e b j f c a

40

Postorder Example

21-Sep-17 77

CDS.IISc.ac.in | Department of Computational and Data Sciences

Level Order Traversal
void levelOrder(BinTreeNode *t){

Queue<BinTreeNode*> q;

while (t != NULL) {

visit(t); // visit t

// push children to queue

if (t->left) q.push(t->left);

if (t->right) q.push(t->right);

t = q.pop(); // next node to visit

}

}

4221-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Level Order Example

 Add and delete nodes from a queue

 Output: a b c d e f g h i j

4321-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Space and Time Complexity

• The space complexity of each of the four traversal
algorithms is O(n)

• Why not Ɵ(n)? Size of recursion stack/level queue is
variable.

• The time complexity of each of the four traversal
algorithm is Ɵ(n)

• Each node visited only one

4421-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Math Expression Evaluation:
Binary Tree Form

 a + b

 - a

+

a b

-

a

21-Sep-17 81

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Form
 (a + b) * (c – d) / (e + f)

+

a b

-

c d

+

e f

*

/

21-Sep-17 82

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merits Of Binary Tree Form

 Left and right operands are easy to visualize

 Code optimization algorithms work with the binary
tree form of an expression

 Simple recursive evaluation of expression

+

a b

-

c d

+

e f

*

/

Work it out!

21-Sep-17 83

CDS.IISc.ac.in | Department of Computational and Data Sciences

41

Postorder of Expression Tree

a b + c d - * e f + /

Gives postfix form of expression.

+

a b

-

c d

+

e f

*

/

21-Sep-17 84

CDS.IISc.ac.in | Department of Computational and Data Sciences

38

Inorder of Expression Tree

a + b * c – d /e + f
• Gives infix form of expression, which is how we

normally write math expressions.
• What about parentheses?
• Fully parenthesized output of the above tree?

+

a b

-

c d

+

e f

*

/

21-Sep-17 85

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study (Sahni Textbook)
‣ Chapters 7.1, 7.4 “Arrays & Matrices”

‣ Chapter 8, Stacks

‣ Chapter 9, Queues from textbook

‣ Chapter 11.0-11.6, Trees & Binary Trees from textbook

21-Sep-17 86

