
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS221 | 19 Sep – 19 Oct, 2017

Data Structures,
Algorithms & Data
Science Platforms

Yogesh Simmhan
s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

L2: More on Basic
Data Structures
Sparse Matrices, Stack, Queue, Trees

21-Sep-17 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

n-D Arrays

 Arrays can have more than 1-dimension
‣ 2-D Arrays are also called matrices

 Mapping from n-D to 1-D array
‣ Convert A[i][j] to B[k] … i=row index, j=column index
‣ Row Major Order of indexing: k=map(i,j)=i*C+j
‣ Column Major Order of indexing: k=map(i,j)=j*R+I

 Extend to 3+ dimension arrays?

21-Sep-17 3
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

n-D Arrays

 Array of Arrays representation

 First find pointer for row array

 Then lookup value at column offset in row array

 Pros & cons relative to using 1-D array
representation?

21-Sep-17 4
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Matrix Multiplication
// Given a[n][n], b[n][n]

// c[n][n] initialized to 0

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < N; k++)

c[i][j] += a[i][k] * b[k][j];

21-Sep-17 5

C

https://en.wikipedia.org/wiki/Matrix_multiplication

What is the time complexity?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices

Only a small subset of items are populated in
matrix
‣ Students and courses taken, faculty and courses taught

• Product gives…

‣ Adjacency matrix of social network graph
• vertices are people, edges are “friends”

• Rows and columns are people, cell has 0/1 value

Why not use regular 2-D matrix?
‣ 1-D representation

‣ Array of arrays representation

21-Sep-17 6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices:
Linear List representation
 Each non-zero item has one entry in list
‣ index: <row, column, value>

‣ index is the (i-1)th non-zero item in row-major order

21-Sep-17 7
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices: Addition
while(p < pMax && q < qMax) { // C is no. of cols in orig. matrix

p1 = A[p].r*C + A[p].c // get index for A in orig. matrix

q1 = B[q].r*C + B[q].c

if(p1 < q1) // Only A has that index

C[k] = <A[p].r, A[p].c, A[p].val> // Copy val

p++

else if(p1==q1) // Both A & B have that index

C[k] = <A[p].r, A[p].c, A[p].val+B[q].val> // Add vals

p++

q++

else // Only B has that index

C[k] = <B[q].r, B[q].c, B[q].val> // Copy vals

q++

k++

}

21-Sep-17 8
See Sahni, Program 7.17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Stacks

• Add a cup to the stack.

• Remove a cup from new stack.

• A stack is a LIFO list: Last in, First out

21-Sep-17 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

Stacks

• Container of objects that are inserted and
removed according to the LIFO principle

• Objects can be inserted at any time, but only the
last object can be removed.

• Inserting :“pushing”

• Removing : “Popping”

21-Sep-17 11

CDS.IISc.ac.in | Department of Computational and Data Sciences

Stacks - ADT

 New() creates a new stack

 Push(item) inserts the item onto top of stack

 item Pop() removes and returns the top item of
stack

 item Top() returns (but retains) the top item of
stack

 int Size() returns number of objects in stack

 Invariants
– S.Pop(S.Push(v)) = S

– S.Top(S.Push(v)) = v

21-Sep-17 12

CDS.IISc.ac.in | Department of Computational and Data Sciences

Parenthesis Matching

• Problem: Match the left and right parentheses in a
character string

 (a*(b+c)+d)
– Left parentheses: positions 0 and 3
– Right parentheses: positions 7 and 10
– Left at position 0 matches with right at position 10

 (a+b))*((c+d)
– (0,4) match

– (8,12) match
– Right parenthesis at 5 has no matching left parenthesis
– Left parenthesis at 7 has no matching right parenthesis

21-Sep-17 29

CDS.IISc.ac.in | Department of Computational and Data Sciences

Parenthesis Matching

(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)
– Output pairs (u,v) such that the left parenthesis at

position u is matched with the right parenthesis at v.
– (2,6) (1,13) (15,19) (21,25) (27,31) (0,32) (34,38)

• How do we implement this using a stack?
1. Scan expression from left to right

2. When a left parenthesis is encountered, add
its position to the stack

3. When a right parenthesis is encountered,
remove matching position from the stack

21-Sep-17 30

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example

 (a*(b+c)+d)

21-Sep-17 31

0 1 2 3 4 5 6 7 8 9 10

(a * (b + c) + d)

0 3

0

0

3,7 0,10

CDS.IISc.ac.in | Department of Computational and Data Sciences

(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)

1
0

2stack

output

1
0 0

(2,6) (1,13)

15
0 0

(15,19)

21
0 0

(21,25)…

…

Example

21-Sep-17 32

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue ADT

• FIFO Principle: First in, First Out

• Elements inserted only at rear (enqueued) end and
removed from front (dequeued)

• Also called “Head” and “Tail”

5 4 7 7 2 8 0 9

Rear

6

Enqueue(6)

Rear

Dequeue()→2

Front

2

Front

21-Sep-17 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue -Methods

• queue New() – Creates and returns an empty
queue

• Enqueue(item v) – Inserts object v at the rear
of the queue

• item Dequeue() – Removes the object from front of
the queue. Error occurs if the queue is empty

• item Front() – Returns, but does not remove the
front element. An error occurs if the queue is
empty

• int Size() – number of items in queue

21-Sep-17 34

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue –Invariants

 Front(Enqueue(New(),v)) = v

 Dequeue(Enqueue(New(), v)) = New()

 Front(Enqueue(Enqueue(Q, w), v)) =
Front(Enqueue(Q, w))

 Dequeue(Enqueue(Enqueue(Q, w), v))=
Enqueue(Dequeue(Enqueue(Q, w)), v)

21-Sep-17 35

CDS.IISc.ac.in | Department of Computational and Data Sciences

Array Implementation of Queue
• Using array in circular fashion

– Wraparound using mapping function (recollect from List
ADT discussion)

• A max size N is specified

• Q consists of an N element array and 2 integer
variables having array index:
– f: index of the front element (head, for dequeue)
– r: index of the element after the rear one (tail, for

enqueue)

f r

0 N-1Q

21-Sep-17 36

CDS.IISc.ac.in | Department of Computational and Data Sciences

Q

fr

0 N-1

Array Implementation of Queue

• What does f=r mean ?

• Resolve Ambiguity:

 We will never add nth element to Queue (declare full if
the size of queue is N-1) .

21-Sep-17 37

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo Code

• int size()
Return (N-f+r) mod N

• bool isEmpty()
Return(f==r)

• int front()
If isEmpty() then Return QueueEmptyException
Else Return Q[f]

21-Sep-17 38

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo Code
int front()
If isEmpty() then Return QueueEmptyException
Else Return Q[f]

int Dequeue()
If isEmpty() then Return QueueEmptyException
v = Q[f]
Q[f] = null
f = (f+1) mod N
Return v

Enqueue(v)
If size()==n-1 then Return QueueFullException
Q[r] = v
r = (r+1) mod N

int size()

Return (N-f+r) mod N
Compute Complexity? Storage Complexity?21-Sep-17 39

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List

 Problem with array: Requires the number of
elements a priori.

DATA DATA NULL

21-Sep-17 40

CDS.IISc.ac.in | Department of Computational and Data Sciences

Implementation with linked
List

Head Tail

Φ

Nodes (data, pointer) connected in a chain by links

• Maintain two pointers, to head and tail of linked list.
• The head of the list is FRONT of the queue, the tail of the list is REAR of the queue.
• Why not the opposite?

NOTE: Different
from what was
mentioned in

class.

FRONT of Queue REAR of Queue

21-Sep-17 41

CDS.IISc.ac.in | Department of Computational and Data Sciences

4
9

Linear Lists vs. Trees

• Linear lists are useful for serially ordered data
– (e1,e2,e3,…,en)

– Days of week

– Months in a year

– Students in a class

• Trees are useful for hierarchically ordered data
– Joe’s descendants

– Corporate structure

– Government Subdivisions

– Software structure

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Joe’s Descendants

5
0

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

5
1

Definition of Tree

• A tree t is a finite non-empty set of elements

• One of these elements is called the root

• The remaining elements, if any, are
partitioned into trees, which are called the
subtrees of t.

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Subtrees

5
2

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tree Terminology

• The element at the top of the
hierarchy is the root.

• Elements next in the hierarchy
are the children of the root.

• Elements next in the hierarchy
are the grandchildren of the
roo and so on.

• Elements at the lowest level of
the hierarchy are the leaves.

5
3

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tree Terminology

• Leaves, Parent, Grandparent, Siblings,
Ancestors, Descendents

Leaves = {Mike,AI,Sue,Chris}

Parent(Mary) = Joe

Grandparent(Sue) = Mary

Siblings(Mary) = {Ann,John}

Ancestors(Mike) = {Ann,Joe}

Descendents(Mary)={Mark,Sue}

5
4

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tree Terminology
• Depth of Node = No. of edges from the root to that node
• Height of Tree = No. of edges from root to farthest leaf
• Number of Levels of a Tree = Height + 1
• Node degree is the number of children it has

level 1

level 2

level 3

level 4 5
5

Height = 3

Depth(Al) = 2

Depth(Joe) = 0

degree=3

degree=1
degree=2

degree=021-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree

• A finite (possibly empty) collection of
elements

• A non-empty binary tree has a root element
and the remaining elements (if any) are
partitioned into two binary trees

• They are called the left and right sub-trees of
the binary tree

21-Sep-17 56

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree for Expressions

5721-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Properties
1. The drawing of every binary tree with n

elements, n > 0, has exactly n-1 edges.

– Each node has exactly 1 parent (except root)

2. A binary tree of height h, h >= 0, has at least h+1 and

at most 2h+1-1 elements in it.
‣ h+1 levels; at least 1 element at each level

#elements = h+1

‣ At most 2i-1 elements at i-th level Σ 2i-1 = 2h+1 -1

a+ar1+ar2+…+ arn = a(rn+1-1)/(r-1)
Note: Some tree definitions

differ between computer
science & discrete math21-Sep-17 58

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Properties
3. The height of a binary tree that contains n elements,

n >= 0, is at least log2 𝑛 and at most n-1.

– At least one element at each level hmax = #elements - 1

– From prev: hmin = ceil(log(n+1))

minimum number of elements maximum number of elements

5921-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Full Binary Tree
• A full binary tree of height h has exactly 2h+1-1 nodes

• Numbering the nodes in a full binary tree
– Number the nodes 1 through 2h+1-1

– Number by levels from top to bottom

– Within a level, number from left to right

60

Note: Some definitions
of full, complete trees
are NOT consistently

used everywhere

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

20

Complete Binary Tree with N
Nodes

 Start with a full binary tree that has at least n nodes

Number the nodes as described earlier

 The binary tree defined by the nodes numbered 1
through n is the n-node complete binary tree

 A full binary tree is a special case of a complete
binary tree

21-Sep-17 61

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complete Binary Tree

• Complete binary tree with 10 nodes.

• Same node number properties (as in full
binary tree) also hold here.

6221-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

63

Binary Tree Representation

• Array representation

• Linked representation

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Array Representation

• The binary tree is represented in an array by
storing each element at the array position
corresponding to the number assigned to it.

21-Sep-17 64

CDS.IISc.ac.in | Department of Computational and Data Sciences

Incomplete Binary Trees
Complete binary tree with some missing elements

6521-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Right-Skewed Binary Tree

• An n node binary tree needs an array whose
length is between n+1 and 2n.

• Right-skewed binary tree wastes the most space

• What about left-skewed binary tree?

• Equally bad, though with trailing blanks that
could be trimmed if known ahead 6621-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

67

Linked Representation

• The most popular way to present a binary tree

• Each element is represented by a node that has
two link fields (leftChild and rightChild) plus an
item field

• Each binary tree node is represented as an
object whose data type is BinTreeNode

• The space required by an n node binary
tree is n*sizeof(BinTreeNode)

21-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked Representation

6821-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Node Class For Linked Binary Tree

class BinTreeNode {

int item;

BinTreeNode *left, *right;

BinTreeNode() {

left = right = NULL;

}

}

6921-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

30

Binary Tree Traversal

Many binary tree operations are done by
performing a traversal of the binary tree

 In a traversal, each element of the binary tree is
visited exactly once

 During the visit of an element, all actions (make a
copy, display, evaluate the operator, etc.) with
respect to this element are taken

21-Sep-17 70

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Traversal Methods

 Preorder
‣ The root of the subtree is processed first before going into the left

then right subtree (root, left, right)

 Inorder
‣ After the complete processing of the left subtree first the root is

processed followed by the processing of the complete right subtree
(left, root, right)

 Postorder
‣ The left and right subtree are completely processed, before the

root is processed (left, right, root)

 Level order
‣ The tree is processed one level at a time
‣ First all nodes in level i are processed from left to right
‣ Then first node of level i+1 is visited, and rest of level i+1 processed

7121-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Preorder Traversal

void preOrder(BinTreeNode *t) {

if (t != NULL) {

visit(t); // Visit root 1st

preOrder(t->left); // Left Subtree

preOrder(t->right); // Right Subtree

}

}

7221-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

a b d g h e i c f j

Preorder Example
(visit action = print)

7321-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Inorder Traversal

void inOrder(BinTreeNode *t) {

if (t != NULL) {

inOrder(t->left); // Left Subtree 1st

visit(t); // Visit root

inOrder(t->right); // Right Subtree last

}

}

7421-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

g d h b e i a f j c

Inorder example

3621-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Postorder Traversal

void postOrder(BinTreeNode *t) {

if (t != NULL) {

postOrder(t->left); // Left Subtree 1st

postOrder(t->right);// Right Subtree

visit(t); // Visit root last

}

}

7621-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

g h d i e b j f c a

40

Postorder Example

21-Sep-17 77

CDS.IISc.ac.in | Department of Computational and Data Sciences

Level Order Traversal
void levelOrder(BinTreeNode *t){

Queue<BinTreeNode*> q;

while (t != NULL) {

visit(t); // visit t

// push children to queue

if (t->left) q.push(t->left);

if (t->right) q.push(t->right);

t = q.pop(); // next node to visit

}

}

4221-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Level Order Example

 Add and delete nodes from a queue

 Output: a b c d e f g h i j

4321-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Space and Time Complexity

• The space complexity of each of the four traversal
algorithms is O(n)

• Why not Ɵ(n)? Size of recursion stack/level queue is
variable.

• The time complexity of each of the four traversal
algorithm is Ɵ(n)

• Each node visited only one

4421-Sep-17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Math Expression Evaluation:
Binary Tree Form

 a + b

 - a

+

a b

-

a

21-Sep-17 81

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Form
 (a + b) * (c – d) / (e + f)

+

a b

-

c d

+

e f

*

/

21-Sep-17 82

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merits Of Binary Tree Form

 Left and right operands are easy to visualize

 Code optimization algorithms work with the binary
tree form of an expression

 Simple recursive evaluation of expression

+

a b

-

c d

+

e f

*

/

Work it out!

21-Sep-17 83

CDS.IISc.ac.in | Department of Computational and Data Sciences

41

Postorder of Expression Tree

a b + c d - * e f + /

Gives postfix form of expression.

+

a b

-

c d

+

e f

*

/

21-Sep-17 84

CDS.IISc.ac.in | Department of Computational and Data Sciences

38

Inorder of Expression Tree

a + b * c – d /e + f
• Gives infix form of expression, which is how we

normally write math expressions.
• What about parentheses?
• Fully parenthesized output of the above tree?

+

a b

-

c d

+

e f

*

/

21-Sep-17 85

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study (Sahni Textbook)
‣ Chapters 7.1, 7.4 “Arrays & Matrices”

‣ Chapter 8, Stacks

‣ Chapter 9, Queues from textbook

‣ Chapter 11.0-11.6, Trees & Binary Trees from textbook

21-Sep-17 86

