Indian Institute of Science Bangalore, India भारतीय विज्ञान संस्थान बंगलौर, भारत

DS221 | 19 Sep – 19 Oct, 2017 Data Structures, Algorithms & Data Science Platforms

Yogesh Simmhan

simmhan@cds.iisc.ac.in

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original author

L2: More on Basic Data Structures

Sparse Matrices, Stack, Queue, Trees

n-D Arrays

- Arrays can have more than 1-dimension
 - 2-D Arrays are also called matrices
- Mapping from n-D to 1-D array
 - Convert A[i][j] to B[k] ... i=row index, j=column index
 - Row Major Order of indexing: k=map(i,j)=i*C+j
 - Column Major Order of indexing: k=map(i,j)=j*R+I
- Extend to 3+ dimension arrays?

0	1	2	3	4	5		0	3	6	9	12	15
6	7	8	9	10	11		1	4	7	10	13	16
12	13	14	15	16	17		2	5	8	11	14	17
(L)	Rov	v-ma	jor n	appi	ng		(b) (Colu	nn-n	najor	mapı	ping

Figure 7.2 Mapping a two-dimensional array

n-D Arrays

- Array of Arrays representation
- First find pointer for row array
- Then lookup value at column offset in row array
- Pros & cons relative to using 1-D array representation?

Figure 7.3 Memory structure for a two-dimensional array

Matrix Multiplication
// Given a[n][n], b[n][n]
// c[n][n] initialized to 0
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];</pre>

What is the time complexity?

https://en.wikipedia.org/wiki/Matrix multiplication

5

21-Sep-17

Sparse Matrices

- Only a small subset of items are populated in matrix
 - Students and courses taken, faculty and courses taught
 - Product gives...
 - Adjacency matrix of social network graph
 - vertices are people, edges are "friends"
 - Rows and columns are people, cell has 0/1 value
- Why not use regular 2-D matrix?
 - 1-D representation
 - Array of arrays representation

Sparse Matrices: Linear List representation

- Each non-zero item has one entry in list
 - index: <row, column, value>
 - index is the (i-1)th non-zero item in row-major order

0	0	0	2	0	0	1	0	terms	0	1	2	3	4	5	6	7	8	
0	6	0	0	7	0	0	3	row	1	1	2	2	2	3	3	4	4	
0	0	0	9	0	8	0	0	col	4	7	2	5	8	4	6	2	3	
0	4	5	0	0	0	0	0	value	2	1	6	7.	3	9	8	4	5	
(a) A 4×8 matrix							(b)	Its 1	ine	ar l	ist 1	repi	rese	enta	tio	n		

Figure 7.14 A sparse matrix and its linear list representation

Sparse Matrices: Addition

```
while(p < pMax && q < qMax) { // C is no. of cols in orig. matrix</pre>
  p1 = A[p].r*C + A[p].c // get index for A in orig. matrix
  q1 = B[q].r*C + B[q].c
  if(p1 < q1)
               // Only A has that index
     C[k] = <A[p].r, A[p].c, A[p].val> // Copy val
     p++
  else if(p1==q1) // Both A & B have that index
     C[k] = <A[p].r, A[p].c, A[p].val+B[q].val> // Add vals
     p++
     q++
  else
                            // Only B has that index
     C[k] = \langle B[q].r, B[q].c, B[q].val \rangle // Copy vals
     q++
  k++
}
21-Sep-17
                                                            8
```


Stacks

- Add a cup to the stack.
- Remove a cup from new stack.
- A stack is a LIFO list: Last in, First out

21-Sep-17

Stacks

- Container of objects that are inserted and removed according to the LIFO principle
- Objects can be inserted at any time, but only the last object can be removed.
 - Inserting :"pushing"
 - Removing : "Popping"

Stacks - ADT

- New() creates a new stack
- Push(item) inserts the *item* onto top of stack
- item Pop() removes and returns the top item of stack
- item Top() returns (but retains) the top item of stack
- int Size() returns number of objects in stack
- Invariants
 - -S.Pop(S.Push(v)) = S
 - -S.Top(S.Push(v)) = v

Parenthesis Matching

- Problem: Match the left and right parentheses in a character string
- (a*(b+c)+d)
 - Left parentheses: positions 0 and 3
 - Right parentheses: positions 7 and 10
 - Left at position 0 matches with right at position 10
- (a+b))*((c+d)
 - (0,4) match
 - (8,12) match
 - Right parenthesis at 5 has no matching left parenthesis
 - Left parenthesis at 7 has no matching right parenthesis

Parenthesis Matching

(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)

- Output pairs (u,v) such that the left parenthesis at position u is matched with the right parenthesis at v.
- (2,6) (1,13) (15,19) (21,25) (27,31) (0,32) (34,38)
- How do we implement this using a stack?
 - 1. Scan expression from left to right
 - 2. When a left parenthesis is encountered, add its position to the stack
 - 3. When a right parenthesis is encountered, remove matching position from the stack

Example

(a*(b+c)+d)

0	1	2	3	4	5	6	7	8	9	10
(а	*	(b	+	С)	+	d)
0			3]			0			
			0							
				_			3,7			0,10

Example

(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)

Queue ADT

- FIFO Principle: First in, First Out
- Elements inserted only at rear (enqueued) end and removed from front (dequeued)
 - Also called "Head" and "Tail"

Queue -Methods

- queue New() Creates and returns an empty queue
- Enqueue(item v) Inserts object v at the rear of the queue
- item Dequeue() Removes the object from *front* of the queue. Error occurs if the queue is empty
- item Front() Returns, but does not remove the front element. An error occurs if the queue is empty
- int **Size**() number of items in queue

Queue – Invariants

- Front(Enqueue(New(),v)) = v
- Dequeue(Enqueue(New(), v)) = New()
- Front(Enqueue(Enqueue(Q, w), v)) =
 Front(Enqueue(Q, w))
- Dequeue(Enqueue(Enqueue(Q, w), v))=
 Enqueue(Dequeue(Enqueue(Q, w)), v)

Array Implementation of Queue

- Using array in *circular* fashion
 - Wraparound using mapping function (recollect from List ADT discussion)
- A max size N is specified
- Q consists of an N element array and 2 integer variables having array index:
 - f: index of the front element (head, for dequeue)
 - r: index of the element after the rear one (tail, for enqueue)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Array Implementation of Queue

• What does f=r mean ?

- Resolve Ambiguity:
 - We will never add nth element to Queue (declare full if the size of queue is N-1).

Pseudo Code

- int size() Return (N-f+r) mod N
- bool isEmpty()
 Return(f==r)
- int front()
 If isEmpty() then Return QueueEmptyException
 Else Return Q[f]

Pseudo Code

int front()
 If isEmpty() then Return QueueEmptyException
 Else Return Q[f]

int Dequeue()

If isEmpty() then Return QueueEmptyException
v = Q[f]
Q[f] = null
f = (f+1) mod N
Return v

Enqueue(v)

```
If size()==n-1 then Return QueueFullException
Q[r] = v
r = (r+1) mod N
```

int size()

Return (N-f+r) mod N 21-Sep-17

Compute Complexity? Storage Complexity?

Linked List

Problem with array: Requires the number of elements a priori.

CDS.IISc.ac.in | **Department of Computational and Data Sciences**

Implementation with linked List

Nodes (data, pointer) connected in a chain by links

- Maintain two pointers, to head and tail of linked list.
- The head of the list is FRONT of the queue, the tail of the list is REAR of the queue.
- Why not the opposite?

class.

Linear Lists vs. Trees

- Linear lists are useful for <u>serially ordered</u> data
 - $-(e_1,e_2,e_3,...,e_n)$
 - Days of week
 - Months in a year
 - Students in a class
- Trees are useful for <u>hierarchically ordered</u> data
 - Joe's descendants
 - Corporate structure
 - Government Subdivisions
 - Software structure

5 0

Definition of Tree

- A tree *t* is a finite non-empty set of elements
- One of these elements is called the root
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.

Subtrees

Tree Terminology

- The element at the top of the hierarchy is the **root**.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the roo and so on.
- Elements at the lowest level of the hierarchy are the leaves.

Tree Terminology

 Leaves, Parent, Grandparent, Siblings, Ancestors, Descendents

Leaves = {Mike,AI,Sue,Chris}
Parent(Mary) = Joe
Grandparent(Sue) = Mary
Siblings(Mary) = {Ann,John}
Ancestors(Mike) = {Ann,Joe}
Descendents(Mary)={Mark,Sue}

Tree Terminology

- **Depth** of Node = No. of edges from the root to that node
- **Height** of Tree = No. of edges from root to farthest leaf
- Number of Levels of a Tree = Height + 1
- Node degree is the number of children it has

Binary Tree

- A finite (possibly empty) collection of elements
- A non-empty binary tree has a root element and the remaining elements (if any) are partitioned into two binary trees
- They are called the left and right sub-trees of the binary tree

CDS.IISc.ac.in | **Department of Computational and Data Sciences**

Binary Tree for Expressions

Figure 11.5 Expression trees

Binary Tree Properties

- The drawing of every binary tree with n elements, n > 0, has exactly n-1 edges.
 - Each node has exactly 1 parent (except root)
- A binary tree of height h, h >= 0, has <u>at least h+1</u> and <u>at most 2^{h+1}-1 elements in it.</u>
 - h+1 levels; at least 1 element at each level → #elements = h+1
 - At most 2^{i-1} elements at i-th level $\rightarrow \Sigma 2^{i-1} = 2^{h+1} 1$ $a+ar^1+ar^2+...+ar^n = a(r^{n+1}-1)/(r-1)$

Note: Some tree definitions differ between computer science & discrete math

Binary Tree Properties

- The height of a binary tree that contains n elements,
 n >= 0, is <u>at least [log₂ n]</u> and at most n-1.
 - − At least one element at each level \rightarrow h_{max} = #elements 1
 - From prev: h_{min} = ceil(log(n+1))

minimum number of elements

maximum number of elements

Full Binary Tree

- A full binary tree of height *h* has exactly 2^{*h*+1}-1 nodes
- Numbering the nodes in a full binary tree
 - Number the nodes 1 through 2^{h+1}-1
 - Number by levels from top to bottom
 - Within a level, number from left to right

Complete Binary Tree with N Nodes

- Start with a full binary tree that has at least n nodes
- Number the nodes as described earlier
- The binary tree defined by the nodes numbered 1 through n is the n-node complete binary tree
- A full binary tree is a special case of a complete binary tree

Complete Binary Tree

- Complete binary tree with 10 nodes.
- Same node number properties (as in full binary tree) also hold here.

Binary Tree Representation

- Array representation
- Linked representation

Array Representation

• The binary tree is represented in an array by storing each element at the array position corresponding to the number assigned to it.

Incomplete Binary Trees

Complete binary tree with some missing elements

CDS.IISc.ac.in | **Department of Computational and Data Sciences**

66

- An n node binary tree needs an array whose length is between n+1 and 2ⁿ.
- Right-skewed binary tree wastes the most space
- What about left-skewed binary tree?

• Equally bad, though with trailing blanks that 21-Sep-17 could be trimmed if known ahead

Linked Representation

- The most popular way to present a binary tree
- Each element is represented by a node that has two link fields (leftChild and rightChild) plus an item field
- Each binary tree node is represented as an object whose data type is BinTreeNode
- The space required by an *n* node binary tree is *n**sizeof(BinTreeNode)

Linked Representation

Node Class For Linked Binary Tree

class BinTreeNode {

```
int item;
```

```
BinTreeNode *left, *right;
```

```
BinTreeNode() {
   left = right = NULL;
}
```

Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree
- In a traversal, each element of the binary tree is visited exactly once
- During the visit of an element, all actions (make a copy, display, evaluate the operator, etc.) with respect to this element are taken

Binary Tree Traversal Methods

Preorder

- The root of the subtree is processed first before going into the left then right subtree (root, left, right)
- Inorder
 - After the complete processing of the left subtree first the root is processed followed by the processing of the complete right subtree (left, <u>root</u>, right)
- Postorder
 - The left and right subtree are completely processed, before the root is processed (left, right, root)

Level order

- The tree is processed one level at a time
- First all nodes in level *i* are processed from left to right
- Then first node of level *i*+1 is visited, and rest of level *i*+1 processed

Preorder Traversal

void preOrder(BinTreeNode *t) { if (t != NULL) { visit(t); // Visit root 1st preOrder(t->left); // Left Subtree preOrder(t->right); // Right Subtree } }

CDS.IISc.ac.in | Department of Computational and Data Sciences

Inorder Traversal

void inOrder(BinTreeNode *t) { if (t != NULL) { inOrder(t->left); // Left Subtree 1st visit(t); // Visit root inOrder(t->right); // Right Subtree last }

CDS.IISc.ac.in | **Department of Computational and Data Sciences**

Postorder Traversal

void postOrder(BinTreeNode *t) { if (t != NULL) { postOrder(t->left); // Left Subtree 1st postOrder(t->right); // Right Subtree visit(t); // Visit root last }

Level Order Traversal

void levelOrder(BinTreeNode *t){ Queue<BinTreeNode*> q; while (t != NULL) { visit(t); // visit t // push children to queue if (t->left) q.push(t->left); if (t->right) q.push(t->right); t = q.pop(); // next node to visit } }

Add and delete nodes from a queue
Output: a b c d e f g h i j

Space and Time Complexity

- The space complexity of each of the four <u>traversal</u> <u>algorithms</u> is O(n)
 - Why not Θ(n)? Size of recursion stack/level queue is variable.
- The time complexity of each of the four traversal algorithm is O(n)
 - Each node visited only one

CDS.IISc.ac.in | Department of Computational and Data Sciences

Math Expression Evaluation: Binary Tree Form

■ a + b

Binary Tree Form • (a + b) * (c - d) / (e + f)

Merits Of Binary Tree Form

- Left and right operands are easy to visualize
- Code optimization algorithms work with the binary tree form of an expression
- Simple recursive evaluation of expression

Work it out!

CDS.IISc.ac.in | **Department of Computational and Data Sciences**

Postorder of Expression Tree

a b + c d - * e f + / Gives postfix form of expression.

Inorder of Expression Tree

a + b * c - d /e + f

- Gives infix form of expression, which is how we normally write math expressions.
 - What about parentheses?

• Fully parenthesized output of the above tree? 21-Sep-17

Tasks

Self study (Sahni Textbook)

- Chapters 7.1, 7.4 "Arrays & Matrices"
- Chapter 8, Stacks
- Chapter 9, Queues from textbook
- Chapter 11.0-11.6, Trees & Binary Trees from textbook