
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान ससं्थान
बगंलौर , भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS221 | 19 Sep – 19 Oct, 2017

Data Structures,
Algorithms & Data
Science Platforms

Yogesh Simmhan

s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

L3: Fast Searching
Hashmap, Heap, Search Trees, B-Tree, Trie

28-Sep-17 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dictionary Abstract Data Structure

• Store <key,value> as a pair

• Lookup the value for a given key

• Goal: Lookup has to fast

▪ Different implementations
‣ Ordered List

‣ Hash table (or Hash Map)

‣ Binary Search Tree

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dictionary using List

▪ Dictionary stored as a List of <key,value> items
‣ Insertion time? Searching time?

▪ Dictionary stored as an Ordered List of <key,value>
elements, ordered by key
‣ What’s the advantage?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dictionary as a Sorted List

▪ Idea: Divide and Conquer

▪ Narrow down the search range by half at each stage

▪ E.g. find (8)

▪ Start with floor(|search space| / 2)

▪ 2 5 8 9 11 17 20 22

▪ 2 5 8 9 11 17 20 22

▪ 2 5 8 9 11 17 20 22

28-Sep-17 5

Binary search over array
Takes O(log2(n)) searches

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dictionary as a Sorted List
int bsearch(KVP[] list, int start, int end, int k) {

if (end < start) return -1 // No match!

i = start+(end-start)/2 // midpoint

if (list[i].key == k) // Found!

return list[i].value

if (list[i].key < k) // check 2nd half

return bsearch(list, i+1, end, k)

else // check 1st half

return bsearch(list, start, i-1, k)

}

28-Sep-17 6

Usual problem with arrays!
• Unused capacity
• Costly to update and maintain sorted list…many shifts

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hash Table

• Uses a 1D array (or table) table[0:b-1]

▪ Each position of this array is a bucket

▪ Number of buckets is b

▪ A bucket can normally hold only one dictionary pair: <key,
value>
‣ But larger capacity allowed per bucket as well

• Uses a hash function h that converts each key k into an

index in the range [0, b-1].
▪ h(k) is the “home bucket” for key k.

• Every dictionary pair is stored in its home bucket

table[h(item.key)] = item

CDS.IISc.ac.in | Department of Computational and Data Sciences

Ideal Hashing Example

▪ KVPs are: (22,a), (33,c), (3,d), (73,e), (85,f).

▪ Hash table is table[0:7], b = 8.

▪ Hash function h=key/11

▪ Pairs are stored in table as below

▪ Lookup, Insert and Delete are done similarly

o Apply hash, find bucket, perform op.

o Take O(1) time to apply hash and do array access

(3,d) (22,a) (33,c) (73,e) (85,f)

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

• Where does (99,k) go?

• Hash function causes us to go beyond table size

• Simple fix: do a “mod” with the bucket size by default

• h = (k / 11) % 8

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

• Where does (26,g) go?

• Keys 22 and 26 have the same home bucket, are
synonyms with respect to the hash function used
• This is a collision

• The home bucket for (26,g) is already occupied

• And capacity of bucket is only 1 item

• This is called an overflow

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

▪ A collision occurs when the home bucket for a new pair is
occupied by a pair with a different key

▪ An overflow occurs when there is no space in the home
bucket for a new pair
‣ E.g. if each bucket has capacity to hold two values for same key,

and more than 2 values for the key are inserted

▪ If a bucket has a capacity of 1, collisions and overflows
occur together
‣ Can we allow buckets to hold multiple item? Unbounded items?
‣ Using a linked list for each bucket item is called “Chaining”

▪ Need a method to handle overflows

CDS.IISc.ac.in | Department of Computational and Data Sciences

Designing/Selecting a Hash Table

• Choice of hash function
• Quick to compute

• Distributes keys uniformly throughout the table

• Each bucket has the same probability of the number of keys in
the input range that will be hashed to it

• E.g. h=k%b is a uniform hash function for keys in the range [0..r]
… assuming all keys have equal probability of occurrence

• Buckets get ceil(r/b) or floor(r/b) items hashed to each

• Size (number of buckets) of hash table

• Decides frequency of collision

• Overflow handling method

CDS.IISc.ac.in | Department of Computational and Data Sciences

Open Addressing to handle
Overflows
• All elements are stored in the hash table

• Elements to store <= capacity of table

• Each table entry contains either a <key,value>
element or null

• While inserting an element systematically
probe table slots if overflow occurs

• While searching for an element systematically
probe table slots if bucket does not match key

CDS.IISc.ac.in | Department of Computational and Data Sciences

Open Addressing
• Modify the hash function to take the probe

number i as second parameter
• h: K x {0,1,…b-1} → {0,1,…b-1}

• Hash function, h, also determines the
sequence of slots “probed” for a given key

• Probe sequence for a given key k is the series
of buckets h(k,0),h(k,1),…,h(k,b-1)

• Use h(k,0) as bucket if no overflow

• Else probe each bucket from successive hash
fns., i.e. a permutation of <0,1,…b-1>

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear Probing
• If the current location is occupied, try the next

location

LPInsert(k)

If (table is full) return error

probe = h(k)

while (table[probe] is occupied)

probe = (probe+1) mod b

table[probe]=k

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear Probing – Example
• Home bucket h(k) = k mod 17

• Insert keys: 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45

0 4 8 12 16
34 0 6 23 7 28 12 29 11 30 33

0 4 8 12 16
34 0 45 6 23 7 28 12 29 11 30 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Lookup in Linear Probing

• Search for a key: Go to (k mod 17) and
continue looking at successive locations till we
find k or reach empty location.
• Longer (unsuccessful) lookup time
• Deletion?

0 4 8 12 16
34 0 45 6 23 7 28 12 29 11 30 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Deletion

• Shift all elements to previous location?
• Costly

• Instead, place flag at vacated location
• neverUsed=false

• Lookup continues till neverUsed=true

• Insert puts element in first location with
neverUsed=true, sets it to false

• Too many markers degrade performance

• Perform Rehashing

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Search Tree (BST)

▪ Combining speed of binary search over array with
dynamic capacity of a linked list

▪ A binary tree with each node having a (key, value) pair

▪ For each node x,
‣ All keys in the left subtree of x are smaller than the key of x

‣ All keys in the right subtree of x are greater than the key of x

▪ Dictionary Operations
‣ find(key)

‣ insert(key, value)

‣ delete(key)

21-Sep-17 19

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example Binary Search Tree
20

10

6

2 8

15

40

30

25

<

<

< <

<

>

>

>

Only keys are
shown. Values

are implicit.

CDS.IISc.ac.in | Department of Computational and Data Sciences

The Operation find()

Complexity is O(height) = O(n), where n is
the number of nodes/elements.

20

10

6

2 8

15

40

30

25

In-order traversal of BST
gives a sorted array.
Iintuition behind “binary
search” by partitioning
into two.

CDS.IISc.ac.in | Department of Computational and Data Sciences

The Operation insert()

Insert a pair whose key is 35.

20

10

6

2 8

15

40

30

25 35

CDS.IISc.ac.in | Department of Computational and Data Sciences

The Operation insert()

Insert a pair whose key is 7.

20

10

6

2 8

15

40

30

25 35

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

The Operation insert()

Insert a pair whose key is 18.

20

10

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

The Operation insert()

Complexity of insert() is O(height).

20

10

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

The Operation delete()

▪ Three cases:
‣ Element is in a leaf.

‣ Element is in a degree 1 node.

‣ Element is in a degree 2 node.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From A Leaf

Delete a leaf element.
Set parent to NULL

20

10

6

2 8

15

40

30

25 35

7

18

Delete key = 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From A Leaf

Delete a leaf element. key = 35

20

10

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 1 Node

Delete from a degree 1 node.
Point parent to child.

20

10

6

2 8

15

40

30

25 35

7

18

Delete key = 40

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete from a degree 1 node. key = 15

Delete From Degree 1 Node
20

10

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node

Delete from a degree 2 node. key = 10

20

10

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node

Replace with largest key in left subtree
(or smallest in right subtree).

20

10

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node

Replace with content from
• largest key in left subtree, or
• smallest in right subtree

20

8

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node
20

8

6

2 8

15

40

30

25 35

7

18

Delete node copied over
• Largest key in left subtree will

be a leaf, or degree 1 node.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node

Delete from a degree 2 node. key = 20

20

10

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node

Replace with content from
• largest key in left subtree, or
• smallest in right subtree

18

10

6

2 8

15

40

30

25 35

7

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node
18

10

6

2 8

15

40

30

25 35

7

18

Delete node copied over

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node
18

10

6

2 8

15

40

30

25 35

7

Complexity is O(height)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tree Imbalances
▪ Inserting and Deleting in specific orders can cause

tree to be imbalanced
‣ E.g. insert in sorted ascending/descending order

‣ Height of left and right subtrees are very different,
skewed

▪ Causes complexity to tend to O(n) rather than
O(log(n))

▪ Periodically rebalance if skew greater than a
threshold
‣ Balanced BST, e.g., AVL Tree, Red-Black Tree, etc.

28-Sep-17 39

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity Of Dictionary
Operations find(), insert()

▪ Given n elements in the dictionary

Data Structure Worst Case Expected

Hash Table O(n) O(1)

Binary Search Tree O(n) O(log n)

Balanced Binary
Search Tree

O(log n) O(log n)

CDS.IISc.ac.in | Department of Computational and Data Sciences

B-Tree: Searching External
Storage
▪ Main memory (RAM) is fast, but has limited

capacity

▪ Different considerations for in-memory vs. on-disk
data structures for search

▪ Problem: Database too big to fit memory
‣ Disk reads are slow

▪ Example: 1,000,000 records on disk

▪ Binary search might take 20 disk reads
‣ log2(1M) ~= 20

21-Sep-17 42www.cs.nott.ac.uk/~psznza/G52ADS/btrees2.pdf
http://www.cs.carleton.edu/faculty/jgoldfea/cs201/spring11/inclass/Tree/BTreefinalNew.pdf

CDS.IISc.ac.in | Department of Computational and Data Sciences

Searching External Storage

▪ But disks are accessed “block
at a time” by OS

▪ Blocks are typically 1KiB–4KiB
in size
‣ Can span multiple “sectors” on

HDD
‣ Access time per block
‣ ~12ms for HDD
‣ <1ms for SSD

▪ Say 1KiB block, 100B per
record
‣ 10,000 blocks for 1M records

21-Sep-17 43

CDS.IISc.ac.in | Department of Computational and Data Sciences

Searching External Storage

21-Sep-17 44

CDS.IISc.ac.in | Department of Computational and Data Sciences

B-Trees
▪ Data structures for external memory, not main memory

‣ Goal is to reduce number of block accesses, not number of
comparisons

▪ Similar to binary search tree
‣ But allow more than 1 value and 2 children per node
‣ Each node is one disk block with data records plus block addresses

of children

▪ B-Trees
‣ Proposed by R. Bayer and E. M. McCreigh in 1972.
‣ “Bayer”, “Balanced”, Bushy”, “Boeing” trees?
‣ Different from binary trees

▪ NOTE
‣ In-memory data structure will be better than on-disk
‣ milliseconds vs. nano seconds
‣ So in-memory binary tree will be better than on-disk B Tree
‣ But on-disk B Tree better than on-disk binary tree

21-Sep-17 45

CDS.IISc.ac.in | Department of Computational and Data Sciences

B-Tree
▪ Like BST, node has alternate children (block pointers)

and records (Key and Values)
‣ Number of children = Number of Records + 1

▪ Key’s of a node is greater than all keys on left child’s
tree and smaller than all keys on right child’s tree
‣ Values within a node are in increasing order

▪ Bounds on minimum and maximum number of
children in a node. For order ‘m’ tree:
‣ Internal node has max ‘m’ and minimum floor(m/2) children
‣ Root and leaves have max ‘m’ and minimum of 2 children

21-Sep-17 46

Blk id <k,v> Blk id <k,v> Blk id <k,v> Blk id <k,v> Blk id

Blk id <k,v> Blk id …and its smallest-sized Node

E.g. order 5 B-Tree’s largest-sized Node…

CDS.IISc.ac.in | Department of Computational and Data Sciences

B-Tree Search (Order 5)

21-Sep-17 47

Block Contents

145 M,val 9367 R,val 25

Block ID 145 Block ID 9367 Block ID 25

Root Block ID=783
Block ID 783

CDS.IISc.ac.in | Department of Computational and Data Sciences

B-Tree Search (Order 5)

21-Sep-17 48

Root Block ID=783
Lookup is similar to BST
• Load root block from disk
• Test keys in root block. If match,

then return record.
• Else, load relevant child block

from disk.
• Test keys in child block…
• …

Lookup ‘P’

P > J

P > M
P < R

CDS.IISc.ac.in | Department of Computational and Data Sciences

B-Tree Creation

21-Sep-17 49

Split if keys > m-1
Add mid-point to parent.

Create parent if root.

CDS.IISc.ac.in | Department of Computational and Data Sciences

B-Tree Creation

21-Sep-17 50

Split if keys > m-1
Add mid-point key to parent.

CDS.IISc.ac.in | Department of Computational and Data Sciences

B-Tree Creation

21-Sep-17 51

Split if keys > m-1
Add mid-point to parent.

Create parent if root.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Efficiency of B-trees

▪ If a B-tree has order m, then each node (apart from
the root) has at least m/2 children

▪ So the depth of the tree is at most log m/2 (size)+1
‣ These many blocks have to be loaded from disk

▪ In the worst case, we have to make m-1
comparisons in each node
‣ Linear search, but (m-1) is a constant factor and in-

memory scan cost is lower

21-Sep-17 52

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
▪ Self study (Sahni Textbook)

‣ Chapter 10.5, Hashing from textbook
‣ Chapter 11.0-11.6, Trees & Binary Trees from textbook
‣ B Trees (online sources)

▪ Fill in Online Sheet for turing cluster access [EOD
Today]

https://indianinstituteofscience-my.sharepoint.com/
personal/simmhan_iisc_ac_in/_layouts/15/guestaccess.aspx?
docid=1558af6b90b044ce68cd538af494332e6&
authkey=ASOdv5uQxeZbG_oH-7mYzDg

▪ Assignment 2 posted by 30/Sep, due 10/Oct
‣ Data structures

▪ C++ tutorial on Tue 3/Oct 5-730PM

21-Sep-17 59

