477, [ndian Institute of Science artment of Computational and Data Sciences

DS221|19 Sep - 19 Oct, 2017
Data Structures,

Algorithms & Data
Science Platforms

&.} The Department of Computational and Data Science

http://creativecommons.org/licenses/by/4.0/deed.en_US

. CDS.lISc.ac.in | Department of Computational and Data Sciences

L.3: Fast Searching

Hashmap, Heap, Search Trees, B-Tree, Trie

28-Sep-17 0

CDS.lISc.ac.in | Department of Computational and Data Sciences

Dictionary Abstract Data Structure

e Store <key,value> as a pair
* Lookup the value for a given key

e Goal: Lookup has to fast

" Different implementations
» Ordered List
» Hash table (or Hash Map)
> Binary Search Tree

CDS.lISc.ac.in | Department of Computational and Data Sciences

Dictionary using List

" Dictionary stored as a List of <key,value> items
> Insertion time? Searching time?

= Dictionary stored as an Ordered List of <key,value>
elements, ordered by key

» What'’s the advantage?

CDS.lISc.ac.in | Department of Computational and Data Sciences

Dictionary as a Sorted List

" |dea: Divide and Conquer

=" Narrow down the search range by half at each stage
" E.g. find (8)

= Start with floor(|search space| / 2)

=2 5 89 11 17 20 22

=2 58 9 11 17 20 22

=2 589 11 17 20 22

Binary search over array

Takes Oflog,(n)) searches
28-Sep-17 5

CDS.lISc.ac.in | Department of Computational and Data Sciences

Dictionary as a Sorted List

int bsearch(KVP[] list, int start, int end, int k) {
if (end < start) return -1 // No match!
i = start+(end-start)/2 // midpoint
if (list[i].key == k) // Found!
return list[i].value
if (list[i].key < k) // check 2nd half
return bsearch(list, i+1, end, k)
else // check 1st half
return bsearch(list, start, i-1, k)

} Usual problem with arrays!
* Unused capacity
e Costly to update and maintain sorted list...many shifts

28-Sep-17 b

| Department of Computational and Data Sciences

Hash Table

 Uses a 1D array (or table) table[0:b-1]

= Each position of this array is a bucket
= Number of buckets is b

= A bucket can normally hold only one dictionary pair. <key,
value>

» But larger capacity allowed per bucket as well

e Uses a hash function h that converts each key k into an

index in the range [0, b-1].
= h(k) is the “home bucket” for key k.

* Every dictionary pair is stored in its home bucket

table[h(item.key)] = item

ent of Computational and Data Sciences

= KVPs are: (22,a), (33,c), (3,d), (73,e), (85,1).
= Hash table is table[0:7], b = 8.

» Hash function h=key/11

= Pairs are stored in table as below

(3,d) (22,a) [(33,c) (73,e)|(85,f)

= Lookup, Insert and Delete are done similarly
o Apply hash, find bucket, perform op.

o Take O(1) time to apply hash and do array access

| Department of Computational and Data Sciences

(3,d) (22,a) |(33,c) (73,e)

(85,f)

 Where does (99,k) go?

e Hash function causes us to go beyond table size

* Simple fix: do a “mod” with the bucket size by default

* h=(k/11)%8

Department of Computational and Data Sciences

(3,d) (22,a) |(33,c) (73,e)|(85,f)

* Where does (26,g) go?

e Keys 22 and 26 have the same home bucket, are
synonyms with respect to the hash function used
e Thisis a collision
 The home bucket for (26,g) is already occupied
* And capacity of bucket is only 1 item

 This is called an overflow

irtment of Computational and Data Sciences

(3,d) (22,a) |(33,¢) (73,e)|(85,f)

= A collision occurs when the home bucket for a new pair is
occupied by a pair with a different key

= An overflow occurs when there is no space in the home
bucket for a new pair
> E.g. if each bucket has capacity to hold two values for same key,
and more than 2 values for the key are inserted

= |f 3 bucket has a capacity of 1, collisions and overflows
occur together

> Can we allow buckets to hold multiple item? Unbounded items?
» Using a linked list for each bucket item is called “Chaining”

= Need a method to handle overflows

| Department of Computational and Data Sciences

e Choice of hash function

Quick to compute
Distributes keys uniformly throughout the table

Each bucket has the same probability of the number of keys in
the input range that will be hashed to it

E.g. h=k%b is a uniform hash function for keys in the range [O..r]
... assuming all keys have equal probability of occurrence

Buckets get ceil(r/b) or floor(r/b) items hashed to each

e Size (number of buckets) of hash table

Decides frequency of collision

e Overflow handling method

putational and Data Sciences

All elements are stored in the hash table
* Elements to store <= capacity of table

Each table entry contains either a <key,value>
element or null

While inserting an element systematically
probe table slots if overflow occurs

While searching for an element systematically
probe table slots if bucket does not match key

of Computational and Data Sciences

Modify the hash function to take the probe

number i as second parameter

* h: K x {6,1,..b-1} > {0,1,..b-1}
Hash function, h, also determines the
sequence of slots “probed” for a given key

Probe sequence for a given key k is the series
of buckets h(k,0),h(k,1),..,h(k,b-1)
* Use h(k,©) as bucket if no overflow

* Else probe each bucket from successive hash
fns., i.e. a permutationof <6, 1,..b-1>

CDS.lISc.ac.in | Department of Computational and Data Sciences

Linear Probing

* If the current location is occupied, try the next
location

LPInsert(k)
If (table is full) return error
probe = h(k)
while (table[probe] is occupied)

probe = (probe+l) mod b
table[probe]=k

* Home bucket h(k) =k mod 17

* Insert keys: 6,12, 34,29,28,11,23,7, 0,33, 30, 45

ment of Computational and Data Sciences

0 4 8 12 16
34| 0 23| 7 2812 29| 11| 30| 33
0 4 8 12 16
34| 0|45 23| 7 2812 29| 11| 30| 33

Computational and Data Sciences

e Search for a key: Go to (k mod 17) and
continue looking at successive locations till we
find k or reach empty location.

* Longer (unsuccessful) lookup time
* Deletion?

0 4 3 12 16
34| 0 (45 6 (23| 7 2812 129|11|30|33

of Computational and Data Sciences

Shift all elements to previous location?
e Costly
Instead, place flag at vacated location

Lookup continues till

Insert puts element in first location with
, sets it to

Too many markers degrade performance

e Perform Rehashing

CDS.lISc.ac.in | Department of Computational and Data Sciences

Binary Search Tree (BST)

= Combining speed of binary search over array with
dynamic capacity of a linked list

= A binary tree with each node having a (key, value) pair

= For each node x,
> All keys in the left subtree of x are smaller than the key of x
» All keys in the right subtree of x are greater than the key of x

= Dictionary Operations
> find(key)
> insert(key, value)
> delete(key)

21-Sep-17 19

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Example Binary Search Tree

Only keys are
shown. Values
are implicit.

CDS.lISc.ac.in | Department of Computational and Data Sciences

In-order traversal of BST
gives a sorted array.
lintuition behind “binary
search” by partitioning
into two.

Complexity is O(height) = O(n), where n is
the number of nodes/elements.

. CDS.lISc.ac.in | Department of Computational and Data Sciences

The Operation insert()

Insert a pair whose key is 35.

. CDS.lISc.ac.in | Department of Computational and Data Sciences

The Operation insert()

Insert a pair whose key is 7.

. CDS.lISc.ac.in | Department of Computational and Data Sciences

The Operation insert()
2

0 0
D 30

ERY A
7

Insert a pair whose key is 18.

. CDS.lISc.ac.in | Department of Computational and Data Sciences

The Operation insert()
2

10 40
6 15 30

ERY B s o
7

Complexity of insert() is O(height).

CDS.lISc.ac.in | Department of Computational and Data Sciences

The Operation delete()

" Three cases:
> Element is in a leaf.
» Element is in a degree 1 node.
» Element is in a degree 2 node.

CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From A Leaf

@ Delete key = 7

10 a0
s 15 30

O R
o

Delete a leaf element.
Set parent to NULL

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From A Leaf

Delete a leaf element. key = 35

CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 1 Node

@ Delete key = 40

10 D
6 15 30

U R
2

Delete from a degree 1 node.
Point parent to child.

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 1 Node
2

10 w0
¢ @ 30

ERY A
2

Delete from a degree 1 node. key = 15

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node
2

o »
s s 3

S
k2

Delete from a degree 2 node. key = 10

CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node
2

19 a0
s 15 30

s B’ x5 g

Replace with largest key in left subtree
(or smallest in right subtree).

artment of Computational and Data Sciences

/> { &

Replace with content from
* Jlargest key in left subtree, or
 smallest in right subtree

CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node
2

a0
s 15 30

2 ® B s

7 Delete node copied over
e Largest key in left subtree will
oe a leaf, or degree 1 node.

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node
&

10 40
6 15 30

ERY B
7

Delete from a degree 2 node. key = 20

irtment of Computational and Data Sciences

/ 6 \ 15 /30\
2 8 25 35
7 Replace with content from

* Jlargest key in left subtree, or
 smallest in right subtree

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node

10 w0
o s 30

FETS ® s
7

Delete node copied over

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Delete From Degree 2 Node

Complexity is O(height)

Department of Computational and Data Sciences

" Inserting and Deleting in specific orders can cause
tree to be imbalanced

» E.g. insert in sorted ascending/descending order

» Height of left and right subtrees are very different,
skewed

= Causes complexity to tend to O(n) rather than
O(log(n))

= Periodically rebalance if skew greater than a
threshold

» Balanced BST, e.g., AVL Tree, Red-Black Tree, etc.

28-Sep-17 39

ent of Computational and Data Sciences

find(),insert()

= Given n elements in the dictionary

Data Structure
Hash Table

Worst Case
O(n)

Binary Search Tree O(n)

Balanced Binary
Search Tree

O(log n)

Expected
O(1)
O(log n)
O(log n)

| Department of Computational and Data Sciences

B-Tree

* Main memory (RAM) is fast, but has limited
capacity

= Different considerations for in-memory vs. on-disk
data structures for search

" Problem: Database too big to fit memory
» Disk reads are slow

= Example: 1,000,000 records on disk

" Binary search might take 20 disk reads
> log2(1M) ~= 20

¢1-Sep-17 42

CDS.lISc.ac.in | Department of Computational and Data Sciences

Searching External Storage

= But disks are accessed “block
at a time” by OS

= Blocks are typically 1KiB—4KiB

In size
» Can span multiple “sectors” on
HDD
» Access time per block
» ~12ms for HDD b
» <1ms for SSD Figure 1 Disk structures: =
= Say 1KiB block, 100B per G
reco rd C. Track sector

D. Cluster
» 10,000 blocks for 1M records S
https://en.wikipedia.org/wiki/Disk_sector

21-Sep-17 43

CDS.lISc.ac.in | Department of Computational and Data Sciences

Searching External Storage

Block 0
/ / 100 Records

Block 0 | Block 1

10,000 Records

Blockl | Block2 | .ornunns BIOCK 99, uiiiiiiirierasseesessserensnsnesenennnes | BlOCK 9999

................................... Block 99

Block O

1.000.000 Records

21-Sep-17 44

Department of Computational and Data Sciences

" Data structures for external memory, not main memory

> Goal is to reduce number of block accesses, not number of
comparisons

= Similar to binary search tree
» But allow more than 1 value and 2 children per node

» Each node is one disk block with data records plus block addresses
of children

= B-Trees
» Proposed by R. Bayer and E. M. McCreigh in 1972.

» “Bayer”, “Balanced”, Bushy”, “Boeing” trees?
» Different from binary trees

= NOTE
» In-memory data structure will be better than on-disk
» milliseconds vs. nano seconds
» So in-memory binary tree will be better than on-disk B Tree
» But on-disk B Tree better than on-disk binary tree

¢1-Sep-17 43

| Department of Computational and Data Sciences

= Like BST, node has alternate children (block pointers)
and records (Key and Values)

> Number of children = Number of Records + 1

= Key’s of a node is greater than all keys on left child’s
tree and smaller than all keys on right child’s tree

> Values within a node are in increasing order

= Bounds on minimum and maximum number of
children in a node. For order ‘m’ tree:

> |Internal node has max ‘m” and minimum floor(m/2) children
» Root and leaves have max ‘m” and minimum of 2 children

E.g. order 5 B-Tree’s largest-sized Node...

Blk id [<lV> Bik id [Slv>] Bik id k> Bk id [<kv> Blkid
m m ...and its smallest-sized Node

¢1-Sep-17 46

. CDS.lISc.ac.in | Department of Computational and Data Sciences

B-Tree Search (Order 5)

AGFBKDHMIJESIRXCLNTUP

Root Block ID=783

Block ID 783
e

J Block Contents

s [l 5367 [l 25
_——
L

Al B D|E G| H|I K|L N|P STU)J

™ ™ ™\
Block ID 145 @ | Block ID 9367 Block ID 25

21-Sep-17 4]

CDS.lISc.ac.in | Department of Computational and Data Sciences

B-Tree Search (Order 5)

AGFBKDHMIJESIRXCLNTUP

Lookup is similar to BST

Root Block ID=783

Load root block from disk
Test keys in root block. If match,

Else, load relevant child block

Test keys in child block...

Lookup ‘P’
P\>i then return record.
from disk.
P>M °
M P<R .
K N | P s| T U J

21-Sep-17

48

CDS.lISc.ac.in | Department of Computational and Data Sciences

B-Tree Creation
AGFBKDHMIJESIRXCLNTUP

v

Split if keys > m-1
Add mid-point to parent. A B G K
Create parent if root.

AGFBKDHMIJESIRXCLNTUP

21-Sep-17 49

B-Tree Creation
AGFBKDHMIJESIRXCLNTUP

CDS.lISc.ac.in | Department of Computational and Data Sciences

Split if keys > m-1
Add mid-point key to parent.

A B D E G H I K M S

CDS.lISc.ac.in | Department of Computational and Data Sciences

B-Tree Creation
AGFBKDHMIJESIRXCLNTUP

A B D |E G H I K |L N |P S T Ul X

@ Split i keys > m-1

Add mid-point to parent.
[Create parent if root.

Al B D|E G H I K| L N P STU)J
21-Sep-1/ 11

Department of Computational and Data Sciences

= |f a2 B-tree has order m, then each node (apart from
the root) has at least m/2 children

" So the depth of the tree is at most log , /, (size)+1
» These many blocks have to be loaded from disk

= |In the worst case, we have to make m-1
comparisons in each node

> Linear search, but (m-1) is a constant factor and in-
memory scan cost is lower

¢1-Sep-17 50

Tasks

= Self study (Sahni Textbook)
» Chapter 10.5, Hashing from textbook

> Chapter 11.0-11.6, Trees & Binary Trees from textbook
> B Trees (online sources)

= Fill in Online Sheet for turing cluster access [EOD
Today]

https://indianinstituteofscience-my.sharepoint.com/
personal/simmhan_iisc_ac_in/ layouts/15/guestaccess.aspx?
docid=1558af6b90b044ce68cd538af494332e6&
authkey=ASOdv5uQxeZbG_oH-7mYzDg

= Assignment 2 posted by 30/Sep, due 10/Oct

» Data structures
= C++ tutorial on Tue 3/0ct 5-730PM

21-Sep-17 79

CDS.lISc.ac.in | Department of Computational and Data Sciences

