
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान
बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

DS221 | 19 Sep – 19 Oct, 2017

Data Structures,
Algorithms & Data
Science Platforms

Yogesh Simmhan

s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

L5: Algorithm Types
Graph ADT, Algorithms

2

Some slides courtesy:

Venkatesh Babu & Sathish Vadhiyar, CDS, IISc

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithm classification

▪ Algorithms that use a similar problem-solving
approach can be grouped together
‣ A classification scheme for algorithms

▪ Classification is neither exhaustive nor disjoint

▪ The purpose is not to be able to classify an
algorithm as one type or another, but to highlight
the various ways in which a problem can be
attacked

3

CDS.IISc.ac.in | Department of Computational and Data Sciences

A short list of categories

▪ Algorithm types we will consider include:
1. Simple recursive algorithms

2. Backtracking algorithms

3. Divide and conquer algorithms

4. Dynamic programming algorithms

5. Greedy algorithms

6. Branch and bound algorithms

7. Brute force algorithms

8. Randomized algorithms

4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Simple Recursive Algorithms
▪ A simple recursive algorithm:

1. Solves the base cases directly

2. Recurs with a simpler subproblem

3. Does some extra work to convert the solution to the
simpler subproblem into a solution to the given problem

▪ These are “simple” because several of the other
algorithm types are inherently recursive

▪ Any seen so far?
‣ Tree traversal

‣ Binary search over sorted array

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Backtracking
algorithms

▪Uses a depth-first recursive search
over solution space
‣ Test to see if a solution has been found, and if so,

returns it; otherwise
‣ For each choice that can be made at this point,

▪ Make that choice
▪ Recurse
▪ If the recursion returns a solution, return it

‣ If no choices remain, return failure

▪Any seen so far?
‣ DFS traversal

6

start ?

?

dead end

dead end

?
?

dead end

dead end

?

success!

dead end

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sample backtracking algo.
Graph coloring: Color the vertices of a
graph such that no two adjacent vertices
have the same color

© Sudoku game solution, Bharathi Dharavath

4x4 Sudoku

1 2

3
7

6

5

4

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sample backtracking algo.

8

The Four Color Theorem states that any map on a plane can be
colored with no more than four colors, so that no two countries
with a common border are the same color

88

boolean explore(int ctry, int col){
if (ctry >= map.size) return true;
if (okToColor(ctry, col)) {
map[ctry] = col;
for (int c=RED; c<=BLUE; c++){

if (explore(ctry+1, c))
return true;

}
} else
return false;

}

1 2

3
7

6

5

4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Divide and Conquer

▪ A divide and conquer algorithm consists of two
parts:
‣ Divide the problem into smaller subproblems of the

same type, and solve these subproblems recursively

‣ Combine the solutions to the subproblems into a
solution to the original problem

▪ Traditionally, an algorithm is only called “divide
and conquer” if it contains at least two recursive
calls

▪ E.g. Merge Sort, Quick Sort

9

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge Sort: Idea

10

Merge

Recursively sort

Divide into
two halves

FirstPart SecondPart

FirstPart SecondPart

A

A is sorted!

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge Sort: Algorithm

MergeSort (A, left, right)

if (left >= right) return

else {

middle = Floor(left+right/2)

MergeSort(A, left, middle)

MergeSort(A, middle+1, right)

Merge(A, left, middle, right)

}

}

11

Recursive Call

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

12
A[middle]A[left]

Sorted

FirstPart

Sorted

SecondPart

A[right]

merge

A:

A:

Sorted

CDS.IISc.ac.in | Department of Computational and Data Sciences

13

6 10 14 223 5 15 28

L: R:

Temporary Arrays

5 15 28 30 6 10 1452 3 7 8 1 4 5 6A:

Merge-Sort: Merge

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

14

3 5 15 28 30 6 10 14

L:

A:

3 15 28 30 6 10 14 22

R:

i=0 j=0

k=0

2 3 7 8 1 4 5 6

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

15

1 5 15 28 30 6 10 14

L:

A:

3 5 15 28 6 10 14 22

R:

k=1

2 3 7 8 1 4 5 6

2

i=0 j=1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

16

1 2 15 28 30 6 10 14

L:

A:

6 10 14 22

R:

i=1

k=2

2 3 7 8 1 4 5 6

3

j=1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

17

1 2 3 6 10 14

L:

A:

6 10 14 22

R:

i=2 j=1

k=3

2 3 7 8 1 4 5 6

4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

18

1 2 3 4 6 10 14

L:

A:

6 10 14 22

R:

j=2

k=4

2 3 7 8 1 4 5 6

i=2

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

19

1 2 3 4 5 6 10 14

L:

A:

6 10 14 22

R:

i=2 j=3

k=5

2 3 7 8 1 4 5 6

6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

20

1 2 3 4 5 6 14

L:

A:

6 10 14 22

R:

k=6

2 3 7 8 1 4 5 6

7

i=2 j=4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

21

1 2 3 4 5 6 7 14

L:

A:

3 5 15 28 6 10 14 22

R:

2 3 7 8 1 4 5 6

8

i=3 j=4

k=7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

22

1 2 3 4 5 6 7 8

L:

A:

3 5 15 28 6 10 14 22

R:

2 3 7 8 1 4 5 6

i=4 j=4

k=8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary search tree lookup?

▪ Compare the key to the value in the root
‣ If the two values are equal, report success

‣ If the key is less, search the left subtree

‣ If the key is greater, search the right subtree

▪ This is not a divide and conquer algorithm because,
although there are two recursive calls, only one is
used at each level of the recursion

23

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dynamic Programming (DP)
▪ A dynamic programming algorithm “remembers” past

results and uses them to find new results

‣ Memoization

▪ Dynamic programming is generally used for optimization
problems
‣ Multiple solutions exist, need to find the “best” one

‣ Requires “optimal substructure” and “overlapping subproblems”

• Optimal substructure: Optimal solution can be constructed
from optimal solutions to subproblems

• Overlapping subproblems: Solutions to subproblems can be
stored and reused in a bottom-up fashion

▪ This differs from Divide and Conquer, where subproblems
generally need not overlap

24

CDS.IISc.ac.in | Department of Computational and Data Sciences

Fibonacci numbers
▪ ni = n(i-1) + n(i-2)

▪ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

▪ To find the nth Fibonacci number:
‣ If n is zero or one, return 1; otherwise,
‣ Compute fibonacci(n-1) and fibonacci(n-2)
‣ Return the sum of these two numbers

▪ This is a recursive algorithm

▪ This is also an expensive algorithm
‣ It requires O(fibonacci(n)) time
‣ This is equivalent to exponential time, that is, O(2n)

• Binary tree of height ‘n’ with f(n) having two children, f(n-1), f(n-2)

25

CDS.IISc.ac.in | Department of Computational and Data Sciences

Fibonacci numbers again
▪ To find the nth Fibonacci number:

‣ If n is zero or one, return one; otherwise,
‣ Compute, or look up in a table, fibonacci(n-1) and
fibonacci(n-2)

‣ Find the sum of these two numbers
‣ Store the result in a table and return it

▪ Since finding the nth Fibonacci number involves finding
all smaller Fibonacci numbers, the second recursive call
has little work to do

▪ The table may be preserved and used again later

▪ Other examples: Floyd–Warshall All-Pairs Shortest Path
(APSP) algorithm, Towers of Hanoi, …

26

CDS.IISc.ac.in | Department of Computational and Data Sciences

Floyd Warshall APSP
▪ Shortest distances between all pairs of v vertices

‣ O(v3) complexity. Similar to Djikstra’s on each vertex!

▪ Test if the current shortest path from i to j is
improved by a path from i to k and then k to j

27

Consider thru’ Vertex 3:
Nothing changes.

Consider thru’ Vertex 2:
D(1,3) = D(1,2) + D(2,3)

Consider thru’ Vertex 1:
D(3,2) = D(3,1) + D(1,2)

http://www.cs.ucf.edu/~sarahb/COP3503/Lectures/DynProg_FloydWarshall.ppt

CDS.IISc.ac.in | Department of Computational and Data Sciences

Floyd Warshall APSP
▪ Looking at this example, we can come up with the

following algorithm:
‣ Let D store the matrix with the initial edge-weight

information initially, infinity for non-existent edges.
‣ Update D with the calculated shortest paths

For k=1 to n {

For i=1 to n {

For j=1 to n

D[i,j] = min(D[i,j], D[i,k]+D[k,j])

}

}

‣ The final D matrix will store all the shortest paths.

28

CDS.IISc.ac.in | Department of Computational and Data Sciences

Greedy algorithms
▪ An optimization problem is one in which you want to

find, not just a solution, but the best solution

▪ A “greedy algorithm” sometimes works well for
optimization problems

▪ A greedy algorithm works in phases: At each phase:
‣ You take the best you can get right now, without regard for

future consequences
‣ You hope that by choosing a local optimum at each step, you

will end up at a global optimum

▪ Any seen so far?

▪ Djikstra’s Shortest path problem
‣ Greedily pick the shortest among the vertices touched so far

29

CDS.IISc.ac.in | Department of Computational and Data Sciences

Knapsack Problem

▪ We are given a set of n items, where each item i is
specified by a size si and a value vi. We are also
given a size bound S (the size of our knapsack).

▪ The goal is to find the subset of items of maximum
total value such that sum of their sizes is at most S
(they all fit into the knapsack).
‣ Exponential time to try all possible subsets

‣ O(n.S) using DP

30Lecture 11: Dynamic, Programming, Avrim Blum
© Keenan Pepper

CDS.IISc.ac.in | Department of Computational and Data Sciences

Knapsack Problem

▪ 0-1 Knapsack:
‣ n items (can be the same or different)

‣ Have only one of each

‣ Must leave or take (i.e. 0-1) each item (e.g. bars of gold)

‣ DP works, greedy does not

▪ Fractional Knapsack:
‣ n items (can be the same or different)

‣ Can take fractional part of each item (e.g. gold dust)

‣ Greedy works and DP algorithms work

31
http://www.radford.edu/~nokie/classes/360/greedy.html

CDS.IISc.ac.in | Department of Computational and Data Sciences

Greedy Solution 1

▪ From the remaining objects, select the object with
maximum value that fits into the knapsack

▪ Does not guarantee an optimal solution

▪ E.g., n=3, s=[100,10,10], v=[20,15,15], S=105

© Sathish Vadhiyar, SERC32

CDS.IISc.ac.in | Department of Computational and Data Sciences

Greedy Solution 2

▪ Select the one with minimum size that fits into the
knapsack

▪ Also, does not guarantee optimal solution

▪ E.g., n=2, s=[10,20], v=[5,100], c=25

© Sathish Vadhiyar, SERC33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Greedy Solution 3

▪ Select the one with the maximum value density vi/si
that fits into the knapsack

▪ E.g., n=3, s=[20,15,15], v=[40,25,25], c=30

▪ Greedy works…if fractional items possible!

© Sathish Vadhiyar, SERC34

CDS.IISc.ac.in | Department of Computational and Data Sciences

DP for 0-1 Knapsack

35

CDS.IISc.ac.in | Department of Computational and Data Sciences

Branch & Bound algorithms
▪ Branch and bound algorithms are generally used for

optimization problems. Similar to backtracking.
‣ As the algorithm progresses, a tree of subproblems is formed

‣ The original problem is considered the “root problem”

‣ A method is used to construct an upper and lower bound for
a given problem

‣ At each node, apply the bounding methods
• If the bounds match, it is deemed a feasible solution to that

particular subproblem

• If bounds do not match, partition the problem represented by
that node, and make the two subproblems into children nodes

‣ Continue, using the best known feasible solution to trim
sections of the tree, until all nodes have been solved or
trimmed

36

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example branch and bound
algorithm
▪ “Suppose it is required to minimize an objective function.

Suppose that we have a method for getting a lower bound
on the cost of any solution among those in the set of
solutions represented by some subset. If the best solution
found so far costs less than the lower bound for this subset,
we need not explore this subset at all.”

▪ Traveling salesman problem: A salesman has to visit each of
n cities once each and return to the original city, while
minimize total distance traveled
‣ Split into two subproblems, whether to take an out edge from a

vertex or not.
‣ If current best solution smaller than the lower bound of a

subset, do not explore.
‣ Lower bound given by 0.5*(sum of tours on two edges, for all

vertices)

37http://lcm.csa.iisc.ernet.in/dsa/node187.html

CDS.IISc.ac.in | Department of Computational and Data Sciences

Node
Least cost

edges
Total cost

a (a, d), (a, b) 2+3=5

b (a, b), (b, e) 3+3=6

c (c, b), (c, a) 4+4=8

d (d, a), (d, c) 2+5=7

e (e, b), (e, d) 3+6=9

Lower Bound = 0.5 * (5 + 6 + 8 + 7 + 9) = 17.5

38
http://lcm.csa.iisc.ernet.in/dsa/node187.html

When we branch, we compute

lower bounds for both children.

If the lower bound for a child is >=

lowest cost found so far, we prune

that child.

3+

0.5*(2+3+8+7+9)=14.5

=17.5

4+

0.5*(2+7+4+7+9)=14.5

=18.5

0.5*(9+7+9+7+9)=20.5

3+4+

0.5*(3+4+7+9)=11.5

=18.5

3+

0.5*(2+3+9+7+9)=15

=18

0.5*(6+7+8+7+9)=18.5

CDS.IISc.ac.in | Department of Computational and Data Sciences

39http://lcm.csa.iisc.ernet.in/dsa/node187.html

If excluding (x, y) makes

it impossible for x or y to

have two adjacent edges

in the tour, include (x, y).

If including (x, y) would

cause x or y to have

more than two edges

adjacent in the tour, or

complete a non-tour

cycle with edges already

included, exclude (x, y).

excluded

excluded

included

included

CDS.IISc.ac.in | Department of Computational and Data Sciences

Brute force algorithm

▪ A brute force algorithm simply tries all possibilities
until a satisfactory solution is found

▪ Such an algorithm can be:
‣ Optimizing: Find the best solution. This may require finding all

solutions, or if a value for the best solution is known, it may
stop when any best solution is found
• Example: Finding the best path for a traveling salesman

‣ Satisficing: Stop as soon as a solution is found that is good
enough
• Example: Finding a traveling salesman path that is within 10%

of optimal

40

CDS.IISc.ac.in | Department of Computational and Data Sciences

Improving brute force
algorithms
▪ Often, brute force algorithms require exponential

time

▪ Various heuristics and optimizations can be used
‣ Heuristic: A “rule of thumb” that helps you decide which

possibilities to look at first

‣ Optimization: In this case, a way to eliminate certain
possibilities without fully exploring them

41

CDS.IISc.ac.in | Department of Computational and Data Sciences

Randomized algorithms

▪ A randomized algorithm uses a random number at
least once during the computation to make a
decision
‣ Example: In Quicksort, using a random number to

choose a pivot

‣ Example: Trying to factor a large number by choosing
random numbers as possible divisors

▪ E.g. k-means clustering

42

CDS.IISc.ac.in | Department of Computational and Data Sciences

Reading

▪ Online resources on algorithm types

▪ https://www.cs.cmu.edu/~avrim/451f09/lectures/l
ect1001.pdf

43

