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L5: Big Data 
Platforms
Spark, Storm, Giraph

17-Oct-17 2

Slide Credits:
• https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
• https://www.slideshare.net/deanchen11/scala-bay-spark-talk
• https://databricks-training.s3.amazonaws.com/slides/advanced-spark-training.pdf
• Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster 

Computing, M. Zaharia, et al., NSDI 2012
• http://spark.apache.org/docs/latest/programming-guide.html
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What is Big Data?

05-Jan-17 3
Image credits: http://www.seekbig.in/1128-tnpsc-economics-questions/
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The term is fuzzy … Handle with care!

05-Jan-17 4
Wordle of “Thought Leaders’” definition of Big Data, © Jennifer Dutcher, 2014
https://datascience.berkeley.edu/what-is-big-data/
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So…What is Big Data?

Data whose characteristics exceeds 
the capabilities of conventional

algorithms, systems and 
techniques to derive useful value.

05-Jan-17 5

https://www.oreilly.com/ideas/what-is-big-data

Image Credits: https://community.uservoice.com/wp-content/uploads/benefits-of-effective-questions-800x448-300x168.jpg
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And, where does Big 
Data come from?

05-Jan-17 6
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Web & Social Media
 Web search, Social Networks & Micro-blogs

05-Jan-17 7
http://static4.businessinsider.com/image/56b089cedd0895437c8b45ef-2390-1265/untitled.png
http://www.internetlivestats.com/twitter-statistics/
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Web & Social Media
 Social Networks & Micro-blogs

05-Jan-17 8
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
http://www.wsj.com/articles/facebook-profit-jumps-sharply-1478117646
http://newsroom.fb.com/company-info/

1.79 billion monthly active users as of September 30, 2016
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Enterprises & Government
 Online retail & eCommerce

05-Jan-17 9

http://blogs.ft.com/beyond-brics/2014/02/28/online-
retail-in-india-learning-to-evolve/

http://www.peridotcapital.com/2014/04/amazon-sales-growth-projections-
for-next-two-years-appear-overly-optimistic.html
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Enterprises & Government: 
Finance
 Mobile Transactions & FinTech

05-Jan-17 10http://www.pymnts.com/in-depth/2015/mobile-transactions/
Is Paytm the Xerox of mobile payments?, ETtech.com-03-Jan-2017

Since November 8, 2016, 
Paytm has surpassed its 

metrics -tripling 
transactions per day to 

7.5 million
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Internet of Everything

 Personal Devices
‣ Smart Phones, 

Fitbit

 Smart Appliances

 Smart Cities
‣ Power, Water, 

Transportation, 
Environment

 Smart Retail

 Millions of sensor 
data streams

05-Jan-17 11smartx.cds.iisc.ac.in
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Why is Big Data 
Difficult?

05-Jan-17 12
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05-Jan-17 13http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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05-Jan-17 16http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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05-Jan-17 17http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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Data Analysis Lifecycle

Acquire

• Acquire Data

• Sensors, Web logs & crawls, Transactions

Goal

• Define Analytics

• Trends, Clusters, Outliers, Classification

Process

• Translate to Scalable Applications

• Develop algorithms, Map to abstractions, Implement on 
Platforms

05-Jan-17 18
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Data Platforms

Acquire, manage, process Big Data

At large scales

To meet application needs

05-Jan-17 19
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Distributed Systems
 Distributed Computing

‣ Clusters of machines
‣ Connected over network

 Distributed Storage
‣ Disks attached to clusters of machines
‣ Network Attached Storage

 How can we make effective use of multiple machines?

 Commodity clusters vs. HPC clusters
‣ Commodity: Available off the shelf at large volumes
‣ Lower Cost of Acquisition
‣ Cost vs. Performance

• Low disk bandwidth, and high network latency 
• CPU typically comparable (Xeon vs. i3/5/7)
• Virtualization overhead on Cloud

 How can we use many machines of modest capability?
20
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Growth of Cloud Data Centers

21Cisco Global Cloud Index: Forecast and Methodology, 2015–2020, White Paper © 2016, Cisco
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Ideal Strong/Weak Scaling

22
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012

Problem size 
is fixed

Problem size per 
processor is fixed
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Scalability

 Strong vs. Weak Scaling

 Strong Scaling: How the performance varies with 
the # of processors for a fixed total problem size

 Weak Scaling: How the performance varies with 
the # of processors for a fixed problem size per 
processor
‣ Big Data platforms are intended for “Weak Scaling”

23
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Ease of Programming

 Programming distributed systems is difficult
‣ Divide a job into multiple tasks

‣ Understand dependencies between tasks: Control, Data

‣ Coordinate and synchronize execution of tasks

‣ Pass information between tasks

‣ Avoid race conditions, deadlocks

 Parallel and distributed programming 
models/languages/abstractions/platforms try to 
make these easy
‣ E.g. Assembly programming vs. C++ programming

‣ E.g. C++ programming vs. Matlab programming

24
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Availability, Failure

 Commodity clusters have lower reliability
‣ Mass-produced

‣ Cheaper materials

‣ Smaller lifetime (~3 years)

 How can applications easily deal with failures?

 How can we ensure availability in the presence of faults?

25
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Early Technologies

 MapReduce is a distributed data-parallel programming 

model from Google

 MapReduce works best with a distributed file system, 

called Google File System (GFS)

 Hadoop is the open source framework implementation 

from Apache that can execute the MapReduce

programming model

 Hadoop Distributed File System (HDFS) is the open 

source implementation of the GFS design

 Elastic MapReduce (EMR) is Amazon’s PaaS

26
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Platforms…Think in terms of Stacks

Cloudera

05-Jan-17 27practicalanalytics.co
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Platforms…Think in terms of Stacks

BDAS

05-Jan-17 28https://amplab.cs.berkeley.edu/software/
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Platforms…Think in terms of Stacks

HortonWorks

05-Jan-17 29http://hortonworks.com/products/data-center/hdp/
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Apache Spark
Slides & Additional Reading Courtesy
https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
Resilient Distributed Datasets, Matei Zaharia
http://spark.apache.org/docs/2.1.1/programming-guide.html
http://spark.apache.org/docs/latest/api/java/index.html
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark/details
Apache Spark Internals, Pietro Michiardi, Eurecom

17-Oct-17 30

https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
http://spark.apache.org/docs/2.1.1/programming-guide.html
http://spark.apache.org/docs/latest/api/java/index.html
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark/details
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Why Spark?

 Ease of language definition
‣ Typing, dataflows, 

‣ But Pig, Hive, HBase, etc. give you that

 Better performance using “In memory” compute
‣ Multiple stages part of same job

‣ Lazy evaluation, caching/persistence

17-Oct-17 31
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In-memory computation
 Operate on data in (distributed) memory

‣ Allows many operations to be performed locally 

‣ Write to disk only when data sharing required across workers

 This is unlike others like Hadoop Map/Reduce

17-Oct-17 32
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
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RDD: The Secret Sauce

 RDD: Resilient Distributed Dataset
‣ Immutable, partitioned collection of tuples

‣ Operated on by deterministic transformations
• Object-oriented flavor

• RDD.operation() → RDD

 Recovery by re-computation
‣ Maintains lineage of transformations

‣ Recompute missing partitions if failure happens

‣ Not possible/not automatic in Pig

 Allows caching & persistence for reuse

17-Oct-17 33
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
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RDD Operations

17-Oct-17 35

Allows 
composability 
into Dataflows
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A Sample Spark Program

17-Oct-17 36

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = 

lines.map(s -> s.length());
int totalLength = lineLengths.reduce((a, b) -> a + b);

// Cache RDD in-memory for future use in this app
lineLengths.persist(StorageLevel.MEMORY_ONLY());

 Counts the number of bytes in a line, and sums the 
count per line

 Uses lambda expressions
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A Sample Spark Program

 Can pass complex functions as well

17-Oct-17 37

class GetLength implements Function<String, Integer> {
public Integer call(String s) { return s.length(); }

}
class Sum implements Function2<Integer, Integer, Integer> {
public Integer call(Integer a, Integer b) { return a + b; }

}

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(new GetLength());
int totalLength = lineLengths.reduce(new Sum());
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RDD Partitions
 RDD is internally a collection of partitions

‣ Each partition holds a list of items

 Partitions may be present on a different machine
‣ Partition is the unit of execution
‣ Partition is the unit of parallelism

 They are immutable
‣ Each transformation on an RDD generates a new RDD with 

different partitions
‣ Allows recovery of individual partitions

17-Oct-17 38
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Creating RDD

 Load external data from distributed storage

 Create logical RDD on which you can operate

 Support for different input formats
‣ HDFS files, Cassandra, Java serialized, directory, gzipped

 Can control the number of partitions in loaded RDD
‣ Default depends on external DFS, e.g. 128MB on HDFS

39
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RDD Operations
 Transformations
‣ From one RDD to one or more RDDs

‣ Lazy evaluation…use with care

‣ Executed in a distributed manner

 Actions
‣ Perform aggregations on RDD items

‣ Return single (or distributed) results to “driver” code

 RDD.collect() brings RDD partitions to single driver 
machine

40
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Caution: Local Variables & 
Closures
 Caution: Cannot pass “local” driver variables to 

lambda expressions/anonymous classes….only final
‣ Will fail when distributed

41
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RDD and PairRDD
 RDD is logically a collection of items with a generic 

type

 PairRDD is like a “Map”, where each item in 
collection is a <key,value> pair, each a generic type

 Transformation functions use RDD or PairRDD as 
input/output

 E.g. Map-Reduce

42
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Transformations

 JavaRDD<R> map(Function<T,R> f) : 1:1 mapping 
from input to output. Can be different types.

 JavaRDD<T> filter(Function<T,Boolean> f) : 1:0/1 
from input to output, same type.

 JavaRDD<U> flatMap(FlatMapFunction<T,U> f) : 
1:N mapping from input to output, different types.

43
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Transformations

 Earlier Map and Filter operate on one item at a 
time. No state across calls!

 JavaRDD<U> 
mapPartitions(FlatMapFunc<Iterator<T>,U> f)

 mapPartitions has access to iterator of values in 
entire partition, jot just a single item at a time.

44
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Transformations

 JavaRDD<T> sample(boolean withReplacement, 
double fraction): fraction between [0,1] without 
replacement, >0 with replacement

 JavaRDD<T> union(JavaRDD<T> other): Items in 
other RDD added to this RDD. Same type. Can have 
duplicate items (i.e. not a ‘set’ union).

45
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Transformations

 JavaRDD<T> intersection(JavaRDD<T> other): Does 
a set intersection of the RDDs. Output will not have 
duplicates, even if inputs did. 

 JavaRDD<T> distinct(): Returns a new RDD with 
unique elements, eliminating duplicates.

46
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Transformations: PairRDD

 JavaPairRDD<K,Iterable<V>> groupByKey(): Groups values 
for each key into a single iterable.

 JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> func) : 
Merge the values for each key into a single value using an 
associative and commutative reduce function. Output value 
is of same type as input.

 For aggregate that returns a different type?

 numPartitions can be used to generate output RDD with 
different number of partitions than input RDD.

47
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Transformations

 JavaPairRDD<K,U> aggregateByKey(U zeroValue, 
Function2<U,V,U> seqFunc, Function2<U,U,U> combFunc) : 
Aggregate the values of each key, using given combine functions 
and a neutral “zero value”.
‣ SeqOp for merging a V into a U within a partition
‣ CombOp for merging two U's, within/across partitions

 JavaPairRDD<K,V> sortByKey(Comparator<K> comp): Global sort 
of the RDD by key
‣ Each partition contains a sorted range, i.e., output RDD is range-

partitioned.
‣ Calling collect will return an ordered list of records

48
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Transformations

 JavaPairRDD<K, Tuple2<V,W>> 
join(JavaPairRDD<K,W> other, int numParts): 
Matches keys in this and other. Each output pair is 
(k, (v1, v2)). Performs a hash join across the cluster.

 JavaPairRDD<T,U> cartesian(JavaRDDLike<U,?> 
other): Cross product of values in each RDD as a 
pair

49
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Actions

50
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Actions

51
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RDD Persistence & Caching

 RDDs can be reused in a dataflow
‣ Branch, iteration

 But it will be re-evaluated each time it is reused!

 Explicitly persist RDD to reuse output of a dataflow 
path multiple times

 Multiple storage levels for persistence
‣ Disk or memory

‣ Serialized or object form in memory

‣ Partial spill-to-disk possible

‣ Cache indicates “persist” to memory

52



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

RePartitioning

53
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From DAG to RDD lineage

54
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-transformations.html
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Samples: Word Count

rdd = sc.textFile(“hdfs://...");

words = rdd.flatMap(x -> x.split(" "));

result = words.map(x->(x,1)).

reduceByKey((x, y): x + y);

17-Oct-17 55
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html
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Samples: Per-key average

sumCount = 

rdd.mapValues(x -> (x,1)). 

reduceByKey((x, y) -> 

(x[0]+y[0], x[1]+y[1]))

17-Oct-17 56
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html
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Additional Topics

17-Oct-17 57
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Sample: PageRank
// URL         neighbor URL
JavaRDD<String> lines = 
spark.read().textFile(args[0]).javaRDD();
// Loads all URLs from input file and initialize their 
neighbors.
JavaPairRDD<String, Iterable<String>> links = 
lines.mapToPair(s -> {

String[] parts = SPACES.split(s);
return new Tuple2<>(parts[0], parts[1]);

}).distinct().groupByKey().cache();

// Loads all URLs with other URL(s) link to from input file 
and initialize ranks of them to one.
JavaPairRDD<String, Double> ranks = links.mapValues(rs->1.0);

17-Oct-17 58
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// Calculates and updates URL ranks continuously using PageRank algorithm.

for (int current = 0; current < Integer.parseInt(args[1]); current++) {

// Calculates URL contributions to the rank of other URLs.

JavaPairRDD<String, Double> contribs = links.join(ranks).values()

.flatMapToPair(s -> { // _1 = adj list, _2 = ranks

int urlCount = Iterables.size(s._1());

List<Tuple2<String, Double>> results = new ArrayList<>();

for (String n : s._1) { // Send rank value to neighbor

results.add(new Tuple2<>(n, s._2() / urlCount));

}

return results.iterator();

});

// Re-calculates URL ranks based on neighbor contributions.

ranks = contribs.reduceByKey(new Sum()).mapValues(sum -> 0.15 + sum * 0.85);

}

// Collects all URL ranks and dump them to console.

List<Tuple2<String, Double>> output = ranks.collect();

for (Tuple2<?,?> tuple : output) {

System.out.println(tuple._1() + " has rank: " + tuple._2() + ".");

}

17-Oct-17 59
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Distributed Execution

17-Oct-17 60
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Execution Dependency

17-Oct-17 61

NARROW DEPENDENCY: Each partition of the 
parent RDD is used by at most one partition of 
the child RDD. Task can be executed locally and 

we don’t have to shuffle.

WIDE DEPENDENCY: Multiple child 
partitions may depend on one partition of 
the parent RDD. We have to shuffle data 
unless the parents are hash-partitioned
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Lazy Execution

17-Oct-17 62
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Execution Planning: Word  Count
lines = sc.textFile("input")

words = lines.flatMap(l -> l.split(" "))

ones = words.map(w -> 1)

counts = ones.reduceByKey((a,b) -> a+b)

result = counts.collectAsMap()

17-Oct-17 63

• RDD lineage DAG is 
built on driver side

• An action triggers the 
Job Submission

DAG

Exec. Plan
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Hash Shuffle

 Distributed data from one set of partitions to another, on 
different machines

 “Keys” used for routing from Map to Reduce
‣ Map writes one “bucket” per key. Reduce reads “buckets” with its key.

17-Oct-17 64
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Schedule
 Thu Oct 12, 1130-1 PM guest lecture on Storm and 

Giraph
‣ Programming streaming data & linked data

 Spark Lecture
‣ 530-7PM Thu, Oct 12
‣ CDS 202

 Mid-term 2: Thu, Oct 19 1130am-1pm (10% 
weightage)

 Spark Tutorial
‣ 530-7PM Tue, Oct 24
‣ CDS 309

 Assignment 3 on PySpark to be posted by Oct 20, 
due by Oct 30 (5% weightage)

17-Oct-17 66


