

Department of Computational and Data Sciences

DS256:Jan16 (3:1)

L12:Distributed Graph Processing

Yogesh Simmhan 21 Feb, 2017

©Yogesh Simmhan & Partha Talukdar, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original author

Graphs are commonplace

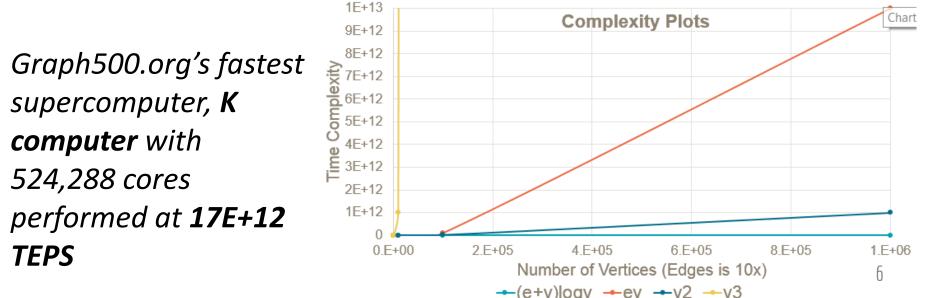
- Web & Social Networks
 - Web graph, Citation Networks, Twitter, Facebook, Internet
- Knowledge networks & relationships
 - Google's Knowledge Graph, NELL
- Cybersecurity
 - Telecom call logs, financial transactions, Malware
- Internet of Things
 - Transport, Power, Water networks
- Bioinformatics
 - Gene sequencing, Gene expression networks

Graph Algorithms

- Traversals: Paths & flows between different parts of the graph
 - Breadth First Search, Shortest path, Minimum Spanning Tree, Eulerian paths, MaxCut
- Clustering: Closeness between sets of vertices
 - Community detection & evolution, Connected components, K-means clustering, Max Independent Set
- Centrality: Relative importance of vertices
 - PageRank, Betweenness Centrality

But, Graphs can be challenging

- Computationally complex algorithms
 - Shortest Path: O((E+V) log V) ~ O(EV)
 - Centrality: O(EV) ~ O(V³)
 - Clustering: O(V) ~ O(V³)
- And these are for "shared-memory" algorithms



But, Graphs can be challenging

- Graphs sizes can be huge
 - Google's index contains 50B pages
 - Facebook has around 1.1B users
 - Twitter has around 530M users
 - Google+ has around 570M users

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

But, Graphs can be challenging

- Shared memory algorithms don't scale!
- Do not fit naturally to Hadoop/MapReduce
 - Multiple MR jobs (iterative MR)
 - Topology & Data written to HDFS each time
 - Tuple, rather than graph-centric, abstraction
- Lot of work on *parallel graph libraries* for HPC
 - Boost Graph Library, Graph500
 - Storage & compute are (loosely) coupled, not fault tolerant
 - But everyone does not have a supercomputer \bigcirc
- Processing and *querying* are different
 - Graph DBs not suited for analytics
 - Focus on large simple graphs, complex "queries"
 - E.g. Neo4J, FlockDB, 4Store, Titan

PageRank using MapReduce

1: class Mapper				
2:	method MAP(nid n, node N)			
3:	$p \leftarrow N.$ PageRank/ $ N.$ Adjacen	CYLIST		
4:	$\operatorname{Emit}(\operatorname{nid} n, N)$	\triangleright Pass along graph structure		
5:	for all nodeid $m \in N.$ ADJACENC	CYLIST do		
6:	Emit(nid m, p)	\triangleright Pass PageRank mass to neighbors		
1: class Reducer				
2:	method REDUCE(nid $m, [p_1, p_2, \ldots]$))		
3:	$M \gets \emptyset$			
4:	for all $p \in ext{counts} [p_1, p_2, \ldots]$ do			
5:	if $ISNODE(p)$ then			
6:	$M \leftarrow p$	\triangleright Recover graph structure		
7:	else			
8:	$s \leftarrow s + p$	$\triangleright \ \text{Sum incoming PageRank contributions}$		
9:	$M.$ PageRank $\leftarrow s$			
10:	$\operatorname{Emit}(\operatorname{nid} m, \operatorname{node} M)$			

PageRank using MapReduce

- MR run over multiple iterations (typically 30)
 - The graph structure itself must be passed from iteration to iteration!
- Mapper will
 - Initially, load adjacency list and initialize default PR
 - <v1, <v2>+>
 - Subsequent iterations will load adjacency list and new PR
 - <v1, <v2>+, pr1>
 - Emit two types of messages from Map
 - PR messages and Graph Structure Messages
- Reduce will
 - Reconstruct the adjacency list for each vertex
 - Update the PageRank values for the vertex based on neighbour's PR messages
 - Write adjacency list and new PR values to HDFS, to be used by next Map iteration
 - <v1, <v2>+, pr1'>

Google's Pregel

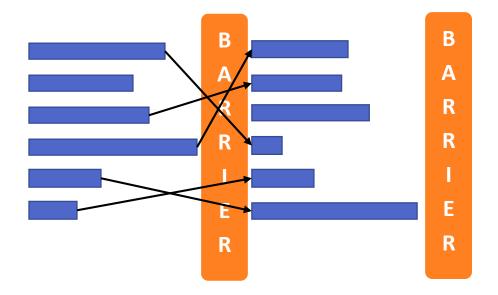
- Google, to overcome, these challenges came up with Pregel.
 - Provides scalability
 - Fault-tolerance
 - Flexibility to express arbitrary algorithms
- The high level organization of Pregel programs is inspired by Valiant's <u>Bulk Synchronous Parallel</u> (BSP) model ^[1].

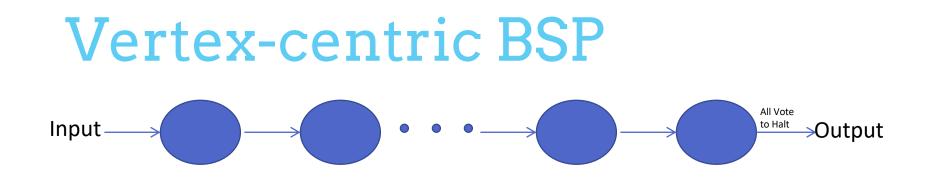
Slides courtesy "Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010" [1] Leslie G. Valiant, A Bridging Model for Parallel Computation. Comm. ACM 33(8), 1990

Bulk Synchronous Parallel (BSP)

Distributed execution model

- Compute → Communicate → Compute → Communicate → …
- Bulk messaging avoids comm. costs





- Series of iterations (supersteps).
- Each vertex V invokes a function in parallel.
- Can read messages sent in previous superstep (S-1).
- Can send messages, to be read at the next superstep (S+1).
- Can modify state of outgoing edges.

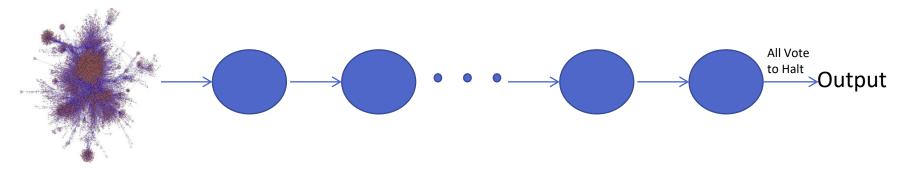
Advantage?

- In Vertex-Centric Approach
- Users focus on a local action
 - Think of Map method over tuple
- Processing each item independently.
- Ensures that Pregel programs are inherently free of *deadlocks* and *data races* common in asynchronous systems.

Apache Giraph Implements *Pregel* Abstraction

- Google's Pregel, SIGMOD 2010
 - Vertex-centric Model
 - Iterative BSP computation
- Apache Giraph donated by Yahoo
 - Feb 6, 2012: Giraph 0.1-incubation
 - May 6, 2013: Giraph 1.0.0
 - Nov 19, 2014: Giraph 1.1.0
- Built on Hadoop Ecosystem

Model of Computation

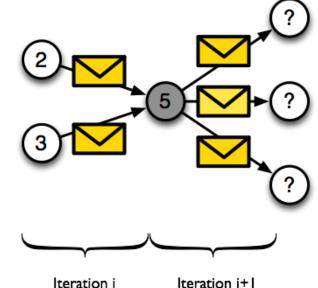


- A <u>Directed Graph</u> is given to Pregel.
- It runs the computation at each vertex.
- Until all nodes vote for halt.
- Pregel gives you a directed graph back.

- Algorithm termination is based on every vertex voting to halt.
- In superstep 0, every vertex is in the *active* state.
- A vertex deactivates itself by voting to halt.
- It can be reactivated by receiving an (external) message.

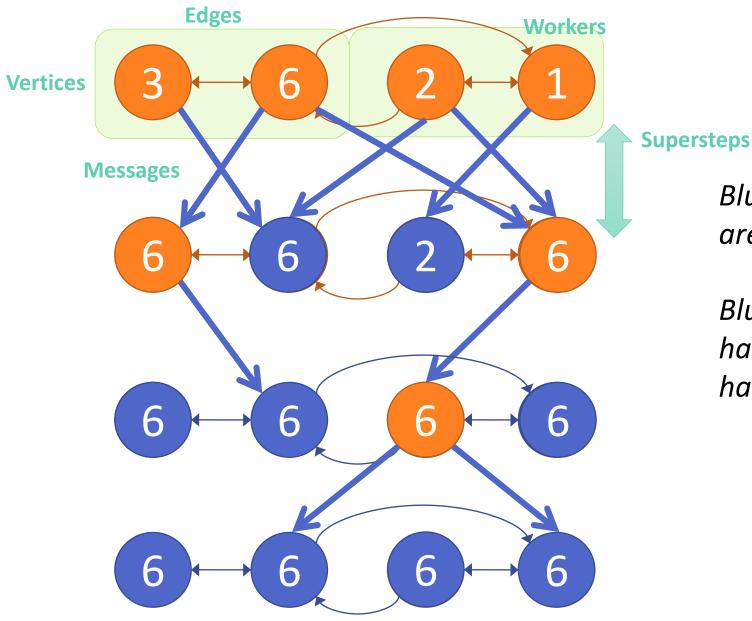
Vertex Centric Programming

- Vertex Centric Programming Model
 - Logic written from perspective on a single vertex.
 Executed on all vertices.
- Vertices know about
 - Their own value(s)
 - Their outgoing edges



Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

CDS.IISc.in | **Department of Computational and Data Sciences**



Blue Arrows are messages.

Blue vertices have voted to halt.

Max Vertex

Algorithm 1 Max Vertex Value using Vertex Centric Model

- 1: procedure COMPUTE(Vertex myVertex, Iterator(Message) M)
- 2: hasChanged = (superstep == 1) ? true : false
- 3: while M.hasNext do ► Update to max message value
- 4: Message m ← M.next
- 5: if m.value > myVertex.value then
- 6: $myVertex.value \leftarrow m.value$
- 7: hasChanged = true
- 8: if hasChanged then > Send message to neighbors
- 9: SENDTOALLNEIGHBORS(myVertex.value)

10: else

11: VOTETOHALT()

Advantages

- Makes distributed programming easy
 - No locks, semaphores, race conditions
 - Separates computing from communication phase
- Vertex-level parallelization
 - Bulk message passing for efficiency
- Stateful (in-memory)
 - Only messages & checkpoints hit disk

Apache Giraph: API void compute(Iterator<IntWritable> msgs) getSuperstep() getVertexValue() edges = iterator() sendMsg(edge, value) sendMsgToAllEdges(value) voteToHalt()

- No guaranteed message delivery order.
- Messages are delivered exactly once.
- Can send messages to any node.
 - Though, typically to neighbors

public class MaxVertexVertex extends IntIntNullIntVertex { public void compute(Iterator<IntWritable> messages) throws IOException { int currentMax = getVertexValue().get(); // first superstep is special, // because we can simply look at the neighbors if (getSuperstep() == 0) { for (Iterator<IntWritable> edges = iterator(); edges.hasNext();) { int neighbor = edges.next().get(); if (neighbor > currentMax) { currentMax = neighbor; }

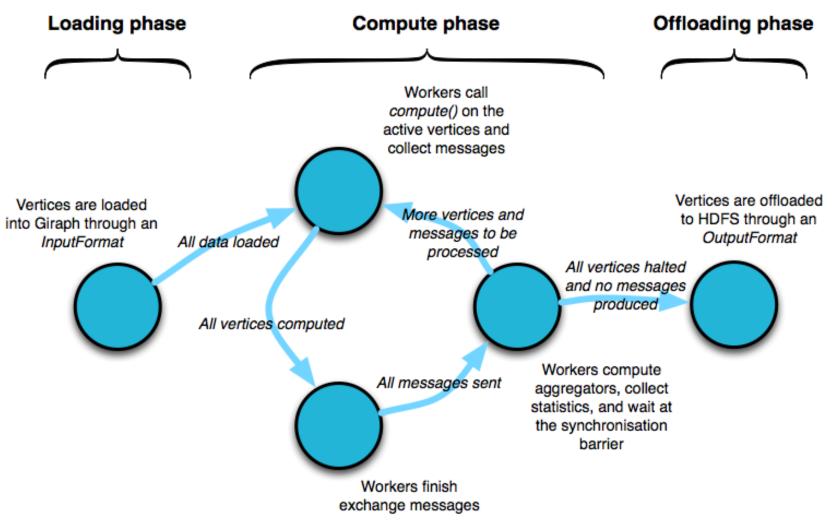
Based on org.apache.giraph.examples.ConnectedComponentsVertex


```
. . .
 // only need to send value if it is not the own id
 if (currentMax != getVertexValue().get()) {
       setVertexValue(new IntWritable(currentMax));
       for (Iterator<IntWritable> edges = iterator();
            edges.hasNext();) {
            int neighbor = edges.next().get();
            if (neighbor < currentMax) {</pre>
              sendMsg(new IntWritable(neighbor),
                 getVertexValue());
            }
       }
  }
 voteToHalt();
 return;
} // end getSuperstep==0
```



```
boolean changed = false; // getSuperstep != 0
     // did we get a smaller id?
    while (messages.hasNext()) {
       int candidateMax = messages.next().get();
      if (candidateMax > currentMax) {
             currentMax = candidateMax;
             changed = true;
         }
     }
     // propagate new component id to the neighbors
     if (changed) {
         setVertexValue(new IntWritable(currentMax));
         sendMsgToAllEdges(getVertexValue());
     }
     voteToHalt();
} // end compute()
```

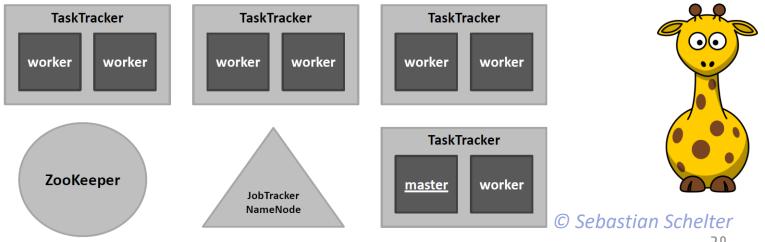
Apache Giraph



Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

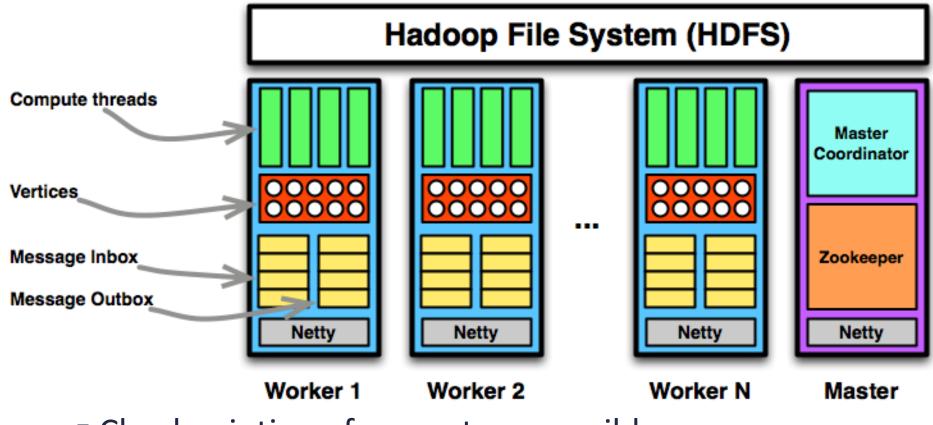
Giraph Architecture

- Hadoop Map-only Application
- ZooKeeper: responsible for computation state
 Partition/worker mapping, global #superstep
- Master: responsible for coordination
 - Assigns partitions to workers, synchronization
- Worker: responsible for vertices
 - Invokes active vertices compute() function, sends, receives and assigns messages



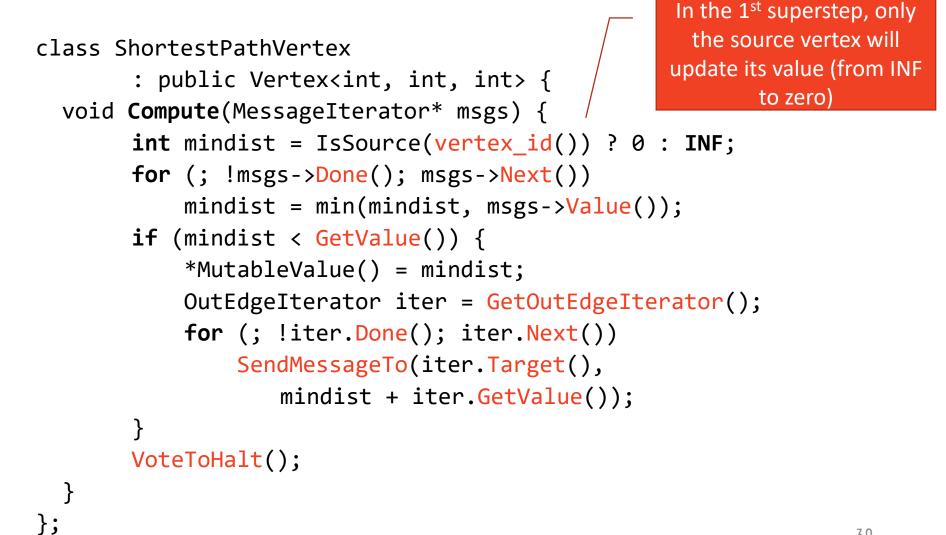
CDS.IISc.in | **Department of Computational and Data Sciences**

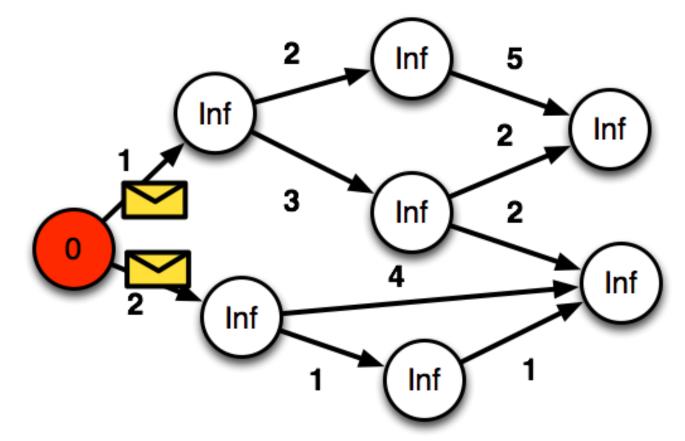
Giraph Architecture



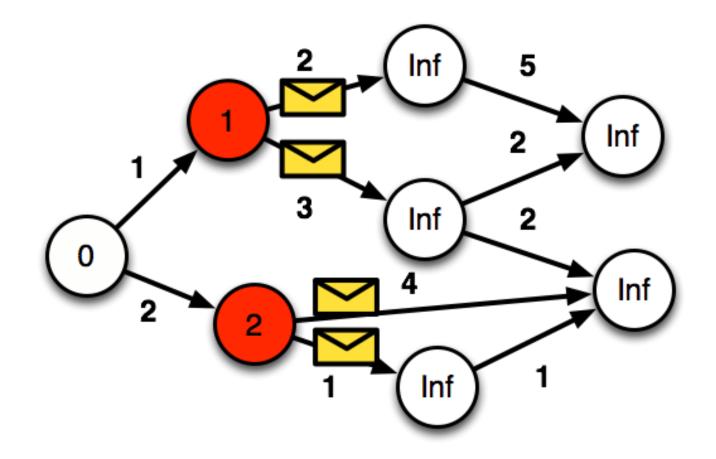
Checkpointing of supersteps possible

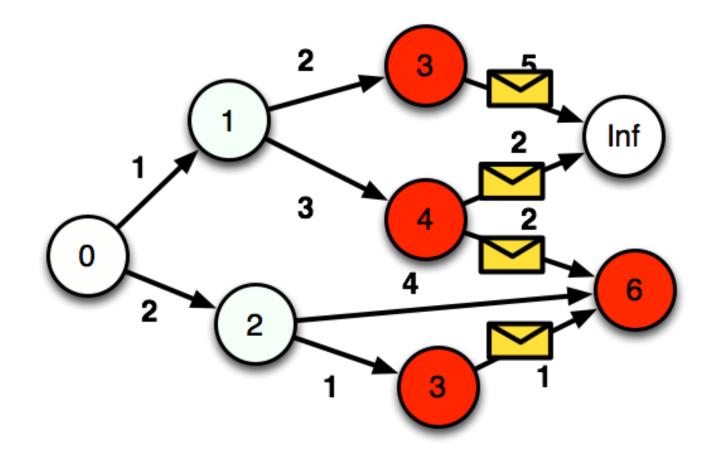
Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

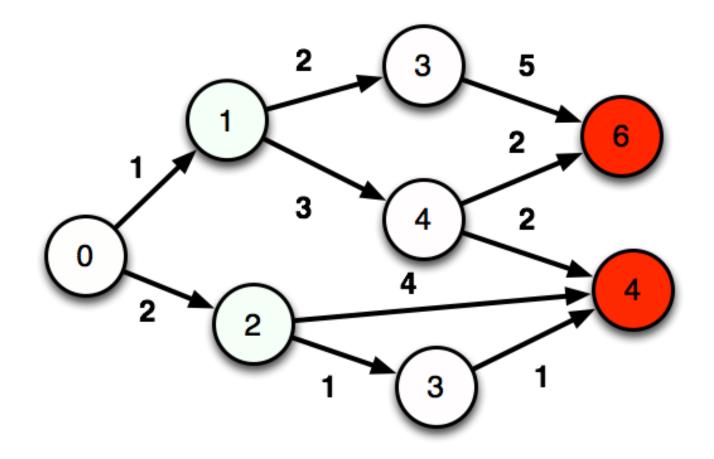




Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014







PageRank, recursively

$$P(n) = \alpha \left(\frac{1}{|G|}\right) + (1-\alpha) \sum_{m \in L(n)} \frac{P(m)}{C(m)}$$

- P(n) is PageRank for webpage/URL 'n'
 - Probability that you're in vertex 'n'
- G | is number of URLs (vertices) in graph
- α is probability of random jump
- L(n) is set of vertices that link to 'n'
- C(m) is out-degree of 'm'

PageRank using MapReduce

1: class MAPPER			
2:	method MAP(nid n , node N)		
3:	$p \leftarrow N.$ PageRank/ $ N.$ Adjacenc	CYLIST	
4:	EMIT(nid n, N)	\triangleright Pass along graph structure	
5:	for all nodeid $m \in N.ADJACENC$	YLIST do	
6:	Emit(nid m, p)	\triangleright Pass PageRank mass to neighbors	
1: class Reducer			
2:	method REDUCE(nid $m, [p_1, p_2, \ldots]$)		
3:	$M \gets \emptyset$		
4:	$ ext{ for all } p \in ext{ counts } [p_1, p_2, \ldots] ext{ do }$		
5:	if $ISNODE(p)$ then		
6:	$M \leftarrow p$	\triangleright Recover graph structure	
7:	else		
8:	$s \leftarrow s + p$	$\triangleright \ {\rm Sum \ incoming \ PageRank \ contributions}$	
9:	$M.$ PageRank $\leftarrow s$		
10:	$\operatorname{Emit}(\operatorname{nid} m, \operatorname{node} M)$		

Store and carry PageRank

class PageRankVertex

};

```
: public Vertex<double, void, double> {
public:
 virtual void Compute(MessageIterator* msgs) {
       if (superstep() >= 1) {
              double sum = 0;
               for (; !msgs->Done(); msgs->Next())
                      sum += msgs->Value();
               *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
       }
       if (superstep() < 30) {
               const int64 n = GetOutEdgeIterator().size();
              SendMessageToAllNeighbors(GetValue() / n);
       } else
              VoteToHalt();
}
```

Maximal Bipartite Matching

- Input is a bipartite graph with "left" and "right" vertices
- Find the *maximal* set of edges that do not share a common vertex
 - Randomized algorithm [1]... "Each node is either matched or has no edge to an unmatched node"
 - Maximal match does not give the maximum match (O(n²))
- Vertex value: left/right, paired vertex ID
- 4 phases, alternate between left and right vertices
- Repeat for fixed iterations or all possible vertices matched
 - Worst case O(n) for 'n' vertices on each side

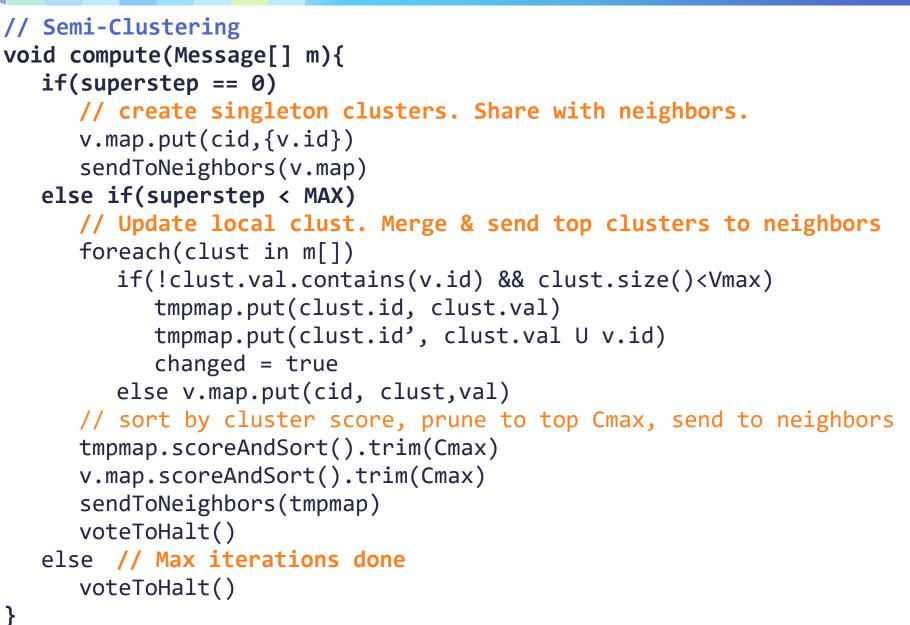

```
// Bipartite Matching
void compute(Message[] m){
   if(superstep%4 == 0 && v.side==L)
       if(v.other == -1)
          sendToNeighbors(v.id);
          VoteToHalt;
   else if(superstep%4 == 1 && v.side==R && v.other == -1)
       sentToVertex(m[0].id, true);
       foreach(i in m[1..size-1])
          sentToVertex(m[i].id, false);
       VoteToHalt;
   else if(superstep%4 == 2 && v.side==L)
       v.other = m.findFirst(msg => msg.value == true).id
       sentToVertex(v.other, true);
   else if(superstep%4 == 3 && v.side==R)
        v.other = m[0].id
      VoteToHalt;
}
```

Semi-Clustering

- Divide the graph into different parts to meet a goal
 - connectivity within the entities in each part
 - discrimination between entities in different parts
 - balancing of entities across parts
- Cluster into C_{max} semi-clusters each with at most V_{max} vertices, given by user
- Vertices can be part of more than one semi-cluster
- Semi-cluster Score:
 - I_c : sum of internal edge weights
 - B_c : Sum of boundary edge weights
 - V_{c} : number of vertices
 - f_b : coefficient (0.0-1.0)

$$S_c = \frac{I_c - f_B B_c}{V_c (V_c - 1)/2},$$

Normalization based on max edges in clique



- Sending a message to remote vertex has overhead
 - Can we merge multiple *incoming* message into one?
- User specifies a way to reduce many messages into one value (ala Reduce in MR)
 - by overriding the Combine() method.
 - Must be commutative and associative.
- originalMessage =
 - combine(vid, originalMessage, messageToCombine)
- Exceedingly useful in certain contexts (e.g., 4x speedup on shortest-path computation).
 - e.g. for MAX, om = om < mtc ? mtc : om

MasterCompute

- Runs before slave compute()
- Has a global view
- A place for aggregator manipulation
- MasterCompute: Executed on master
- WorkerContext: Executed per worker
- PartitionContext: Executed per partition

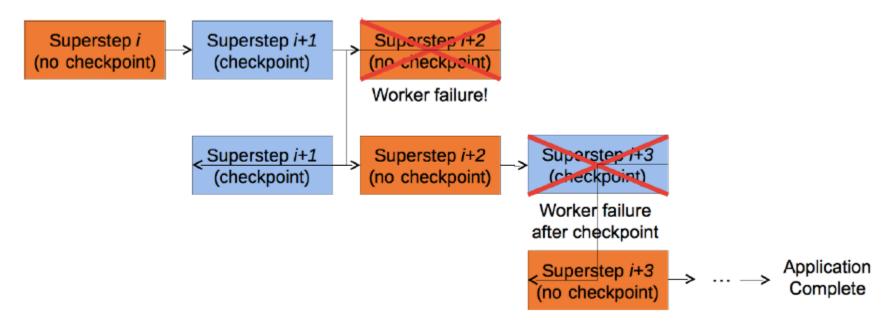
- A mechanism for global communication, monitoring, and data.
 - Each vertex can produce a value in a superstep S for the Aggregator to use.
 - The Aggregated value is available to all the vertices in superstep S+1.
- Implemented using Master Compute
- Aggregators can be used for statistics and for global communication.
 - E.g., **Sum** applied to out-edge count of each vertex.
 - generates the total number of edges in the graph and communicate it to all the vertices.

Partitioner

- Maps vertices to partitions that are operated by workers
 - Default is a hash partitioner
- Done once at the start of the application
- Called at the end of each superstep, for dynamic migration of partitions

Checkpointing

- Optionally capture the state of vertex, messages at periodic supersteps, e.g. 2
- Globally revert to last checkpoint superstep on failure



Topology mutations

- Some graph algorithms need to change the graph's topology.
 - E.g. A clustering algorithm may need to replace a cluster with a node
- Vertices can create / destroy vertices at will.
- Resolving conflicting requests:
 - Partial ordering:
 - E Remove, V Remove, V Add, E Add.
 - User-defined handlers:

You fix the conflicts on your own.

More Algorithms

K-Means Clustering

- 1 Input: undirected G(V, E), k, τ
- 2 int numEdgesCrossing = INF;

3 while (numEdgesCrossing > τ)

6

- 4 int[] clusterCenters = pickKRandomClusterCenters(G)
- 5 assignEachVertexToClosestClusterCenter(G, clusterCenters)
 - numEdgesCrossing = countNumEdgesCrossingClusters(G)

Figure 3: A simple k-means like graph clustering algorithm.

public class EdgeCountingVertex extends 1 2Vertex<IntWritable, IntWritable> { 3 @Override public void compute(Iterable<IntWritable> messages, 4 $\mathbf{5}$ int superstepNo){ if (superstepNo == 1) { 6 sendMessages(getNeighborIds(), getValue().value()); } else if (superstepNo == 2) { 8 for (IntWritable message : messages) { 9 if (message.value() != getValue().value()) { 10 minValue = message.value();11 updateGlobalObject("num-edges-crossing-clusters", 12new IntWritable(1));}} 13voteToHalt(); }} 14

Figure 4: Counting the number of edges crossing clusters with *vertex.compute()*.

- Multiple phases
 - k centers
 - assign vertex to cluster
 - find edge cuts
- Use multi-source BFS or Euclidian distance to find nearest cluster
- Use MasterCompute
 - k initial vertices
 - Calc edge-cut count
 - Decide termination

K-Core

- k-core is a graph where each node has degree >=k
- Use graph mutations to iteratively delete vertices with degree < k
 - Pass edge deletion messages to all neighbors

1: repeat

2:	begin Superstep n
3:	for Messages received
4:	Delete corresponding out-edge
5:	end for
6:	if New degree $< k$ then
7:	Delete node and out-edges
8:	Send message to neighbours
9:	end if
10:	Vote to halt
11:	end
12:	until All nodes inactive

Strongly Connected Components 1 2 3 Coloring(G(V, E))

- Transpose graph by flipping edges
- Trim trivial vertices
 - Only in/out edges
- Forward Traversal:
 - Label vertices with max Vid of connecting vertex
- Backward traversal
 - Traverse from Vid and label all it can reach
- Remove SCC & repeat for rest of graph

- $G^T = \text{constructTransposeGraph}(G)$
- while $V \neq \emptyset$

9

10

- Trim G and G^T 4
- // colors vertices into disjoint color sets 5
- MaxForwardReachable(G, start from every $v \in V$) 6
- foreach $p \in P$ in parallel:
- if color(p) == p:
 - let S_p be the vertices colored p

10
$$SCC_p = S_p \cap \text{BackwardReachable}(G^T, p)$$

remove SCC_p from G and G^T 11

Figure 3: Original Coloring algorithm for computing SCCs [38].

- public void doFwStart() { value(). colorID = getId(); 2 3 sendMessages(getOutgoingNeighbors(), new SCCMessage(getId()));} 5 public void doFwRest(Iterable <SCCMessage> messages) { int maxColorID = findMaxColorID(messages); 6 if (maxColorID > value().colorID) { 7 sendMessages(getOutgoingNeighbors(), 8 9 new SCCMessage(value().colorID));
 - updateGlobalObject("updated-vertex-exists", true);}}

Figure 4: SCCVertex subroutines for the Forward-Traversal phase.

$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

betweenness centrality (Freeman, 1977; Anthonisse, 1971)

- Intuition
- Forward traversal
 - SSSP from each vertex
 - Keep track of parent vertex used to arrive at shortest path
- Reverse traversal
 - Accumulate values of centrality from child to parent
- Repeat for each vertex

Algorithm 1 High level pseudo code of the algorithm of approximate betweenness centrality computation.

- 1: APPROXIMATEBETWEENNESS
- 2: **Require.** A network (graph) G, the number of samples T.
- 3: Ensure. Betweenness centrality of vertices of G.
- 4: Compute probabilities p_1, \ldots, p_n
- 5: for all vertices $v \in V(\mathbf{G})$ do

6:
$$B[v] \leftarrow 0$$

7: end for

8: for all t = 1 to T do

- 9: Select a vertex i with probability p_i
- 10: Form the SPD D rooted at i
- 11: Compute dependency scores of every vertex v on i
- 12: for all vertex $v \in V(\mathbf{G})$ do

13:
$$B[v] \leftarrow B[v] + \frac{\delta_{i \bullet}(v)}{p_i}$$

- 14: end for
- 15: end for

16: for all
$$i \in \{1, ..., n\}$$
 do

17:
$$B[i] \leftarrow \frac{B[i]}{T}$$

- 18: **end for**
- 19: **return** *B*

An Efficient Algorithm for Approximate Betweenness Centrality Computation Mostafa Haghir Chehreghani

Others

- Triangle Count: Using Pregel-like Large Scale Graph Processing Frameworks for Social Network Analysis, Louise Quick, et al, ASONAM 2012
- Label Propagation: One Trillion Edges: Graph Processing at FacebookScale, Avery Ching, et al, VLDB 2015
- Graph Coloring, Minimum Spanning Forest: Optimizing Graph Algorithms on Pregellike Systems, Semih Salihoglu, et al, VLDB 2014

GoFFish

Subgraph-centric, Time-series graph processing

Vertex Subgraph Centric

- Challenges with Pregel
 - Ab initio algorithm design
 - Large number of messages between vertices [1]
 - O(e) for pagerank in each superstep, even for collocated vertices
 - Network & memory pressure
 - Many supersteps to converge
 - O(diameter): Ok for powerlaw graphs, poor for spatial graphs
 - Coordination overhead accumulates
- Idea: Coarsen the unit of computation to subgraph [2]
 - Weakly connected component within a partition
 - Logic for subgraph given, progress on full subgraph in one superstep
 - Reduces explicit messaging, number of supersteps
 - Leverage shared memory algorithms on subgraph

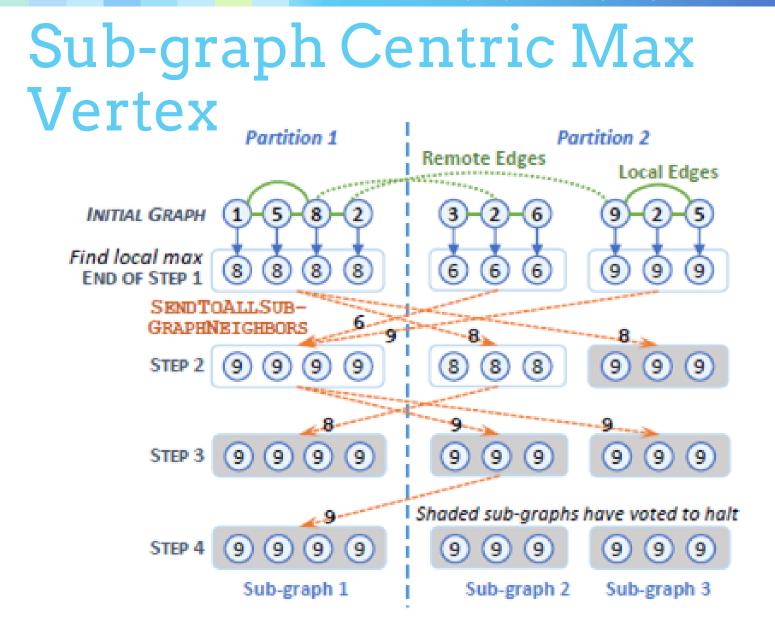
Graph Data Model

- Designed for "sub-graph" centric distributed computing
 - Graphs

Host A

- Sub-graph is unit of *distributed* data access & operation
 - Extends Google Pregel/Apache Giraph's vertex-centric
 BSP model ... no global view

CDS.IISc.in | **Department of Computational and Data Sciences**



Sub-graph Centric Max Vertex

Algorithm 2 Max Vertex using Sub-Graph Centric Model

- 1: procedure COMPUTE(SubGraph mySG, Iterator(Message) M)
- 2: if superstep = 1 then \triangleright Find local max in subgraph
 - mySG.value $\leftarrow -\infty$
 - for all Vertex myVertex in mySG.vertices do
 - if mySG.value < myVertex.value then
 - mySG.value ← myVertex.value
- 7: hasChanged = (superstep == 1)?true:false
- 8: while M.hasNext do
- 9: Message $m \leftarrow M.next$
- 10: if m.value > mySG.value then
- 11: $mySG.value \leftarrow m.value$
 - hasChanged = true
- 13: if hasChanged then
- 14: SENDTOALLSUBGRAPHNEIGHBORS(mySG.value)
- 15: else

3:

4:

5:

6:

12:

16: VOTETOHALT()

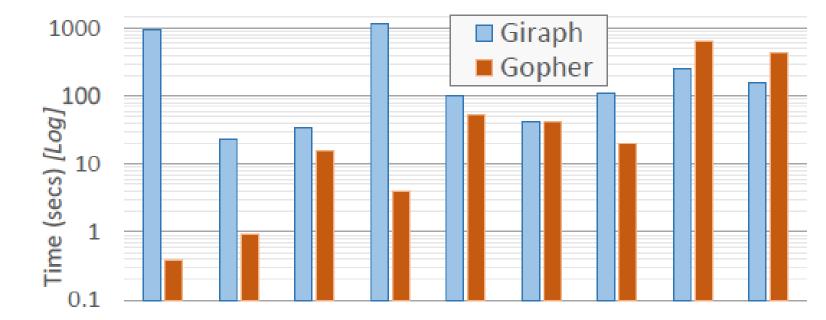
SSSP

a.

Algorithm 3 Sub-Graph Centric Single Source Shortest Path								
1: procedure COMPUTE(SubGraph mySG, Iterator(Message) M)								
2: openset $\leftarrow \varnothing$ \triangleright Vertices with improved distances								
if superstep = 1 then Initialize distances								
for all Vertex v in mySG.vertices do								
if v = SOURCE then								
6: v.value $\leftarrow 0$ Set distance to source as 0								
7: openset.add(v) ► Distance has improved								
8: else								
9: v.value $\leftarrow -\infty$ Not source vertex								
10: for all Message m in M do ► Process input messages								
1: if mySG.vertices[m.vertex].value > m.value then								
12: $mySG.vertices[m.vertex].value \leftarrow m.value$								
13: openset.add(m.vertex) ► Distance improved								
14: Call Dijkstras and get remote vertices to send updates								
15: remoteSet ← DIJKSTRAS(mySG, openset)								
16: Send new distances to remote sub-graphs/vertices								
17: for all (remoteSG, vertex, value) in remoteSet do								
SENDTOSUBGRAPHVERTEX(remoteSG, vertex, value)								
19: VOTETOHALT()								

CDS.IISc.in | **Department of Computational and Data Sciences**

Performance on Single Graphs



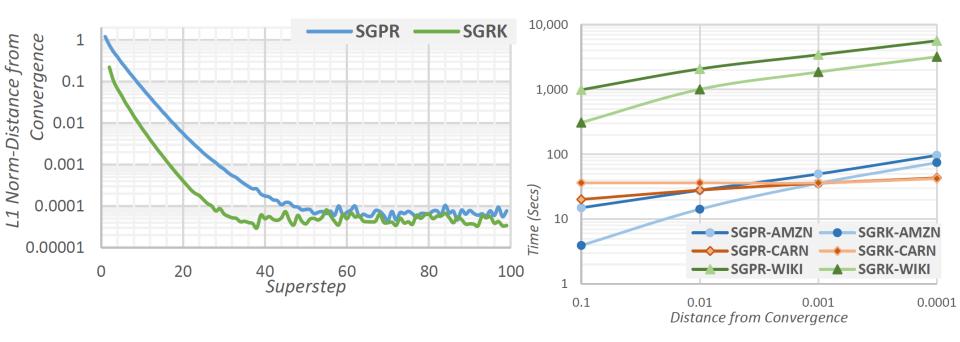
	RN	TR	IJ	RN	TR	U	RN	TR	IJ	
	Connected Compo.				SSSP			PageRank		
Data Set					Vertices		Edges		Diameter	
RN: CA Road Network					1,96	1,965,206 2,766,60				849
TR: Internet Tracesroutes					19,44	12,778	22,782,842			25
LJ: LiveJ		4,84	17,571	68,475,391			10			
CoEFicht & Sub-Craph Contria Framework for Large Scale Craph Analytics, Simmbon										

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan, et al, *EuroPar*, 2014

Algorithmic Benefits on PageRank

• PageRank \rightarrow Block Rank \rightarrow Subgraph Rank

Coarse-grained rank for "good" initialization



Subgraph Rank: PageRank for Subgraph-Centric Distributed Graph Processing, Badam & Simmhan, *COMAD*, 2014

Reading

- Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
- GPS: A Graph Processing System, Salihoglu and Widon, SSDBM, 2013
- GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan, et al, EuroPar, 2014