
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh Simmhan & Partha Talukdar, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

L12:Distributed Graph
Processing

Yogesh Simmhan
2 1 F e b , 2 0 1 7

DS256:Jan16 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Graphs are commonplace

Web & Social Networks
‣ Web graph, Citation Networks, Twitter, Facebook, Internet

 Knowledge networks & relationships
‣ Google’s Knowledge Graph, NELL

 Cybersecurity
‣ Telecom call logs, financial transactions, Malware

 Internet of Things
‣ Transport, Power, Water networks

 Bioinformatics
‣ Gene sequencing, Gene expression networks

2

CDS.IISc.in | Department of Computational and Data Sciences

Graph Algorithms

 Traversals: Paths & flows between different parts of
the graph
‣ Breadth First Search, Shortest path, Minimum Spanning

Tree, Eulerian paths, MaxCut

 Clustering: Closeness between sets of vertices
‣ Community detection & evolution, Connected

components, K-means clustering, Max Independent Set

 Centrality: Relative importance of vertices
‣ PageRank, Betweenness Centrality

3

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
 Computationally complex algorithms
‣ Shortest Path: O((E+V) log V) ~ O(EV)

‣ Centrality: O(EV) ~ O(V3)

‣ Clustering: O(V) ~ O(V3)

 And these are for “shared-memory” algorithms

Graph500.org’s fastest
supercomputer, K
computer with
524,288 cores
performed at 17E+12
TEPS

6

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
Graphs sizes can be huge
‣ Google’s index contains 50B pages

‣ Facebook has around 1.1B users

‣ Twitter has around 530M users

‣ Google+ has around 570M users

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April
2014

7

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
 Shared memory algorithms don’t scale!
 Do not fit naturally to Hadoop/MapReduce

‣ Multiple MR jobs (iterative MR)
‣ Topology & Data written to HDFS each time
‣ Tuple, rather than graph-centric, abstraction

 Lot of work on parallel graph libraries for HPC
‣ Boost Graph Library, Graph500
‣ Storage & compute are (loosely) coupled, not fault tolerant
‣ But everyone does not have a supercomputer 

 Processing and querying are different
‣ Graph DBs not suited for analytics
‣ Focus on large simple graphs, complex “queries”
‣ E.g. Neo4J, FlockDB, 4Store, Titan

8

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

2016-03-16 9Lin, Fig 5.8

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce
 MR run over multiple iterations (typically 30)

‣ The graph structure itself must be passed from iteration to iteration!

 Mapper will
‣ Initially, load adjacency list and initialize default PR

• <v1, <v2>+>

‣ Subsequent iterations will load adjacency list and new PR
• <v1, <v2>+, pr1>

‣ Emit two types of messages from Map
• PR messages and Graph Structure Messages

 Reduce will
‣ Reconstruct the adjacency list for each vertex
‣ Update the PageRank values for the vertex based on neighbour’s PR

messages
‣ Write adjacency list and new PR values to HDFS, to be used by next

Map iteration
• <v1, <v2>+, pr1’>

2016-03-16 10

CDS.IISc.in | Department of Computational and Data Sciences

Google’s Pregel

Google, to overcome, these challenges came up
with Pregel.
‣ Provides scalability

‣ Fault-tolerance

‣ Flexibility to express arbitrary algorithms

 The high level organization of Pregel programs is
inspired by Valiant’s Bulk Synchronous Parallel
(BSP) model [1].

Slides courtesy “Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010”
[1] Leslie G. Valiant, A Bridging Model for Parallel Computation. Comm. ACM 33(8), 1990

11

CDS.IISc.in | Department of Computational and Data Sciences

Bulk Synchronous Parallel
(BSP)
 Distributed execution model
‣ Compute  Communicate Compute Communicate
 …

‣ Bulk messaging avoids comm. costs

B

A

R

R

I

E

R

B

A

R

R

I

E

R

12

CDS.IISc.in | Department of Computational and Data Sciences

Vertex-centric BSP

 Series of iterations (supersteps) .

 Each vertex V invokes a function in parallel.

 Can read messages sent in previous superstep (S-1).

 Can send messages, to be read at the next
superstep (S+1).

 Can modify state of outgoing edges.

Input
All Vote
to Halt Output

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
13

CDS.IISc.in | Department of Computational and Data Sciences

Advantage?
 In Vertex-Centric Approach

Users focus on a local action
‣ Think of Map method over tuple

Processing each item independently.

Ensures that Pregel programs are inherently
free of deadlocks and data races common in
asynchronous systems.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
14

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph
Implements Pregel Abstraction

Google’s Pregel, SIGMOD 2010
‣ Vertex-centric Model

‣ Iterative BSP computation

 Apache Giraph donated by Yahoo
‣ Feb 6, 2012: Giraph 0.1-incubation

‣ May 6, 2013: Giraph 1.0.0

‣ Nov 19, 2014: Giraph 1.1.0

 Built on Hadoop Ecosystem

15

CDS.IISc.in | Department of Computational and Data Sciences

Model of Computation

 A Directed Graph is given to Pregel.

 It runs the computation at each vertex.

Until all nodes vote for halt.

 Pregel gives you a directed graph back.

All Vote
to Halt

Output

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
16

CDS.IISc.in | Department of Computational and Data Sciences

Vertex State Machine

 Algorithm termination is based on every vertex
voting to halt.

 In superstep 0, every vertex is in the active state.

 A vertex deactivates itself by voting to halt.

 It can be reactivated by receiving an (external)
message.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
17

CDS.IISc.in | Department of Computational and Data Sciences

Vertex Centric
Programming
 Vertex Centric Programming Model
‣ Logic written from perspective on a single vertex.

Executed on all vertices.

 Vertices know about
‣ Their own value(s)

‣ Their outgoing edges

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

18

CDS.IISc.in | Department of Computational and Data Sciences

3 6 2 1

3 6 2 16 2 66

6 6 2 66 6

6 6 6 66

Blue Arrows
are messages.

Blue vertices
have voted to
halt.

6

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

Vertices

Supersteps

Messages

WorkersEdges

19

CDS.IISc.in | Department of Computational and Data Sciences

Max Vertex

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan, et al, EuroPar 2014

20

CDS.IISc.in | Department of Computational and Data Sciences

Advantages

Makes distributed programming easy
‣ No locks, semaphores, race conditions

‣ Separates computing from communication phase

 Vertex-level parallelization
‣ Bulk message passing for efficiency

 Stateful (in-memory)
‣ Only messages & checkpoints hit disk

21

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph: API
void compute(Iterator<IntWritable> msgs)

getSuperstep()

getVertexValue()

edges = iterator()

sendMsg(edge, value)

sendMsgToAllEdges(value)

voteToHalt()

22

CDS.IISc.in | Department of Computational and Data Sciences

Message passing

No guaranteed message delivery order.

Messages are delivered exactly once.

 Can send messages to any node.
‣ Though, typically to neighbors

23

CDS.IISc.in | Department of Computational and Data Sciences

public class MaxVertexVertex extends IntIntNullIntVertex {

public void compute(Iterator<IntWritable> messages)

throws IOException {

int currentMax = getVertexValue().get();

// first superstep is special,

// because we can simply look at the neighbors

if (getSuperstep() == 0) {

for (Iterator<IntWritable> edges =

iterator(); edges.hasNext();) {

int neighbor = edges.next().get();

if (neighbor > currentMax) {

currentMax = neighbor;

}

} ...

Based on org.apache.giraph.examples.ConnectedComponentsVertex

24

CDS.IISc.in | Department of Computational and Data Sciences

...

// only need to send value if it is not the own id

if (currentMax != getVertexValue().get()) {

setVertexValue(new IntWritable(currentMax));

for (Iterator<IntWritable> edges = iterator();

edges.hasNext();) {

int neighbor = edges.next().get();

if (neighbor < currentMax) {

sendMsg(new IntWritable(neighbor),

getVertexValue());

}

}

}

voteToHalt();

return;

} // end getSuperstep==0

25

CDS.IISc.in | Department of Computational and Data Sciences

boolean changed = false; // getSuperstep != 0

// did we get a smaller id?

while (messages.hasNext()) {

int candidateMax = messages.next().get();

if (candidateMax > currentMax) {

currentMax = candidateMax;

changed = true;

}

}

// propagate new component id to the neighbors

if (changed) {

setVertexValue(new IntWritable(currentMax));

sendMsgToAllEdges(getVertexValue());

}

voteToHalt();

} // end compute()

26

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

27

CDS.IISc.in | Department of Computational and Data Sciences

Giraph Architecture
Hadoop Map-only Application
ZooKeeper: responsible for computation state
– Partition/worker mapping, global #superstep

Master: responsible for coordination
– Assigns partitions to workers, synchronization

Worker: responsible for vertices
– Invokes active vertices compute() function,

sends, receives and assigns messages

© Sebastian Schelter
28

CDS.IISc.in | Department of Computational and Data Sciences

Giraph Architecture

 Checkpointing of supersteps possible

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

29

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

class ShortestPathVertex

: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {

int mindist = IsSource(vertex_id()) ? 0 : INF;

for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {

*MutableValue() = mindist;

OutEdgeIterator iter = GetOutEdgeIterator();

for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),

mindist + iter.GetValue());

}

VoteToHalt();

}

};

In the 1st superstep, only
the source vertex will

update its value (from INF
to zero)

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

30

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

31

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

32

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

33

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

34

CDS.IISc.in | Department of Computational and Data Sciences

PageRank, recursively

 P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

 |G| is number of URLs (vertices) in graph

 α is probability of random jump

 L(n) is set of vertices that link to ‘n’

 C(m) is out-degree of ‘m’

35

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

Lin, Fig 5.8 36

CDS.IISc.in | Department of Computational and Data Sciences

Application – Page Rank
class PageRankVertex

: public Vertex<double, void, double> {
public:
virtual void Compute(MessageIterator* msgs) {

if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())

sum += msgs->Value();
*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;

}
if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else
VoteToHalt();

}
};

Store and carry PageRank

37

CDS.IISc.in | Department of Computational and Data Sciences

Maximal Bipartite Matching
 Input is a bipartite graph with “left” and “right” vertices

 Find the maximal set of edges that do not share a
common vertex
‣ Randomized algorithm [1]… “Each node is either matched or

has no edge to an unmatched node”

‣ Maximal match does not give the maximum match (O(n2))

 Vertex value: left/right, paired vertex ID

 4 phases, alternate between left and right vertices

 Repeat for fixed iterations or all possible vertices
matched
‣ Worst case O(n) for ‘n’ vertices on each side

38
Pregel: A System for Large-Scale Graph Processing, Grzegorz Malewicz et al, SIGMOD 2010
[1] Thomas Anderson, et al. High-Speed Switch Scheduling for Local-Area Networks. ACM Trans. Comp. Syst. 11(4), 1993

CDS.IISc.in | Department of Computational and Data Sciences

// Bipartite Matching

void compute(Message[] m){

if(superstep%4 == 0 && v.side==L)

if(v.other == -1)

sendToNeighbors(v.id);

VoteToHalt;

else if(superstep%4 == 1 && v.side==R && v.other == -1)

sentToVertex(m[0].id, true);

foreach(i in m[1..size-1])

sentToVertex(m[i].id, false);

VoteToHalt;

else if(superstep%4 == 2 && v.side==L)

v.other = m.findFirst(msg => msg.value == true).id

sentToVertex(v.other, true);

else if(superstep%4 == 3 && v.side==R)

v.other = m[0].id

VoteToHalt;

}

39
Pregel: A System for Large-Scale Graph Processing, Grzegorz Malewicz et al, SIGMOD 2010

CDS.IISc.in | Department of Computational and Data Sciences

Semi-Clustering
 Divide the graph into different parts to meet a goal

‣ connectivity within the entities in each part
‣ discrimination between entities in different parts
‣ balancing of entities across parts

 Cluster into Cmax semi-clusters each with at most Vmax
vertices, given by user
 Vertices can be part of more than one semi-cluster
 Semi-cluster Score:

‣ Ic : sum of internal edge weights
‣ Bc : Sum of boundary edge weights
‣ Vc : number of vertices
‣ fb : coefficient (0.0-1.0)

40
Pregel: A System for Large-Scale Graph Processing, Grzegorz Malewicz et al, SIGMOD 2010

Normalization
based on max
edges in clique

CDS.IISc.in | Department of Computational and Data Sciences

41Pregel: A System for Large-Scale Graph Processing, Grzegorz Malewicz et al, SIGMOD 2010
https://github.com/grafos-ml/okapi/blob/master/src/main/java/ml/grafos/okapi/graphs/SemiClustering.java

// Semi-Clustering
void compute(Message[] m){

if(superstep == 0)
// create singleton clusters. Share with neighbors.
v.map.put(cid,{v.id})
sendToNeighbors(v.map)

else if(superstep < MAX)
// Update local clust. Merge & send top clusters to neighbors
foreach(clust in m[])

if(!clust.val.contains(v.id) && clust.size()<Vmax)
tmpmap.put(clust.id, clust.val)
tmpmap.put(clust.id’, clust.val U v.id)
changed = true

else v.map.put(cid, clust,val)
// sort by cluster score, prune to top Cmax, send to neighbors
tmpmap.scoreAndSort().trim(Cmax)
v.map.scoreAndSort().trim(Cmax)
sendToNeighbors(tmpmap)
voteToHalt()

else // Max iterations done
voteToHalt()

}

https://github.com/grafos-ml/okapi/blob/master/src/main/java/ml/grafos/okapi/graphs/SemiClustering.java

CDS.IISc.in | Department of Computational and Data Sciences

Combiners
 Sending a message to remote vertex has overhead
‣ Can we merge multiple incoming message into one?

User specifies a way to reduce many messages into
one value (ala Reduce in MR)
‣ by overriding the Combine() method.

‣ Must be commutative and associative.

originalMessage =

combine(vid, originalMessage, messageToCombine)

 Exceedingly useful in certain contexts (e.g., 4x
speedup on shortest-path computation).
‣ e.g. for MAX, om = om < mtc ? mtc : om

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
42

CDS.IISc.in | Department of Computational and Data Sciences

MasterCompute

 Runs before slave compute()

Has a global view

 A place for aggregator manipulation

 MasterCompute: Executed on master

 WorkerContext: Executed per worker

 PartitionContext: Executed per partition

© Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014
© Apache Giraph, Roman Shaposhnik 43

CDS.IISc.in | Department of Computational and Data Sciences

Aggregators
 A mechanism for global communication,

monitoring, and data.
‣ Each vertex can produce a value in a superstep S for the

Aggregator to use.

‣ The Aggregated value is available to all the vertices in
superstep S+1.

 Implemented using Master Compute

 Aggregators can be used for statistics and for global
communication.
‣ E.g., Sum applied to out-edge count of each vertex.

• generates the total number of edges in the graph and
communicate it to all the vertices.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
44

CDS.IISc.in | Department of Computational and Data Sciences

Partitioner

Maps vertices to partitions that are operated by
workers
‣ Default is a hash partitioner

 Done once at the start of the application

 Called at the end of each superstep, for dynamic
migration of partitions

45

CDS.IISc.in | Department of Computational and Data Sciences

Checkpointing
Optionally capture the state of vertex, messages at

periodic supersteps, e.g. 2

Globally revert to last checkpoint superstep on
failure

46© Claudio Martella, Apache Giraph

CDS.IISc.in | Department of Computational and Data Sciences

Topology mutations

 Some graph algorithms need to change the graph's
topology.
‣ E.g. A clustering algorithm may need to replace a cluster

with a node

 Vertices can create / destroy vertices at will.

 Resolving conflicting requests:
‣ Partial ordering:

E Remove,V Remove,V Add, E Add.

‣ User-defined handlers:

You fix the conflicts on your own.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

47

CDS.IISc.in | Department of Computational and Data Sciences

More Algorithms

48

CDS.IISc.in | Department of Computational and Data Sciences

K-Means Clustering
Multiple phases
‣ k centers

‣ assign vertex to cluster

‣ find edge cuts

Use multi-source BFS
or Euclidian distance
to find nearest cluster

Use MasterCompute
‣ k initial vertices

‣ Calc edge-cut count

‣ Decide termination

49GPS: A Graph Processing System, Semih Salihoglu et al, SSDBM 2013
One Trillion Edges: Graph Processing at FacebookScale, Avery Ching, et al, VLDB 2015

CDS.IISc.in | Department of Computational and Data Sciences

K-Core

 k-core is a graph where each node has degree >=k

Use graph mutations to iteratively delete vertices
with degree < k
‣ Pass edge deletion messages to all neighbors

50
Using Pregel-like Large Scale Graph Processing Frameworks for Social Network Analysis, Louise Quick, et al, ASONAM 2012

CDS.IISc.in | Department of Computational and Data Sciences

Strongly Connected
Components
 Transpose graph by

flipping edges
 Trim trivial vertices

‣ Only in/out edges

 Forward Traversal:
‣ Label vertices with

max Vid of connecting
vertex

 Backward traversal
‣ Traverse from Vid and

label all it can reach

 Remove SCC & repeat
for rest of graph

51Pregel Algorithms for Graph Connectivity Problems with Performance Guarantees, Da Yan, et al, VLDB 2014
Optimizing Graph Algorithms on Pregellike Systems, Semih Salihoglu, et al, VLDB 2014

CDS.IISc.in | Department of Computational and Data Sciences

Betweenness Centrality

 Intuition

 Forward traversal
‣ SSSP from each vertex

‣ Keep track of parent vertex used to arrive at shortest
path

 Reverse traversal
‣ Accumulate values of centrality from child to parent

 Repeat for each vertex

52A Faster Algorithm for Betweenness Centrality, Ulrik Brandes

CDS.IISc.in | Department of Computational and Data Sciences

Approximate BC

54
An Efficient Algorithm for Approximate Betweenness Centrality Computation Mostafa Haghir Chehreghani

CDS.IISc.in | Department of Computational and Data Sciences

Others

 Triangle Count: Using Pregel-like Large Scale Graph
Processing Frameworks for Social Network Analysis,
Louise Quick, et al, ASONAM 2012

 Label Propagation: One Trillion Edges: Graph
Processing at FacebookScale, Avery Ching, et al,
VLDB 2015

Graph Coloring, Minimum Spanning Forest:
Optimizing Graph Algorithms on Pregellike Systems,
Semih Salihoglu, et al, VLDB 2014

55

CDS.IISc.in | Department of Computational and Data Sciences

GoFFish
Subgraph-centric, Time-series graph processing

62

CDS.IISc.in | Department of Computational and Data Sciences

VertexSubgraph Centric
 Challenges with Pregel

‣ Ab initio algorithm design
‣ Large number of messages between vertices [1]

• O(e) for pagerank in each superstep, even for collocated vertices
• Network & memory pressure

‣ Many supersteps to converge
• O(diameter): Ok for powerlaw graphs, poor for spatial graphs
• Coordination overhead accumulates

 Idea: Coarsen the unit of computation to subgraph [2]
‣ Weakly connected component within a partition
‣ Logic for subgraph given, progress on full subgraph in one

superstep
‣ Reduces explicit messaging, number of supersteps
‣ Leverage shared memory algorithms on subgraph

10-11-2016 63[1] Optimizations and Analysis of BSP Graph Processing Models on Public Clouds, IPDPS 2013
[2] GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, EuroPar, 2014

CDS.IISc.in | Department of Computational and Data Sciences

Host A

H
o

st B
Graph Data Model
 Designed for “sub-graph” centric distributed

computing
‣ Graphs

• Partitions … Distributed evenly across machines
o Sub-graphs … Logical unit of operation

– Vertices

 Sub-graph is unit of distributed data access & operation

– Extends Google Pregel/Apache Giraph’s vertex-centric

BSP model … no global view

64

CDS.IISc.in | Department of Computational and Data Sciences

Sub-graph Centric Max
Vertex

65

CDS.IISc.in | Department of Computational and Data Sciences

Sub-graph Centric Max Vertex

66
GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Yogesh Simmhan et al, EuroPar, 2012

CDS.IISc.in | Department of Computational and Data Sciences

SSSP

67
GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Yogesh Simmhan et al, EuroPar, 2012

CDS.IISc.in | Department of Computational and Data Sciences

Performance on Single Graphs

Data Set Vertices Edges Diameter

RN: CA Road Network 1,965,206 2,766,607 849

TR: Internet Tracesroutes 19,442,778 22,782,842 25

LJ: LiveJournal Social N/W 4,847,571 68,475,391 10

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan,
et al, EuroPar, 2014

68

CDS.IISc.in | Department of Computational and Data Sciences

Algorithmic Benefits on PageRank

 PageRank  Block Rank  Subgraph Rank
‣ Coarse-grained rank for “good” initialization

Subgraph Rank: PageRank for Subgraph-Centric Distributed Graph
Processing, Badam & Simmhan, COMAD, 2014

69

CDS.IISc.in | Department of Computational and Data Sciences

Reading

 Pregel: A System for Large-Scale Graph Processing,
Malewicz, et al, SIGMOD 2010

GPS: A Graph Processing System, Salihoglu and
Widon, SSDBM, 2013

GoFFish: A Sub-Graph Centric Framework for Large-
Scale Graph Analytics, Simmhan, et al, EuroPar,
2014

87

