Spark: A Brief History

https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf

A Brief History:

2004 2010
MapReduce paper Spark paper

2002 2008 2014
MapReduce @ Google Hadoop Summit Apache Spark top-level

2006
Hadoop @ Yahoo!

A Brief History: MapReduce

circa 1979 — Stanford, MIT, CMU, etc.

set/list operations in LISP, Prolog, etc., for parallel processing
www-formal.stanford.edu/jmc/history/lisp/lisp.htm

circa 2004 — Google

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
research.google.com/archive/mapreduce.html

circa 2006 — Apache

Hadoop, originating from the Nutch Project
Doug Cutting

research.yahoo.com/files/cutting.pdf

circa 2008 — Yahoo

web scale search indexing
Hadoop Summit, HUG, etc.

developer.yahoo.com/hadoop/

circa 2009 — Amazon AWS

Elastic MapReduce
Hadoop modified for EC2/S3, plus support for Hive, Pig, Cascading, etc.

aws.amazon.com/elasticmapreduce/

http://www-formal.stanford.edu/jmc/history/lisp/lisp.htm
http://research.google.com/archive/mapreduce.html
http://research.yahoo.com/files/cutting.pdf
http://developer.yahoo.com/hadoop/
http://aws.amazon.com/elasticmapreduce/

A Brief History: MapReduce

MapReduce use cases showed two major
limitations:

|. difficultly of programming directly in MR

2. performance bottlenecks, or batch not
fitting the use cases

In short, MR doesn’t compose well for large
applications

Therefore, people built specialized systems as
workarounds...

A Brief History: MapReduce

(Pregel) (Giraph)
(Dremel) (Drill) (Tez)

MapReduce ‘ ()
(Impala) GraphLab
(Storm) (S4)

General Batch Processing Specialized Systems:
iterative, interactive, streaming, graph, etc.

The State of Spark, and Where We're Going Next

Matei Zaharia

Spark Summit (201 3)
youtu.be/nU6vO2EJAb4

http://youtu.be/nU6vO2EJAb4

A Brief History: Spark

2004 2010
MapReduce paper Spark paper

| 2002 2004 2006 2008 2010 2012 2014 |

2002 2008 2014
MapReduce @ Google Hadoop Summit Apache Spark top-level

2006
Hadoop @ Yahoo!

Spark: Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury,

Michael). Franklin, Scott Shenker, lon Stoica

USENIX HotCloud (2010)

people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf

Resilient Distributed Datasets:A Fault-Tolerant Abstraction for

In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, lon Stoica

NSDI (2012)

usenix.org/system/files/conference/nsdil 2/nsdil 2-final | 38.pdf

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

A Brief History: Spark

Unlike the various specialized systems, Spark’s
goal was to generalize MapReduce to support
new apps within same engine

Two reasonably small additions are enough to
express the previous models:

® fast data sharing
® general DAGs

This allows for an approach which is more
efficient for the engine, and much simpler
for the end users

A Brief History: Spark

Code Size

140000
120000
100000

80000

60000 - - - ’ —— »GraphX
40000 1 1 -—’ Shark*
™\ Streaming
-
0 | —

Hadoop Storm Impala (SQL) Giraph Spark \
MapReduce (Streaming) (Graph)

non-test, non-example source lines * also calls into Hive

The Sz.:ate of SPark, and Where We're Going Next used as IibS, instead o f
Matei Zaharia

Spark Summit (2013) specialized systems
youtu.be/nU6vO2EJAb4

http://youtu.be/nU6vO2EJAb4

A Brief History: Spark

Some key points about Spark:

® handles batch, interactive, and real-time
within a single framework

® native integration with Java, Python, Scala
® programming at a higher level of abstraction

® more general: map/reduce is just one set
of supported constructs

Spark SQL &
DataFrames

: Spark
MLIib GraphX Streaming

- Mesos I Standalone I

Resilient Distributed Datasets

A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, lon Stoica

UC Berkeley Ia b

Motivation

MapReduce greatly simplified “big data” analysis
on large, unreliable clusters

But as soon as it got popular, users wanted more:

» More complex, multi-stage applications
(e.g. iterative machine learning & graph processing)

» More interactive ad-hoc queries

Response: specialized frameworks for some of
these apps (e.g. Pregel for graph processing)

Motivation

Complex apps and interactive queries both need
one thing that MapReduce lacks:

Efficient primitives for data sharing

N
In MapReduce, the only way to share data

across jobs is stable storage =» slow!

Examples

HDFS HDFS HDFS HDFS
i read write i read write i

Input

HDFS query 1 result 1

read

query 2 result 2

query 3 result 3

Input

Slow due to replication and disk I/O,
but necessary for fault tolerance

Go
al: |
. In-M
em
ory
Da
ta S
har

S

el & :
\\\\\\\\\\\\\\\\\\“\‘\\\\\\\\\\\

S

\\\\\\i\\\\\\\\

“g...
'\\\\\\\\\\\\\\
R

\\\\\\\\\\\\\\\‘\\\\\\\
R

Input

query <

on
pl’oe-time
cessin
g

query 2

, € G BRGS 4

3 N\
: {\{\\\\\\
s

g”,
.

query 3

Input

10-1
OOXf
aste
lﬂtha

n ne

twork/disk

but

ho

w to

get F

T?

Challenge

How to design a distributed memory abstraction
that is both fault-tolerant and efficient?

Challenge

Existing storage abstractions have interfaces

based on fine-grained updates to mutable state
» RAMCloud, databases, distributed mem, Piccolo

Requires replicating data or logs across nodes

for fault tolerance

» Costly for data-intensive apps
» 10-100x slower than memory write

Solution: Resilient Distributed
Datasets (RDDs)

Restricted form of distributed shared memory
» Immutable, partitioned collections of records
» Can only be built through coarse-grained
deterministic transformations (map, filter, join, ...)

Efficient fault recovery using lineage
» Log one operation to apply to many elements
» Recompute lost partitions on failure
» No cost if nothing fails

RD
D
Recove ry

N \? N

on
pros_time

\M\\;\\\\\\\\ W

e
\\\\\\\\\\\\\\\\\\\\\‘\‘\\\\\\\\\\\\\\

Generality of RDDs

Despite their restrictions, RDDs can express

surprisingly many parallel algorithms
» These naturally apply the same operation to many items

Unify many current programming models

» Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models for iterative apps: BSP (Pregel),
iterative MapReduce (Haloop), bulk incremental, ...

Support new apps that these models don’t

Tradeoff Space

Fine

Granularity
of Updates

Coarse

Network Memory
bandwidth bandwidth

K-V stores, : Best for
databases, @.» —» transactional

RAMCloud

workloads

HDFS

Low

Write Throughput

Spark Programming Interface

DryadLINQ-like API'in the Scala language
Usable interactively from Scala interpreter

Provides:
» Resilient distributed datasets (RDDs)
» Operations on RDDs: transformations (build new RDDs),
actions (compute and output results)
» Control of each RDD’s partitioning (layout across nodes)
and persistence (storage in RAM, on disk, etc)

Spark Operations

map flatMap
filter union
Transformations sample join
(define a new RDD) groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
Actions reduce
(return a result to count
driver program) save

lookupKey

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
messages.persist()

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Task Scheduler

Dryad-like DAGs

Pipelines functions
within a stage

Locality & data
reuse aware

Partitioning-aware
to avoid shuffles

W = cached data partition

Scheduler

RDD Objects
J (DAGScheduler)
[%.‘}J)
DAG Bl
- — B
rddl.join(rdcélzg split graph into
.groupBy (..
Filter(.s stages of tasks
.count()

submit each
build operator DAG stage as ready

https://databricks-training.s3.amazonaws.com/slides/advanced-spark-training.pdf

https://databricks-training.s3.amazonaws.com/slides/advanced-spark-training.pdf

What is RDD?

Resilient Distributed Dataset

- A big collection of data with following

properties

- Immutable

- Distributed

- Lazily evaluated
- Type inferred

- Cacheable

https://www.slideshare.net/datamantra/anatomy-of-rdd

Pseudo Monaa

e Wraps iterator + partitions distribution
o Keeps track of history for fault tolerance

e [azily evaluated, chaining of expressions

https://www.slideshare.net/deanchen11/scala-bay-spark-talk

Partitions

e |ogical division of data

e Derived from Hadoop Map/Reduce

e All Input,Intermediate and output data will be
represented as partitions

e Partitions are basic unit of parallelism

e RDD data is just collection of partitions

Partition from Input Data

Partition and Immutability

e All partitions are immutable

e Every transformation generates new partition

e Partition immutability driven by underneath
storage like HDFS

e Partition immutability allows for fault
recovery

Partitions and Distribution

e Partitions derived from HDFS are distributed
by default

e Partitions also location aware

e Location awareness of partitions allow for
data locality

e For computed data, using caching we can
distribute in memory also

Accessing partitions

e \We can access partition together rather
single row at a time

e mapParititons API of RDD allows us that

e Accessing partition at a time allows us to do
some partionwise operation which cannot be
done by accessing single row.

Partition for transformed Data

e Partitioning will be different for key/value
pairs that are generated by shuffle operation

e Partitioning is driven by partitioner specified

e By default HashPartitioner is used

e You can use your own partitioner also

Hash Partitioning

Custom Partitioner

e Partition the data according to your data

structure
e Custom partitioning allows control over no of

partitions and the distribution of data across
when grouping or reducing is done

Look up operation

e Partitioning allows faster lookups

e Lookup operation allows to look up for a
given value by specifying the key

e Using partitioner, lookup determines which
partition look for

e Then it only need to look in that partition

e If no partition is specified, it will fallback to
filter

Parent(Dependency)

e Each RDD has access to it's parent RDD

e Nil is the value of parent for first RDD

e Before computing it's value, it always
computes it's parent

e This chain of running allows for laziness

Sub classing

e Each spark operator, creates an instance of
specific sub class of RDD

e map operator results in MappedRDD,
flatMap in FlatMappedRDD etc

e Subclass allows RDD to remember the
operation that is performed in the
transformation

RDD transformations

Nil

val dataRDD = T
sc.textFile(args

(1)) Hadoop RDD
val splitRDD = dathDD:

dataRDD. MappedRDD
flatMap(value => T

WY splitRDD:
value.split(" “) [FlatMappedRDD

Compute

e Compute is the function for evaluation of
each partition in RDD

e Compute is an abstract method of RDD

e Each sub class of RDD like MappedRDD,
FilteredRDD have to override this method

RDD actions .

val dataRDD = sc. T
textFile(args(1))

Hadoop RDD]

val flatMapRDD = T compute

dataRDD.flatMap

(value => value.split(" [Mapped RDD]

) T compute

flatMapRDD.collect() [FlatMap RDD]
T compute

[rundob]

runJob API

e runJob API of RDD is the api to implement
actions

e runJob allows to take each partition and
allow you evaluate

e All spark actions internally use runJob api.

Caching

e cache internally uses persist API

e persist sets a specific storage level for a
given RDD

e Spark context tracks persistent RDD

e \When first evaluates, partition will be put into
memory by block manager

Block manager

e Handles all in memory data in spark

e Responsible for
o Cached Data (BlockRDD)
o Shuffle Data
o Broadcast data

e Partition will be stored in Block with id (RDD.
id, partition_index)

How caching works?

e Partition iterator checks the storage level
e |f Storage level is set it calls

cacheManager.getOrCompute(partition)

e as iterator is run for each RDD evaluation, its
transparent to user

A Brief History: Spark

Behavior with Less RAM

100

@ 80

£

= 60 3

c

2 40 - I =

o . ~

g 20 | :

o -

Cache 25% 50% 75% Fully
disabled cached

% of working set in cache
e —

The State of Spark, and Where We're Going Next
Matei Zaharia

Spark Summit (201 3)
youtu.be/nU6vO2EJAb4

http://youtu.be/nU6vO2EJAb4

Fault Recovery

RDDs track the graph of transformations that
built them (their lineage) to rebuild lost data

Eg messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDD MappedRDD
- i o
— ra ra
— ra ra
L J J

Fault Recovery Results

—_ 11 Failure happens

W 120 J PP

.q§)100 \81

+ 8o

5 ¢ 57 56 58 58 57 59 57 59
5

© 40

2

20
Illlllllll
7 8 9

1 2 3 4 5 6
Iteration

10

