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What is Big Data? The term is fuzzy … 
Handle with care!

05-Jan-17 3
Wordle of “Thought Leaders’” definition of Big Data, © Jennifer Dutcher, 2014
https://datascience.berkeley.edu/what-is-big-data/
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So…What is Big Data?

Data whose characteristics exceeds 
the capabilities of conventional

algorithms, systems and 
techniques to derive useful value.

05-Jan-17 4

https://www.oreilly.com/ideas/what-is-big-data

Image Credits: https://community.uservoice.com/wp-content/uploads/benefits-of-effective-questions-800x448-300x168.jpg
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Where does Big Data Come from?

Web & Social media, Online retail & governments, 
scientific instruments, Internet of Everything

05-Jan-17 5
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
http://www.wsj.com/articles/facebook-profit-jumps-sharply-1478117646
http://newsroom.fb.com/company-info/

1.79 billion monthly active users as of September 30, 2016



CDS.IISc.ac.in  |  Department of Computational and Data SciencesCDS.IISc.in  |  Department of Computational and Data Sciences

Why is Big Data Difficult?

05-Jan-17 6http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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Big Data Platform Stacks

05-Jan-17 7

https://amplab.cs.berkeley.edu/software/

http://hortonworks.com/products/data-center/hdp/

https://www.cloudera.com/documentation/enterprise/5-6-x/topics/cdh_intro.html

http://doc.mapr.com/display/MapR/MapR+Overview
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Hadoop vs. Spark…Fight!

8
https://www.razormind.co.uk/news/the-big-data-answer-hadoop-with-spark
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L2 Learning Objectives

1. What is MapReduce & Why is it useful?

2. How does the MapReduce programming model 
work?

3. How can you design and write simple MR 
applications?

4. How can you design and write more advanced 
MR applications? [L3]

9
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Motivation

10
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Distributed Systems
 Distributed Computing

‣ Clusters of machines
‣ Connected over network

 Distributed Storage
‣ Disks attached to clusters of machines
‣ Network Attached Storage

 How can we make effective use of multiple machines?

 Commodity clusters vs. HPC clusters
‣ Commodity: Available off the shelf at large volumes
‣ Lower Cost of Acquisition
‣ Cost vs. Performance

• Low disk bandwidth, and high network latency 
• CPU typically comparable (Xeon vs. i3/5/7)
• Virtualization overhead on Cloud

 How can we use many machines of modest capability?
11
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Growth of Cloud Data Centers

12Cisco Global Cloud Index: Forecast and Methodology, 2015–2020, White Paper © 2016, Cisco

24 Operators: Microsoft/Azure, Amazon/AWS, Rackspace, Google, 
Salesforce, ADP, Facebook, Yahoo, Apple, Amazon, Alibaba, eBay,…
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Growth of Cloud Data Centers

13Cisco Global Cloud Index: Forecast and Methodology, 2015–2020, White Paper © 2016, Cisco
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Degrees of parallelism

Bit/Word

Instruction

Task/Thread

Job

14
SE252: Introduction to Cloud Computing, Simmhan, 2015
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Degrees of Parallelism

15

 Data parallel vs. Task Parallel
• Independent processes
• Independent data 

dependency

 Tight vs. Loose Coupling

Block/Message

File/Stream

Distributed Files

Do your review…collectively?

1. Blah blah?

SE252: Introduction to Cloud Computing, Simmhan, 2015



CDS.IISc.ac.in  |  Department of Computational and Data SciencesCDS.IISc.in  |  Department of Computational and Data Sciences

Scalability

 System Size: Higher performance when adding 
more machines

 Software: Can framework and middleware work 
with larger systems?

 Technology: Impact of scaling on time, space and 
diversity

 Application: As problem size grows (compute, 
data), can the system keep up?

 Vertical vs Horizontal: ?

…

16
SE252: Introduction to Cloud Computing, Simmhan, 2015
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Scalability Metric

 If the problem size is fixed as 𝑥 and the number of 
processors available is 𝑝

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥)

 If the problem size per processor is fixed as 𝑥 and 
the number of processors available is 𝑝

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥. 𝑝 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥. 𝑝)

17
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
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Ideal Strong/Weak Scaling

18
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
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Strong Scaling

 Amdahl’s Law for Application Scalability
‣ Total problem size is fixed
‣ Speedup limited by sequential bottleneck

 𝑓𝑠 is serial fraction of application

 𝑓𝑝 is fraction of application that can be parallelized

 𝑝 is number of processors

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥)

=
1

𝑓𝑠 +
𝑓𝑝
𝑝

19
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
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Amdahl’s Law

20

© Daniels220 at English Wikipedia

© Gorivero

© Martha A. Kim
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Weak Scaling
Gustafson’s Law of weak scaling

‣ Problem size increases with number of processors

‣ “Scaled speedup”

21
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012

© Peahihawaii
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Scalability

 Strong vs. Weak Scaling

 Strong Scaling: How the performance varies with 
the # of processors for a fixed total problem size

Weak Scaling: How the performance varies with 
the # of processors for a fixed problem size per 
processor
‣ MapReduce is intended for “Weak Scaling”

22
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Ease of Programming

 Programming distributed systems is difficult
‣ Divide a job into multiple tasks

‣ Understand dependencies between tasks: Control, Data

‣ Coordinate and synchronize execution of tasks

‣ Pass information between tasks

‣ Avoid race conditions, deadlocks

 Parallel and distributed programming 
models/languages/abstractions/platforms try to 
make these easy
‣ E.g. Assembly programming vs. C++ programming

‣ E.g. C++ programming vs. Matlab programming

23
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Availability, Failure

 Commodity clusters have lower reliability
‣ Mass-produced

‣ Cheaper materials

‣ Smaller lifetime (~3 years)

 How can applications easily deal with failures?

 How can we ensure availability in the presence of faults?

24
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Map Reduce

25
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Patterns & Technologies

MapReduce is a distributed data-parallel programming 

model from Google

MapReduce works best with a distributed file system, 

called Google File System (GFS)

 Hadoop is the open source framework implementation 

from Apache that can execute the MapReduce

programming model

 Hadoop Distributed File System (HDFS) is the open 

source implementation of the GFS design

 Elastic MapReduce (EMR) is Amazon’s PaaS

26
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MapReduce

“A simple and powerful interface that enables 

automatic parallelization and distribution of large-

scale computations, combined with an 

implementation of this interface that achieves high 

performance on large clusters of commodity PCs.”

27

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”, 
OSDI, 2004
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MapReduce Design Pattern

 Clean abstraction for programmers

 Automatic parallelization & distribution

 Fault-tolerance

 A batch data processing system

 Provides status and monitoring tools

28
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MapReduce: Data-parallel 
Programming Model

 Process data using map & reduce functions

map(ki, vi)  List<km, vm>[]
‣ map is called on every input item
‣ Emits a series of intermediate key/value pairs

 All values with a given key are grouped together

reduce(km, List<vm>[])  List<kr, vr>[]
‣ reduce is called on every unique key & all its values
‣ Emits a value that is added to the output

29Copyright © 2011 Tom White, Hadoop Definitive Guide
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MR Borrows from Functional 
Programming

Functional operations do not modify data 
structures
‣They always create new ones

‣Original data still exists in unmodified form (read 
only)

Data flows are implicit in program design

Order of operations does not matter
‣ Commutative: a ◊ b ◊ c = b ◊ a ◊ c = c ◊ b ◊ a

30
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MR Borrows from Functional 
Programming

 In a purely functional setting
‣Elements computed by map cannot see the 

effects of map on other elements

‣Order of applying reduce is commutative
• a ◊ b = b ◊ a

• Allowing parallel/reordered execution

‣More optimizations possible if reduce is also 
associative

• (a ◊ b) ◊ c = a ◊ (b ◊ c)

31
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MapReduce & MPI Scatter-Gather

32
http://mpitutorial.com/mpi-scatter-gather-and-allgather/

M M M M

R R R M
Routing determined by 

array index/element 
position

Routing determined by key
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MapReduce: Word Count

33

How now
Brown cow

How does
It work 
now

brown 1
cow 1
does 1
how 2
it 1
now 2
work 1

M

M

M

M

R

R

<how,1>
<now,1>
<brown,1>
<cow,1>
<how,1>
<does,1>
<it,1>
<work,1>
<now,1>

<how,1 1>
<now,1 1>
<brown,1>
<cow,1>
<does,1>
<it,1>
<work,1>

Input Output

Map

Reduce

MapReduce Framework

Map(k1,v1) → list(k2,v2)
Reduce(k2, list(v2)) → list(k2,v2)

Distributed Word Count
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Map
 Input records from the data source 

‣ lines out of files, rows of a database, etc.

 Passed to map function as key-value pairs
‣ Line number, line value

map() produces zero or more intermediate values, 
each associated with an output key

34
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Map

 Example Wordcount

map(String input_key, String input_value):

// input_key: line number

// input_value: line of text

for each Word w in input_value.tokenize()

EmitIntermediate(w, "1");

(0, “How now brown cow”) →

[(“How”, 1), (“now”, 1), (“brown”, 1), (“cow”, 1)]

35
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 Example: Upper-case Mapper
map(k, v) { emit(k.toUpper(), v.toUpper()); }

(“foo”, “bar”) → (“FOO”, “BAR”)

(“Foo”, “other”) → (“FOO”, “OTHER”)

(“key2”, “data”) → (“KEY2”, “DATA”)

 Example: Filter Mapper
map(k, v) { if (isPrime(v)) then emit(k, v); }

(“foo”, 7) → (“foo”, 7)

(“test”, 10) → () //nothing emitted

36
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Reduce
 All the intermediate values from map for a given 

output key are combined together into a list

 reduce() combines these intermediate values into one 
or more final values for that same output key … 
Usually one final value per key

One output “file” per reducer

37
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Reduce
 Example Wordcount

reduce(String output_key, Iterator intermediate_values)

// output_key: a word

// output_values: a list of counts

int sum = 0;

for each v in intermediate_values

sum += ParseInt(v);

Emit(output_key, AsString(sum));

(“A”, [1, 1, 1]) → (“A”, 3)

(“B”, [1, 1]) → (“B”, 2)

38
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for each w 

in value do 

emit(w,1)

How now
Brown cow

How does
It work now

for all w in 

value do 

emit(w,1)

<How,1>
<now,1>
<brown,1>
<cow,1>

<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>

<brown,1>
<cow,1>

<does,1>
<it,1>
<work,1>

How 2
now 2

does 1
it 1
work 1

brown 1
cow 1

sum = 

sum + value

emit(key,sum)

MapReduce: Word Count Drilldown
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Mapper/Reducer Tasks vs. 
Map/Reduce Methods
Number of Mapper and Reducer tasks is specified 

by user

 Each Mapper/Reducer task can make multiple calls 
to Map/Reduce method, sequentially

Mapper and Reducer tasks may run on different 
machines

 Implementation framework decides 
‣ Placement of Mapper and Reducer tasks on machines

‣ Keys assigned to mapper and reducer tasks

‣ But can be controlled by user…

40



CDS.IISc.ac.in  |  Department of Computational and Data SciencesCDS.IISc.in  |  Department of Computational and Data Sciences

Shuffle & Sort
The Magic happens here!

 Shuffle does a “group by” of keys from all mappers
‣ Similar to SQL goupBy operation

 Sort of local keys to Reducer task performed
‣ Keys arriving at each reducer are sorted

‣ No sorting guarantee of keys across reducer tasks

 No ordering guarantees of values for a key
‣ Implementation dependent

 Shuffle and Sort implemented efficiently by framework

41
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Host DHost CHost A

Host CHost BHost A

Map-Shuffle-Sort-Reduce

42
Data-Intensive Text Processing with MapReduce, Jimmy Lin, 2010

Intermediate 
Key-Value Pairs
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Maintainer State in Tasks

 Capture state & dependencies across multiple keys 
and values

43

Mapper object

configure

map

close

state

one object per task
Reducer object

configure

reduce

close

state

one call per input 

key-value pair

one call per 

intermediate key

API initialization hook

API cleanup hook.

Called after all Map/Reduce calls done.

www.cs.bu.edu/faculty/gkollios/ada14

State preserved for 

a task, across calls
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Improve Word Count using State?

map(String k, String v)

foreach w in v.tokenize()

emit(w, "1")

reduce(String k, int[] v)

int sum = 0

foreach n in v[]  sum += v

emit(k, sum)
44

mapperInit()

H = new HashMap<String,int>()

map(String k, String v)

foreach w in v.tokenize()

H[w] = H[w] + 1

mapperClose()

foreach w in H.keys()

emit(w, H[w])

reduce(String k, int[] v)

int sum = 0;

foreach n in v[]  sum += v

emit(k, sum)



CDS.IISc.ac.in  |  Department of Computational and Data SciencesCDS.IISc.in  |  Department of Computational and Data Sciences

Anagram Example

 “An anagram is a type of word play, the result of 
rearranging the letters of a word or phrase to 
produce a new word or phrase, using all the 
original letters exactly once; for example orchestra
can be rearranged into carthorse.” … Wikipedia

 thickens = kitchens, reserved = reversed, 

 cheating = teaching, cause = sauce

 Tom Marvolo Riddle = I am Lord Voldemort

 Problem: Find ALL anagrams in the English 
dictionary of ~1M words (106)

 1M X 1M comparisons?
45
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Anagram Example
public class AnagramMapper extends MapReduceBase implements

Mapper<LongWritable, Text, Text, Text> {

private Text sortedText = new Text();

private Text orginalText = new Text();       

public void map(LongWritable key, Text value,

OutputCollector<Text, Text> outputCollector, Reporter reporter) {

String word = value.toString();

char[] wordChars = word.toCharArray();

Arrays.sort(wordChars);

String sortedWord = new String(wordChars);

sortedText.set(sortedWord);

orginalText.set(word);

// Sort word and emit <sorted word, word>

outputCollector.collect(sortedText, orginalText);

}

}
http://code.google.com/p/hadoop-map-reduce-examples/
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Anagram Example…

47

public void reduce(Text anagramKey, Iterator<Text> anagramValues,

OutputCollector<Text, Text> results, Reporter reporter) {

String output = "";

while(anagramValues.hasNext()) {

Text anagram = anagramValues.next();

output = output + anagram.toString() + "~";

}

StringTokenizer outputTokenizer = 

new StringTokenizer(output,"~");

// if the values contain more than one word 

// we have spotted a anagram.

if(outputTokenizer.countTokens()>=2) {

output = output.replace("~", ",");

outputKey.set(anagramKey.toString());

outputValue.set(output);

results.collect(outputKey, outputValue);

}

}
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Optimization: Combiner
 Logic runs on output of Map tasks, on the map 

machines
‣ “Mini-Reduce,” only on local Map output

 Output of Combiner sent to shuffle
‣ Saves bandwidth before sending data to Reducers

 Same input and output types as Map’s output type 
‣ Map(k,v) → (k’,v’) 

‣ Combine(k’,v’[]) → (k’,v’)

‣ Reduce(k’,v’[]) → (k’’,v’’)

 Reduce task logic can be used directly as combiner if
commutative & associative. Usually for trivial ops.

 Combiner may be called 0, 1 or more times
48
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Optimization: Partitioner
 Decides assignment of intermediate keys grouped to 

specific Reducer tasks
‣ Affects the load on each reducer task

 Sorting of local keys for Reducer task done after 
partitioning

 Default is hash partitioning
‣ HashPartitioner(key, nParts) → part
‣ Number of Reducer (nParts) tasks known in advance
‣ Returns a partition number [0, nParts)
‣ Default partitioner balances number of keys per Reducer 

… assuming uniform key distribution
‣ May not balance the number of values processed by a 

Reducer
49
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Map-MiniShuffle-Combine-
Partition-Shuffle-Sort-Reduce

50
Data-Intensive Text Processing with MapReduce, Jimmy Lin, 2010

MiniShuffle

Combine & Partition phases 
could be interchanged, 
based on implementation

Combiner & 
Partitioner are 

powerful constructs. 
Use them wisely!
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MapReduce for Histogram

51

int bucketWidth = 4 // input

Map(k, v) {
emit(floor(v/bucketWidth), 1) 
// <bucketID, 1>

}

// one reduce per bucketID
Reduce(k, v[]){ 

sum=0;
foreach(n in v[])  sum++;
emit(k, sum)
// <bucketID, frequency>

}

M M

7
2
9
6
0
2
5

2
1

10
3
5
4
0

11
11
6
2
1
8
1

2
4
6
8

10
11
0

1,1
0,1
2,1
1,1
0,1
0,1
1,1

0,1
0,1
2,1
0,1
1,1
1,1
0,1

2,1
2,1
1,1
0,1
0,1
2,1
0,1

0,1
1,1
1,1
2,1
2,1
2,1
0,1

Shuffle
2,1
2,1
2,1
2,1
2,1
2,1
2,1
2,1

0,1
0,1
0,1
0,1
0,1
0,1

1,1
1,1
1,1
1,1
1,1
1,1
1,1
1,1

0,1
0,1
0,1
0,1
0,1
0,1

R R R

2,8 0,12 1,8

Data transfer & 
shuffle between 
Map & Reduce  
(28 items)
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MapReduce for Histogram

52Since Reducer is commutative and associative, its logic can be used as a Combiner

1,1
0,1
2,1
1,1

0,1
0,1
2,1
0,1

2,1
2,1
1,1
0,1

0,1
1,1
1,1
2,1

0,1
0,1
1,1

1,1
1,1
0,1

0,1
2,1
0,1

2,1
2,1
0,1

C C C

2,2 1,5 0,7

C C C

2,6 1,3 0,5

Mini Shuffle

2,1
2,1

1,1
1,1
1,1
1,1
1,1

0,1
0,1
0,1
0,1

0,1
0,1
0,1

Mini Shuffle

2,1
2,1
2,1

1,1
1,1
1,1

0,1
0,1
0,1
0,1
0,1

2,1
2,1
2,1

Shuffle
2,2
2,6

1,5
1,3

0,7
0,5

R R R

2,8 1,8 0,12

int bucketWidth = 4 // input

Map(k, v) {
emit(floor(v/bucketWidth), 1) 
// <bucketID, 1>

}

Combine(k, v[]){ 
// same code as Reduce()

}

// one reduce per bucketID
Reduce(k, v[]){ 

sum=0;
foreach(n in v[])  sum++;
emit(k, sum)
// <bucketID, frequency>

}

6 items

Mini-shuffle 
between Map & 
Combine
(28 items)

M M

7
2
9
6
0
2
5

2
1

10
3
5
4
0

11
11
6
2
1
8
1

2
4
6
8

10
11
0

Combiners for all keys 
may not run. And they 

may run on only a subset 
of values for the key.  
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Combiner Advantage

Mini-Shuffle lowers the overall cost for Shuffle

 E.g. n total items emitted from m mappers

NW Transfer and Disk IO costs
‣ In ideal case, m items vs. n items written and read from 

disk, transferred over network (m<<n)

 Shuffle, less of an impact
‣ If more mapper tasks are present than reducers, higher 

parallelism for doing groupby and mapper-side partial 
sort.

‣ Local Sort on reducer is based on number of unique 
keys, which does not change due to combiner.
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Quick Assignment
Find the Mean of a set of numbers
Map Input: ×, int e.g., <×,8>,<×,32>,<×,20>,<×,4>
Reduce Output: ×, int e.g. <×,16>
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Computing the Mean: 
Simple Approach

55
Optimization: Can we use Reducer as Combiner?

www.cs.bu.edu/faculty/gkollios/ada14

All work performed by single Reducer!
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Computing the Mean:
Using a Combiner

56Is this correct? www.cs.bu.edu/faculty/gkollios/ada14
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Computing the Mean: Fixed?

57
www.cs.bu.edu/faculty/gkollios/ada14
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TeraSort: Sorting Large Files

 Input is a list of positive numbers (or words)
‣ Say a terabyte of data, 1011 entries of 10 bytes each

Output is the list of numbers or words in sorted 
order

How can we use MapReduce for this?
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TeraSort: Sorting Large Files

 Approach 1
‣ Have n mappers and 1 reducer tasks

‣ Map(key, num) → (num, 0)

‣ Shuffle & Local Sort: All numbers (intermediate keys) to 
the single reducer is sorted by framework

‣ Reduce(num, [0]) → (num+)

‣ Output from the reducer task is in sorted order

‣ NOTE: repeat printing of num if there are duplicate ‘0’

‣ Do we have any scaling?
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TeraSort: Sorting Large Files

 Approach 2
‣ n mapper, m reducer tasks

‣ Map(key, num) → (num, 0)

‣ Shuffle & Local Sort: All numbers (intermediate keys) to 
a single reducer are sorted

‣ Reduce(num, [0]) → (num+)

‣ Local output of numbers from each reducer is sorted, 
e.g. m sorted files

‣ Merge Sort separately? 

‣ What is the scaling? Balancing?
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TeraSort: Sorting Large Files

 Approach 3
‣ n mapper, m reducer tasks

‣ Map(key, num) → (num/(MAX/m), num)

‣ Map does a histogram distribution of num into reduce 
method buckets

‣ Reduce(bucketID, num[]) → sort(num[])

‣ Reduce performs a local sort of all local numbers
• Sort managed by us, needs to fit in memory, etc.

‣ Concatenate output of m sorted files

‣ What is the scaling?
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TeraSort: Sorting Large Files

 Approach 4
‣ n mapper, m reducer tasks
‣ Map(key, num) → (num, 0)
‣ Partition(num, m) → floor(num/(MAX/m))
‣ Partitioner causes numbers to be range-partitioned to 

each reducer 
• Range of values required, 0..MAX
• Words (string) requires a trie for efficiency

‣ Shuffle & Sort: Local range of numbers to a reducer is 
sorted
‣ Reduce(num, 0) → (num)
‣ Concatenate sorted output from each reducer
‣ What is the scaling?
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MapReduce: Recap

 Programmers must specify:
map (k, v) → <k’, v’>*
reduce (k’, v’[]) → <k’’, v’’>*
‣ All values with the same key are reduced together

 Optionally, also:
partition (k’, number of partitions) → partition for k’
‣ Often a simple hash of the key, e.g., hash(k’) mod n
‣ Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
‣ Mini-reducers that run in memory after the map phase
‣ Used as an optimization to reduce network traffic

 The execution framework handles everything else…

www.cs.bu.edu/faculty/gkollios/ada14
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“Everything Else”
 The execution framework handles everything else…

‣ Scheduling: assigns workers to map and reduce tasks
‣ “Data distribution”: moves processes to data
‣ Synchronization: gathers, sorts, and shuffles intermediate 

data
‣ Errors and faults: detects worker failures and restarts

 Limited control over data and execution flow
‣ All algorithms must expressed in m, r, c, p

 You don’t know:
‣ Where mappers and reducers run
‣ When a mapper or reducer begins or finishes
‣ Which input a particular mapper is processing
‣ Which intermediate key a particular reducer is processing

www.cs.bu.edu/faculty/gkollios/ada14
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Announcements, 
etc.

65
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Admin Stuff

 Add yourself to coursereg.iisc.ac.in if you are an 
IISc Student crediting/auditing the course

 Add yourself to the DS256.Jan17 mailing list
‣ http://mailman.serc.iisc.in/mailman/admindb/ds256.jan

17

‣ All announcements, etc. will be sent to this list

‣ Accounts on turing cluster will be created only for those 
on this list

66

http://mailman.serc.iisc.in/mailman/admindb/ds256.jan17
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Assignment 1 to be posted on Jan 17, 
due Feb 7

Assignment 0 (by 12/Jan)
 By Jan 12

‣ Setup IDE like Eclipse, IntelliJ
‣ Pseudo-distributed setup of Apache Hadoop v2 on 

laptop/workstation
‣ Wordcount, Distributed Grep, PageRank on local setup
‣ Look into WordCount code. With and without combiner.

 By Jan 17
‣ turing account details to be email by 16 Jan
‣ Wordcount, Distributed Grep, Sort, PageRank on turing cluster
‣ Monitoring, Logging and Performance measurement
‣ How long does grep and sort Linux commands take?

• 1MB, 10MB, 100MB, 1GB integer files
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Reading

Hadoop, HDFS & YARN
‣ Hadoop: The Definitive Guide, 4th Edition, 2015

‣ Apache Hadoop YARN: Moving Beyond MapReduce and 
Batch Processing with Apache Hadoop, 2015

68

Additional Resources

 Textbook: Data-Intensive Text Processing with MapReduce, 
Jimmy Lin and Chris Dyer, 2010, 
https://lintool.github.io/MapReduceAlgorithms/
‣ Chapters 1, 2, 3

 Mining of Massive Datasets,  Jure Leskovec, Anand 
Rajaraman and Jeff Ullman,  2nd Edition (v2.1), 2014, 
http://www.mmds.org/#ver21
‣ Chapters 1.3, 2.1-2.3, 2.5-2.6

https://lintool.github.io/MapReduceAlgorithms/
http://www.mmds.org/#ver21
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MSR India Academic Research 
Summit: Data Science Track

 Venue: Satish Dhawan Auditorium, Indian Institute 
of Science

 24th January 2017

 3:30 – 5:00 PM: Track: Data Science for Societal 
Impact – Vani Mandava, Manohar Swaminathan, 
Yogesh Simmhan
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https://www.microsoft.com/en-us/research/event/msr-india-academic-research-summit/


