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Map-Only Design

Filtering: Distributed Grep
 Input
‣ Lines of text from HDFS

‣ “Search String” (e.g. regex), input parameter to job

Mapper
‣ Search line for string/pattern

‣ Output matching lines

 Reducer
‣ Identity function (output = input), or none at all
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Accumulation (Histogram)
 List of courses with number of students enrolled in each (GoI

scheme with citizens enrolled in each)

 Input
‣ <StudentID, CourseID>
‣ <2482, SE256> <6427, SE252> <1635, E0 259>

 Mapper
‣ Emit <CourseID, 1>
‣ <SE256, 1>, <SE252, 1>, <E0 259, 1>

 Partition
‣ By Course ID

 Sort <E0 259, 1>, <SE252, 1>, <SE256, 1>

 Reduce <E0 259, [1,1]>, <SE252, [1]>, <SE256, [1,1,1]>
‣ Count number of students per Course. 
‣ Output <Course ID, Count>
‣ <SE256, 2>, <SE252, 1>, <E0 259, 3>
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Inverted Index

 Convert from Key:Values to Value:Keys form
‣ E.g. <URL, Lines>  <Word:URL[]>

‣ Useful for building search index

 Input: <URL, Line>

Map: foreach(Word in Line) emit(Word, URL)

 Combiner: Combine URLs for same Word

 Reduce: emit(Word, sort(URL[ ]))
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Inverted Index Example

75Introduction to MapReduce and Hadoop, Matei Zaharia, UC Berkeley
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Join
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Join
 Given two sets of files, combine the lines having the 

same key in each file
 Input: 

‣ <customer_data>, <order_data>

Mapper: 
‣ emit <cell, <t1,customer_data>>, <cell, <t2,order_data>>

 Reduce:
‣ If only one table ID (customer or order value) present, skip
‣ If 2 values present, one from each tables ID

• Just concatenate and emit the pair
• <cell, [customer_data, order_data]>

‣ If multiple values present for each table ID,
• Emit cross product of customer_data* and order_data* values, 

i.e., local join for each cell key
• <cell, [customer_data*, order_data*]>

77



CDS.IISc.ac.in  |  Department of Computational and Data SciencesCDS.IISc.in  |  Department of Computational and Data Sciences

Reverse graph edge directions 
& output in node order

Parallel Programming with Hadoop/MapReduce, Tao Yang 78

 Input: adjacency list of graph (e.g. 3 nodes and 4 edges)
(3, [1, 2])         (1, [3])

(1, [2, 3])   (2, [1, 3])

(3, [1])

 node_ids in the output values are also sorted.  
But Hadoop only sorts on keys!

MapReduce format
‣ Input:     (3, [1, 2]),   (1, [2, 3]).

‣ Intermediate: (1, [3]), (2, [3]),   (2, [1]), (3, [1]).  (reverse edge 
direction)

‣ Out:  (1,[3])  (2, [1, 3])  (3, [[1]).

1 2

3

1 2

3
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Scalable Hadoop 
Algorithms: Themes
 Avoid object creation
‣ Inherently costly operation

‣ Garbage collection

 Avoid buffering
‣ Limited heap size

‣ Works for small datasets, but won’t scale!

www.cs.bu.edu/faculty/gkollios/ada14
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Importance of Local 
Aggregation
 Ideal scaling characteristics:
‣ Twice the data, twice the running time

‣ Twice the resources, half the running time

Why can’t we achieve this?
‣ Synchronization requires communication

‣ Communication kills performance

 Thus… avoid communication!
‣ Reduce intermediate data via local aggregation

‣ Combiners can help

www.cs.bu.edu/faculty/gkollios/ada14
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Design Pattern for Local 
Aggregation
 “In-mapper combining”
‣ Fold the functionality of the combiner into the 

mapper by preserving state across multiple map 
calls

Advantages
‣ Speed

‣Why is this faster than actual combiners?

Disadvantages
‣ Explicit memory management required

‣ Potential for order-dependent bugs

www.cs.bu.edu/faculty/gkollios/ada14
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Combiner Design

Combiners and reducers share same method 
signature
‣ Sometimes, reducers can serve as combiners

‣Often, not…

Remember: combiner are optional 
optimizations
‣ Should not affect algorithm correctness

‣May be run 0, 1, or multiple times

Example: find average of all integers associated 
with the same key

www.cs.bu.edu/faculty/gkollios/ada14
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Advanced 
Algorithms
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Term Co-occurance

Term co-occurrence matrix for a text collection
‣M = N x N matrix (N = vocabulary size)

‣Mij: number of times i and j co-occur in some 
context 
(for concreteness, let’s say context = sentence)

Why?
‣ Distributional profiles as a way of measuring 

semantic distance

‣ Semantic distance useful for many language 
processing tasks
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MapReduce: Large 
Counting Problems
• Term co-occurrence matrix for a text collection

= specific instance of a large counting problem
– A large event space (number of terms)

– A large number of observations (the collection itself)

– Goal: keep track of interesting statistics about the events

How do we compute using MapReduce?
‣ Map Input: DocID, DocContent

• Basic approach
– Mappers generate partial counts

– Reducers aggregate partial counts

How do we aggregate partial counts efficiently?
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First Try: “Pairs”

 Each mapper takes a sentence:
‣ Generate all co-occurring term pairs

‣ For all pairs, emit (a, b) → count

 Reducers sum up counts associated with these 
pairs

Use combiners!
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Pairs Approach

Mapper emits many intermediate pairs (cell values)
 Combiner operates on sparse keys

87
TB Sec 3.2, Lin, et al, 
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Another Try: “Stripes”
 Idea: group together pairs into an associative array

 Each mapper takes a sentence:
‣ Generate all co-occurring term pairs
‣ For each term, emit a → { b: countb, c: countc, d: countd

… }

 Reducers perform element-wise sum of associative 
arrays

(a, b) → 1 

(a, c) → 2 

(a, d) → 5 

(a, e) → 3 

(a, f) → 2 

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1,         d: 5, e: 3 }

a → { b: 1, c: 2, d: 2,         f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
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Stripes Approach

 Mapper emits entire row at a time

 Combiner & Reducer operate on fewer keys

 Need to store entire row in memory!
89

TB Sec 3.2, Lin, et al, 
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“Stripes” Analysis

 Advantages
‣ Far less sorting and shuffling of key-value pairs

‣ Can make better use of combiners

 Disadvantages
‣ More difficult to implement

‣ Underlying object more heavyweight

‣ Fundamental limitation in terms of size of event space



Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), 

which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)
TB Sec 3.2, Lin, et al, 
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Relative Frequencies

How do we estimate relative frequencies from 
counts?

Why do we want to do this?

How do we do this with MapReduce?
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f(B|A): “Stripes” 

 Easy!
‣ One pass to compute (a, *)

‣ Another pass to directly compute f(B|A)

a →  {b1:3, b2 :12, b3 :7, b4 :1, … }
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f(B|A): “Pairs” 

 For this to work:
‣ Must emit extra (a, *) for every bn in mapper
‣ Must make sure all a’s get sent to same reducer (use 

partitioner)
‣ Must make sure (a, *) comes first (define sort order)
‣ Must hold state in reducer across different key-value pairs

(a, b1) → 3 

(a, b2) → 12 

(a, b3) → 7

(a, b4) → 1 

…

(a, *) → 32 

(a, b1) → 3 / 32 

(a, b2) → 12 / 32

(a, b3) → 7 / 32

(a, b4) → 1 / 32

…

Reducer holds this value in memory
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Matrix-Vector Multiply

95
© philip.leong, USydney, Case Study – Matrix Multiplication
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Matrix-Matrix Multiply

96
© philip.leong, USydney, Case Study – Matrix Multiplication
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Sparse Matrix Multiplication

‣ Task: Compute product C = A·B

‣ Assume most matrix entries are 0

Motivation
‣ Core problem in scientific computing

‣ Challenging for parallel execution

‣ Demonstrate expressiveness of Map/Reduce
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Sparse Matrix Multiplication

‣ Represent matrix as list of nonzero entries
• row, col, value, matrixID

‣ Strategy
• Phase 1: Compute all products ai,k · bk,j
• Phase 2: Sum products for each entry i,j
• Each phase involves a Map/Reduce
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Phase 1: Map

‣ Group values ai,k and bk,j according to key k
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Phase 1: Reduce

‣ Generate all products ai,k · bk,j
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Phase 2: Map

‣ Group products ai,k · bk,j with matching values of i and j
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Phase 2: Reduce

‣ Sum products to get final entries
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Block Matrix Multiply

103
© philip.leong, USydney, Case Study – Matrix Multiplication
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PageRank

 Centrality measure of web page quality based on 
the web structure
‣ How important is this vertex in the graph?

 Random walk
‣ Web surfer visits a page, randomly clicks a link on that 

page, and does this repeatedly.
‣ How frequently would each page appear in this surfing?

 Intuition
‣ Expect high-quality pages to contain “endorsements” 

from many other pages thru hyperlinks
‣ Expect if a high-quality page links to another page, then 

the second page is likely to be high quality too

2016-03-16 104Lin, Ch 5.3 PAGERANK
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PageRank, recursively

 P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

 |G| is number of URLs (vertices) in graph

 α is probability of random jump 

 L(n) is set of vertices that link to ‘n’

 C(m) is out-degree of ‘m’

2016-03-16 105
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PageRank Iterations

2016-03-16 106

α=0
Initialize P(n)=1/|G|

Lin, Fig 5.7
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PageRank using MapReduce

2016-03-16 107Lin, Fig 5.8
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PageRank using MapReduce
 MR run over multiple iterations (typically 30)

‣ The graph structure itself must be passed from iteration to iteration!

 Mapper will
‣ Initially, load adjacency list and initialize default PR

• <v1, <v2>+>

‣ Subsequent iterations will load adjacency list and new PR
• <v1, <v2>+, pr1>

‣ Emit two types of messages from Map
• PR messages and Graph Structure Messages

 Reduce will
‣ Reconstruct the adjacency list for each vertex
‣ Update the PageRank values for the vertex based on neighbour’s PR 

messages
‣ Write adjacency list and new PR values to HDFS, to be used by next 

Map iteration
• <v1, <v2>+, pr1’>

2016-03-16 108
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Inverted Indexes Revisited
 Each Map task parses one or more webpages
‣ Input:  A stream of webpages (WARC)

‣ Output:  A stream of (term, URL) tuples
• (long, http://gb.com) (long, http://gb.com) (ago, http://gb.com) … 

(long, http://jn.in) (years, http://jn.in) (ago, http://jn.in) …

 Shuffle sorts by key and routes tuples to Reducers

 Reducers convert streams of keys into streams of 
inverted lists
‣ Sorts the values for a key (why?) and builds an inverted list

‣ Output:  (long, [http://gb.com, http://jn.in]), (ago, 
[http://gb.com, http://jn.in]), (years, [http://jn.in])

1092016-03-16
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Optimizations & Extensions
 URL sizes may be large

‣ Replace URLs with unique longs, URL ID
• Mapping from URL ID to URL saved as a file
• Inverted Index has <term, [URL ID]+>

‣ Skip stop words with lot of matching URLs
‣ Use combiners

 Partition term by prefix alphabet(s)
‣ One reducer for each term starting with “a”, “b”, etc.
‣ Part file from each reducer has terms with unique a starting 

letter

 Additional metadata
‣ Idea: Include a mapping from URL ID to <URL, PageRank>?
‣ Include “term frequency” of term occurrence per URL ID in 

Inverted Index?

2016-03-16 110
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Challenge

 Even using URL IDs, all IDs per term may not fit in 
reduce memory for sorting
‣ E.g. 17M URLs in 1% of CC data. 

‣ Say 1000 unique words per URL. 

‣ So 17B keys and values generated by Mappers.

‣ Say 50,000 unique words (keys) in English

‣ One key would on average have 17B/50K=340K URL IDs
• Peak values would be much higher

Use a value-to-key conversion design pattern
‣ Let MR perform sorting, Reducer just emits result

2016-03-16 111
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2016-03-16

• Mapper emits <<term, URL ID>, tf>
• i.e. compound key

• Partitioner sends all terms to the same 
reducer

• Per reducer, MR sorts based on compound key 
<term, URL ID>

• Only one value for each compound key
• Reduce task gets list of term and URL ID in 

sorted order
• When new term seen, flush index for 

“prev” term and start new term
• E.g.

• <<Ago, 1>, tf1>
• <<Ago, 7>, tf7>

• Flush <Ago, [<1,tf1>,<7,tf7>]
• <<Long, 3>, tf3>
• <<Long, 4>, tf4>
• <<Long, 6>, tf6>

• Flush <Long, [<3,tf3>,<4,tf4>,<6,tf6>]

Lin, Figure 4.4 112
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Lookup of Terms

 Each Map task loads one of the index files, say, by 
alphabet

 Input terms e.g. “t1 & t2 & t3” passed to each Map 
task as AND search

Map does lookup and sends <URL ID, t_i> to 
reducer
‣ Optionally send <<PR, URL ID>, t_i> for sorting by PR

 Reducer does set intersection of all t_i for a URL ID 
‣ If all terms match, looks up URL for the URL ID 

‣ If PR stored for each URL, that is returned too

2016-03-16 113
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