
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

Department of Computational and Data Sciences

L5,6:MapReduce
Algorithm Design

Yogesh Simmhan
3 1 J a n & 2 F e b , 2 0 1 7

DS256:Jan17 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Map-Only Design

Filtering: Distributed Grep
 Input
‣ Lines of text from HDFS

‣ “Search String” (e.g. regex), input parameter to job

Mapper
‣ Search line for string/pattern

‣ Output matching lines

 Reducer
‣ Identity function (output = input), or none at all

72

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Accumulation (Histogram)
 List of courses with number of students enrolled in each (GoI

scheme with citizens enrolled in each)

 Input
‣ <StudentID, CourseID>
‣ <2482, SE256> <6427, SE252> <1635, E0 259>

 Mapper
‣ Emit <CourseID, 1>
‣ <SE256, 1>, <SE252, 1>, <E0 259, 1>

 Partition
‣ By Course ID

 Sort <E0 259, 1>, <SE252, 1>, <SE256, 1>

 Reduce <E0 259, [1,1]>, <SE252, [1]>, <SE256, [1,1,1]>
‣ Count number of students per Course.
‣ Output <Course ID, Count>
‣ <SE256, 2>, <SE252, 1>, <E0 259, 3>

73

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Inverted Index

 Convert from Key:Values to Value:Keys form
‣ E.g. <URL, Lines> <Word:URL[]>

‣ Useful for building search index

 Input: <URL, Line>

Map: foreach(Word in Line) emit(Word, URL)

 Combiner: Combine URLs for same Word

 Reduce: emit(Word, sort(URL[]))

74

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Inverted Index Example

75Introduction to MapReduce and Hadoop, Matei Zaharia, UC Berkeley

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Join

76

http://www.tomjewett.com/dbdesign/dbdesign.php?page=join.php

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Join
 Given two sets of files, combine the lines having the

same key in each file
 Input:

‣ <customer_data>, <order_data>

Mapper:
‣ emit <cell, <t1,customer_data>>, <cell, <t2,order_data>>

 Reduce:
‣ If only one table ID (customer or order value) present, skip
‣ If 2 values present, one from each tables ID

• Just concatenate and emit the pair
• <cell, [customer_data, order_data]>

‣ If multiple values present for each table ID,
• Emit cross product of customer_data* and order_data* values,

i.e., local join for each cell key
• <cell, [customer_data*, order_data*]>

77

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Reverse graph edge directions
& output in node order

Parallel Programming with Hadoop/MapReduce, Tao Yang 78

 Input: adjacency list of graph (e.g. 3 nodes and 4 edges)
(3, [1, 2]) (1, [3])

(1, [2, 3]) (2, [1, 3])

(3, [1])

 node_ids in the output values are also sorted.
But Hadoop only sorts on keys!

MapReduce format
‣ Input: (3, [1, 2]), (1, [2, 3]).

‣ Intermediate: (1, [3]), (2, [3]), (2, [1]), (3, [1]). (reverse edge
direction)

‣ Out: (1,[3]) (2, [1, 3]) (3, [[1]).

1 2

3

1 2

3

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Scalable Hadoop
Algorithms: Themes
 Avoid object creation
‣ Inherently costly operation

‣ Garbage collection

 Avoid buffering
‣ Limited heap size

‣ Works for small datasets, but won’t scale!

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Importance of Local
Aggregation
 Ideal scaling characteristics:
‣ Twice the data, twice the running time

‣ Twice the resources, half the running time

Why can’t we achieve this?
‣ Synchronization requires communication

‣ Communication kills performance

 Thus… avoid communication!
‣ Reduce intermediate data via local aggregation

‣ Combiners can help

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Design Pattern for Local
Aggregation
 “In-mapper combining”
‣ Fold the functionality of the combiner into the

mapper by preserving state across multiple map
calls

Advantages
‣ Speed

‣Why is this faster than actual combiners?

Disadvantages
‣ Explicit memory management required

‣ Potential for order-dependent bugs

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Combiner Design

Combiners and reducers share same method
signature
‣ Sometimes, reducers can serve as combiners

‣Often, not…

Remember: combiner are optional
optimizations
‣ Should not affect algorithm correctness

‣May be run 0, 1, or multiple times

Example: find average of all integers associated
with the same key

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Advanced
Algorithms

83

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Term Co-occurance

Term co-occurrence matrix for a text collection
‣M = N x N matrix (N = vocabulary size)

‣Mij: number of times i and j co-occur in some
context
(for concreteness, let’s say context = sentence)

Why?
‣ Distributional profiles as a way of measuring

semantic distance

‣ Semantic distance useful for many language
processing tasks

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

MapReduce: Large
Counting Problems
• Term co-occurrence matrix for a text collection

= specific instance of a large counting problem
– A large event space (number of terms)

– A large number of observations (the collection itself)

– Goal: keep track of interesting statistics about the events

How do we compute using MapReduce?
‣ Map Input: DocID, DocContent

• Basic approach
– Mappers generate partial counts

– Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

First Try: “Pairs”

 Each mapper takes a sentence:
‣ Generate all co-occurring term pairs

‣ For all pairs, emit (a, b) → count

 Reducers sum up counts associated with these
pairs

Use combiners!

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Pairs Approach

Mapper emits many intermediate pairs (cell values)
 Combiner operates on sparse keys

87
TB Sec 3.2, Lin, et al,

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Another Try: “Stripes”
 Idea: group together pairs into an associative array

 Each mapper takes a sentence:
‣ Generate all co-occurring term pairs
‣ For each term, emit a → { b: countb, c: countc, d: countd

… }

 Reducers perform element-wise sum of associative
arrays

(a, b) → 1

(a, c) → 2

(a, d) → 5

(a, e) → 3

(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Stripes Approach

 Mapper emits entire row at a time

 Combiner & Reducer operate on fewer keys

 Need to store entire row in memory!
89

TB Sec 3.2, Lin, et al,

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

“Stripes” Analysis

 Advantages
‣ Far less sorting and shuffling of key-value pairs

‣ Can make better use of combiners

 Disadvantages
‣ More difficult to implement

‣ Underlying object more heavyweight

‣ Fundamental limitation in terms of size of event space

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),

which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)
TB Sec 3.2, Lin, et al,

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Relative Frequencies

How do we estimate relative frequencies from
counts?

Why do we want to do this?

How do we do this with MapReduce?

'

)',(count

),(count

)(count

),(count
)|(

B

BA

BA

A

BA
ABf

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

f(B|A): “Stripes”

 Easy!
‣ One pass to compute (a, *)

‣ Another pass to directly compute f(B|A)

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

f(B|A): “Pairs”

 For this to work:
‣ Must emit extra (a, *) for every bn in mapper
‣ Must make sure all a’s get sent to same reducer (use

partitioner)
‣ Must make sure (a, *) comes first (define sort order)
‣ Must hold state in reducer across different key-value pairs

(a, b1) → 3

(a, b2) → 12

(a, b3) → 7

(a, b4) → 1

…

(a, *) → 32

(a, b1) → 3 / 32

(a, b2) → 12 / 32

(a, b3) → 7 / 32

(a, b4) → 1 / 32

…

Reducer holds this value in memory

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Matrix-Vector Multiply

95
© philip.leong, USydney, Case Study – Matrix Multiplication

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Matrix-Matrix Multiply

96
© philip.leong, USydney, Case Study – Matrix Multiplication

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Sparse Matrix Multiplication

‣ Task: Compute product C = A·B

‣ Assume most matrix entries are 0

Motivation
‣ Core problem in scientific computing

‣ Challenging for parallel execution

‣ Demonstrate expressiveness of Map/Reduce

10 20

30 40

50 60 70

A

-1

-2 -3

-4

B

-10 -80

-60 -250

-170-460

C

X =

© Dave Andersen, CMU; MapReduce Programming, 15-440

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Sparse Matrix Multiplication

‣ Represent matrix as list of nonzero entries
• row, col, value, matrixID

‣ Strategy
• Phase 1: Compute all products ai,k · bk,j
• Phase 2: Sum products for each entry i,j
• Each phase involves a Map/Reduce

1 1
10

A

1 3
20

A

2 2
30

A

2 3
40

A

3 1
50

A

3 2
60

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

© Dave Andersen, CMU; MapReduce Programming, 15-440

10 20

30 40

50 60 70

A

-1

-2 -3

-4

B

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Phase 1: Map

‣ Group values ai,k and bk,j according to key k

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

Key = row

1 1
10

A

1 3
20

A

2 2
30

A

2 3
40

A

3 1
50

A

3 2
60

A

3 3
70

A

Key = 2

Key = 3

Key = 1

1 1
10

A

3 1
50

A

2 2
30

A

3 2
60

A

1 3
20

A

2 3
40

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

Key = col

© Dave Andersen, CMU; MapReduce Programming, 15-440

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Phase 1: Reduce

‣ Generate all products ai,k · bk,j

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = 2

Key = 3

Key = 1

1 1
10

A

3 1
50

A

2 2
30

A

3 2
60

A

1 3
20

A

2 3
40

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

X

X

X

© Dave Andersen, CMU; MapReduce Programming, 15-440

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Phase 2: Map

‣ Group products ai,k · bk,j with matching values of i and j

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = row,col

© Dave Andersen, CMU; MapReduce Programming, 15-440

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Phase 2: Reduce

‣ Sum products to get final entries

1 1
-10

C

2 1
-60

C

2 2
-250

C

3 1
-170

C

1 2
-80

C

3 2
-460

C

-10 -80

-60 -250

-170-460

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

© Dave Andersen, CMU; MapReduce Programming, 15-440

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Block Matrix Multiply

103
© philip.leong, USydney, Case Study – Matrix Multiplication

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

PageRank

 Centrality measure of web page quality based on
the web structure
‣ How important is this vertex in the graph?

 Random walk
‣ Web surfer visits a page, randomly clicks a link on that

page, and does this repeatedly.
‣ How frequently would each page appear in this surfing?

 Intuition
‣ Expect high-quality pages to contain “endorsements”

from many other pages thru hyperlinks
‣ Expect if a high-quality page links to another page, then

the second page is likely to be high quality too

2016-03-16 104Lin, Ch 5.3 PAGERANK

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

PageRank, recursively

 P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

 |G| is number of URLs (vertices) in graph

 α is probability of random jump

 L(n) is set of vertices that link to ‘n’

 C(m) is out-degree of ‘m’

2016-03-16 105

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

PageRank Iterations

2016-03-16 106

α=0
Initialize P(n)=1/|G|

Lin, Fig 5.7

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

2016-03-16 107Lin, Fig 5.8

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce
 MR run over multiple iterations (typically 30)

‣ The graph structure itself must be passed from iteration to iteration!

 Mapper will
‣ Initially, load adjacency list and initialize default PR

• <v1, <v2>+>

‣ Subsequent iterations will load adjacency list and new PR
• <v1, <v2>+, pr1>

‣ Emit two types of messages from Map
• PR messages and Graph Structure Messages

 Reduce will
‣ Reconstruct the adjacency list for each vertex
‣ Update the PageRank values for the vertex based on neighbour’s PR

messages
‣ Write adjacency list and new PR values to HDFS, to be used by next

Map iteration
• <v1, <v2>+, pr1’>

2016-03-16 108

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Inverted Indexes Revisited
 Each Map task parses one or more webpages
‣ Input: A stream of webpages (WARC)

‣ Output: A stream of (term, URL) tuples
• (long, http://gb.com) (long, http://gb.com) (ago, http://gb.com) …

(long, http://jn.in) (years, http://jn.in) (ago, http://jn.in) …

 Shuffle sorts by key and routes tuples to Reducers

 Reducers convert streams of keys into streams of
inverted lists
‣ Sorts the values for a key (why?) and builds an inverted list

‣ Output: (long, [http://gb.com, http://jn.in]), (ago,
[http://gb.com, http://jn.in]), (years, [http://jn.in])

1092016-03-16

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Optimizations & Extensions
 URL sizes may be large

‣ Replace URLs with unique longs, URL ID
• Mapping from URL ID to URL saved as a file
• Inverted Index has <term, [URL ID]+>

‣ Skip stop words with lot of matching URLs
‣ Use combiners

 Partition term by prefix alphabet(s)
‣ One reducer for each term starting with “a”, “b”, etc.
‣ Part file from each reducer has terms with unique a starting

letter

 Additional metadata
‣ Idea: Include a mapping from URL ID to <URL, PageRank>?
‣ Include “term frequency” of term occurrence per URL ID in

Inverted Index?

2016-03-16 110

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Challenge

 Even using URL IDs, all IDs per term may not fit in
reduce memory for sorting
‣ E.g. 17M URLs in 1% of CC data.

‣ Say 1000 unique words per URL.

‣ So 17B keys and values generated by Mappers.

‣ Say 50,000 unique words (keys) in English

‣ One key would on average have 17B/50K=340K URL IDs
• Peak values would be much higher

Use a value-to-key conversion design pattern
‣ Let MR perform sorting, Reducer just emits result

2016-03-16 111

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

2016-03-16

• Mapper emits <<term, URL ID>, tf>
• i.e. compound key

• Partitioner sends all terms to the same
reducer

• Per reducer, MR sorts based on compound key
<term, URL ID>

• Only one value for each compound key
• Reduce task gets list of term and URL ID in

sorted order
• When new term seen, flush index for

“prev” term and start new term
• E.g.

• <<Ago, 1>, tf1>
• <<Ago, 7>, tf7>

• Flush <Ago, [<1,tf1>,<7,tf7>]
• <<Long, 3>, tf3>
• <<Long, 4>, tf4>
• <<Long, 6>, tf6>

• Flush <Long, [<3,tf3>,<4,tf4>,<6,tf6>]

Lin, Figure 4.4 112

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Lookup of Terms

 Each Map task loads one of the index files, say, by
alphabet

 Input terms e.g. “t1 & t2 & t3” passed to each Map
task as AND search

Map does lookup and sends <URL ID, t_i> to
reducer
‣ Optionally send <<PR, URL ID>, t_i> for sorting by PR

 Reducer does set intersection of all t_i for a URL ID
‣ If all terms match, looks up URL for the URL ID

‣ If PR stored for each URL, that is returned too

2016-03-16 113

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Department of Computational and Data Sciences

Thank You!

114

http://creativecommons.org/licenses/by/4.0/deed.en_US

