Department of Computational and Data Sciences

L5,6:MapReduce
Algorithm Design

Yogesh Simmhan

Creative Commons Attribution 4.0 International License § z

Department of Computational and Data Sciences

http://creativecommons.org/licenses/by/4.0/deed.en_US

= CDS.IISc.in | Department of Computational and Data Sciences
Map-Only Design
Filtering: Distributed Grep
" [nput

» Lines of text from HDFS
» “Search String” (e.g. regex), input parameter to job

= Mapper
» Search line for string/pattern
» Output matching lines

= Reducer
» |[dentity function (output = input), or none at all

/2

. CDS.IISc.in | Department of Computational and Data Sciences

Accumulation (Histogram)

= List of courses with number of students enrolled in each (Gol
scheme with citizens enrolled in each)

= |nput
» <StudentID, CourselD>
» <2482, SE256> <6427, SE252> <1635, EOQ 259>

= Mapper
» Emit <CourselD, 1>
» <SE256, 1>, <SE252, 1>, <EO 259, 1>

® Partition
» By Course ID
= Sort <E0 259, 1>, <SE252, 1>, <SE256, 1>
= Reduce <E0 259, [1,1]>, <SE252, [1]>, <SE256, [1,1,1]>

» Count number of students per Course.
» Output <Course 1D, Count>
» <SE256, 2>, <SE252, 1>, <EO 259, 3>

/3

CDS.IISc.in | Department of Computational and Data Sciences

Inverted Index

= Convert from Key:Values to Value:Keys form
» E.g. <URL, Lines> @ <Word:URL[]>
» Useful for building search index

" [nput: <URL, Line>

" Map: foreach(Word in Line) emit(Word, URL)
= Combiner: Combine URLs for same Word

= Reduce: emit(Word, sort(URL[1))

/4

CDS.IISc.in | Department of Computational and Data Sciences

Inverted Index Example

Ahamlet.txt

to be or
not to be

A 12th.txt

be not
afraid of
greatness

to, hamlet.txt
be, hamlet.txt

or, hamlet.txt \

not, hamlet.txt

be, 12th.txt

not, 12thtxt ~—— "

— afraid, 12th.txt

of, 12th.txt
greatness, 12th.txt

A

afraid, (12th.txt)

be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)

or, (hamlet.txt)

to, (hamlet.txt)

Introduction to MapReduce and Hadoop, Matei Zaharia, UC Berkeley

/3

n
Join

Customers
cfirstname clastname | cphone cstreet czipcode
Tom Jewett | 714-355-1212 10200 Slater 92708
Alvaro Monge | 562-333-4141) 2145 Main 00840
Wayne Dick 562-777-3030 | 1250 Bellflower 90840
Orders
cfirstname clastname | cphone orderdate soldby
Alvaro Monge | 562-333-4141)2003-07-14 | Patrick
Wayne Dick 562-777-3030 | 2003-07-14 | Patrick
Alvaro Monge 562-333-4141 | 2003-07-18 | Kathleen
Alvaro Monge | 562-333-4141)2003-07-20 Kathleen

http://www.tomjewett.com/dbdesign/dbdesign.php?page=join.php

CDS.IISc.in | Department of Computational and Data Sciences

Customers joined to Orders
cfirstname clastname cphone cstreet czipcode orderdate soldby
Alvaro Monge | 562-333-4141 2145 Main 00840 | 2003-07-14 Patrick
Wayne Dick 562-777-3030 1250 Bellflower 90840 | 2003-07-14 | Patrick
Alvaro Monge | 562-333-4141 2145 Main 00840 | 2003-07-18 Kathleen
Alvaro Monge | 562-333-4141 2145 Main 00840 | 2003-07-20 Kathleen

/6

CDS.IISc.in | Department of Computational and Data Sciences

Join
= Given two sets of files, combine the lines having the
same key in each file

= [nput:

» <customer_data>, <order_data>
= Mapper:

» emit <cell, <tl,customer_data>>, <cell, <t2,order _data>>
= Reduce:

» If only one table ID (customer or order value) present, skip

» If 2 values present, one from each tables ID
e Just concatenate and emit the pair
e <cell, [customer_data, order_data]>

» If multiple values present for each table ID,

* Emit cross product of customer _data* and order_data™ values,
i.e., local join for each cell key

e <cell, [customer_data*, order_data*]>

/7

CDS.IISc.in | Department of Computational and Data Sciences

Reverse graph edge directions
& output in node order

" |nput: adjacency list of graph (e.g. 3 nodes and 4 edges)

(3,(3,2)) (1,(3])
>

(1,(2,3]) = (2,[1,3])
(3, [1])

" node_ids in the output values are also sorted.

But Hadoop only sorts on keys!

=" MapReduce format
» Input: (3,1, 2]), (1,2, 3]).

» Intermediate: (1, [3]), (2, [3]), (2,[1]), (3, [1]). (reverse edge
direction)

* Out: (1,[3]) (2, [1, 3]) (3, [[1]).

Parallel Programming with Hadoop/MapReduce, Tao Yang /8

. CDS.IISc.in | Department of Computational and Data Sciences

Scalable Hadoop
Algorithms: Themes

= Avoid object creation

» Inherently costly operation
» Garbage collection

= Avoid buffering
» Limited heap size
» Works for small datasets, but won’t scale!

Department of Computational and Data Sciences

" |deal scaling characteristics:
» Twice the data, twice the running time
» Twice the resources, half the running time

=" Why can’t we achieve this?
» Synchronization requires communication
» Communication kills performance

" Thus... avoid communication!
» Reduce intermediate data via local aggregation
» Combiners can help

Department of Computational and Data Sciences

= “In-mapper combining”

» Fold the functionality of the combiner into the
mapper by preserving state across multiple map
calls

= Advantages

» Speed

» Why is this faster than actual combiners?

= Disadvantages

» Explicit memory management required
» Potential for order-dependent bugs

epartment of Computational and Data Sciences

= Combiners and reducers share same method
signature
» Sometimes, reducers can serve as combiners
» Often, not...

" Remember: combiner are optional
optimizations
» Should not affect algorithm correctness
» May be run 0, 1, or multiple times

" Example: find average of all integers associated
with the same key

. CDS.IISc.in | Department of Computational and Data Sciences

Advanced
Algorithms

83

Department of Computational and Data Sciences

= Term co-occurrence matrix for a text collection
» M =N x N matrix (N = vocabulary size)

» M;;: number of times j and j co-occur in some
context
(for concreteness, let’s say context = sentence)

" Why?
» Distributional profiles as a way of measuring
semantic distance

» Semantic distance useful for many language
processing tasks

partment of Computational and Data Sciences

 Term co-occurrence matrix for a text collection
= specific instance of a large counting problem
— A large event space (number of terms)
— A large number of observations (the collection itself)
— Goal: keep track of interesting statistics about the events

" How do we compute using MapReduce?
» Map Input: DoclD, DocContent

e Basic approach
— Mappers generate partial counts
— Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

CDS.IISc.in | Department of Computational and Data Sciences

First Try: “Pairs”

= Each mapper takes a sentence:
» Generate all co-occurring term pairs
» For all pairs, emit (a, b) 2 count

= Reducers sum up counts associated with these
pairs

= Use combiners!

CDS.IISc.in | Department of Computational and Data Sciences

Pairs Approach

1: class MAPPER

2 method MaAP(docid a,doc d)

3: for all term w € doc d do

4 for all term u € NEIGHBORS(w) do
5

EMIT(pair (w,u), count 1) > Emit count for each co-occurrence

. class REDUCER
method REDUCE(pair p, counts [cy, ¢y, .. .])
s— 0

§+—5+¢ > Sum co-occurrence counts

1
2
3
4: for all count ¢ € counts [c;,ca,...] do
5
6

EMIT(pair p, count s)

Figure 3.8: Pseudo-code for the “pairs”™ approach for computing word co-occurrence matrices

from large corpora.

=" Mapper emits many intermediate pairs (cell values)
= Combiner operates on sparse keys

TB Sec 3.2, Lin, et al,

87

partment of Computational and Data Sciences

" |[dea: group together pairs into an associative array
(a, b) — 1
(a,c) > 2 a—{b:1,c:2,d:5e:3,f2}
(a,d) — 5
(a, e) — 3
(a,f) — 2

= Each mapper takes a sentence:

» Generate all co-occurring term pairs
» For each term, emit a & { b: count,, c: count_, d: count,

.}

a—{b:1, d:5,e: 3}
a—{b:1,c:2,d: 2, f. 2}
a—{b:2,c:2,d:7,e:3,f.2}
= Reducers perform element-wise sum of associative
arrays

. CDS.IISc.in | Department of Computational and Data Sciences

Stripes Approach

1: class MAPPER

2 method MAP(docid a,doc d)

3 for all term w € doc d do

4: H — new ASSOCIATIVEARRAY

5 for all term v € NEIGHBORS(w) do

6 H{u} «— H{u}+1 > Tally words co-occurring with w
7

EmIT(Term w, Stripe H)
1: class REDUCER
2 method REDUCE(term w, stripes [Hi, Ha, Hs,...])
3: H; «— new ASSOCIATIVEARRAY
4: for all stripe H € stripes [H1, Ho, Hs,...] do
5 SuM(H¢, H) > Element-wise sum
6

EMIT(term w, stripe Hy)

Figure 3.9: Pseudo-code for the “stripes” approach for computing word co-occurrence matrices
from large corpora.
= Mapper emits entire row at a time

= Combiner & Reducer operate on fewer keys
= Need to store entire row in memory!

TB Sec 3.2, Lin, et al, 89

CDS.IISc.in | Department of Computational and Data Sciences

“Stripes” Analysis

= Advantages
» Far less sorting and shuffling of key-value pairs
» Can make better use of combiners

" Disadvantages
» More difficult to implement
» Underlying object more heavyweight
» Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices
4000

[
"stnpes" approach]
"pairs" approach ®
3500

3000
2500
2000

1500

running time {seconds)

1000

500

0 | | | |
0 20 40 60 80 100

percentage of the APW corpus

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

CDS.IISc.in | Department of Computational and Data Sciences

Relative Frequencies

" How do we estimate relative frequencies from
counts?

count(A,B) count(A,B)

FBIA)= count(A) _Zcount(A, B")

= Why do we want to do this?
" How do we do this with MapReduce?

. CDS.IISc.in | Department of Computational and Data Sciences

f(B|A): “Stripes”

= Easy!
» One pass to compute (a, *)
» Another pass to directly compute f(B|A)

| Department of Computational and Data Sciences

_ Reducer holds this value in memory

(@ by) — 3 (@, b,) —3/32
(a b,) — 12 mmm) (@b)—12/32
(@ by) — 7 (@, by) — 7/32

(@, b,) — 1 (@, b,) — 1/32

= For this to work:
» Must emit extra (a, *) for every b in mapper

» Must make sure all a’s get sent to same reducer (use
partitioner)

» Must make sure (a, *) comes first (define sort order)
» Must hold state in reducer across different key-value pairs

CDS.IISc.in | Department of Computational and Data Sciences

Matrix-Vector Multiply

-5

© philip.leong, USydney, Case Study — Matrix Multiplication

93

CDS.IISc.in | Department of Computational and Data Sciences

Matrix-Matrix Multiply

C(i) C(ij) AQi,7)
B(:,j)

Il
+
*

06

© philip.leong, USydney, Case Study — Matrix Multiplication

CDS.IISc.in | Department of Computational and Data Sciences

Sparse Matrix Multiplication

A B C

10 20 -1] =10 -807]
30 40 X -2 -3 = -60 -250

| 50 60 70 _] -4 -170-460

» Task: Compute product C=A-B
» Assume most matrix entries are O

= Motivation

» Core problem in scientific computing
» Challenging for parallel execution
» Demonstrate expressiveness of Map/Reduce

© Dave Andersen, CMU; MapReduce Programming, 15-440

Sparse M

10

50

30

60

20

40

70

atrix Mult

1

3

3

CDS.IISc.in | Department of Computational and Data Sciences

RS

L

2

o s

2

£

a3

iplic

» Represent matrix as list of nonzero entries

» Strategy

© Dave Andersen, CMU; MapReduce Programming, 15-440

* (row, col, value, matrixID)

* Phase 1: Compute all products ai,k - bk,j
* Phase 2: Sum products for each entry i,j
* Each phase involves a Map/Reduce

ation

1 —1

CDS.IISc.in | Department of Computational and Data Sciences

Phase 1: Map

1;°—>1

1§°—>3

Key = row @—@ Key = col

2—>2

3 _>;4 2 3 Zo—>3

» Group values ai,k and bk,j according to key k

© Dave Andersen, CMU; MapReduce Programming, 15-440

CDS.IISc.in | Department of Computational and Data Sciences

» Generate all products ai,k - bk,j

© Dave Andersen, CMU; MapReduce Programming, 15-440

CDS.IISc.in | Department of Computational and Data Sciences

Phase 2: Map

1 =21 Key=1,1 1 =22 31

-50
-80
37z 1 Key=12 1 o2

2 ——2 Key =row,col

» Group products ai,k - bk,j with matching values of i and j

© Dave Andersen, CMU; MapReduce Programming, 15-440

. CDS.IISc.in | Department of Computational and Data Sciences

Phase 2: Reduce

Key=11 1 —=—1 1 =21

-80 , -80
» Key=12 1 &2 'fmalen’tr'_’les 2

2 =1 C

-10 -80

c [—60 —25@

-170-460

© Dave Andersen, CMU; MapReduce Programming, 15-440

CDS.IISc.in | Department of Computational and Data Sciences

Cij) C(i) Ak

Il
+
*

i Bk.J)

103

© philip.leong, USydney, Case Study — Matrix Multiplication

partment of Computational and Data Sciences

= Centrality measure of web page quality based on
the web structure

» How important is this vertex in the graph?

= Random walk

» Web surfer visits a page, randomly clicks a link on that
page, and does this repeatedly.

» How frequently would each page appear in this surfing?

" |[ntuition

» Expect high-quality pages to contain “endorsements”
from many other pages thru hyperlinks

» Expect if a high-quality page links to another page, then
the second page is likely to be high quality too

2016-03-16 104

CDS.IISc.in | Department of Computational and Data Sciences

PageRank, recursively

P =a () +0-a) 3 50

mELin)
» P(n) is PageRank for webpage/URL ‘n’

» Probability that you’re in vertex ‘n’
" |G| is number of URLs (vertices) in graph
" o is probability of random jump
= L(n) is set of vertices that link to ‘n’
=" C(m) is out-degree of ‘m’

2016-03-16

103

CDS.IISc.in | Department of Computational and Data Sciences

PageRank Iterations

a=0
Initialize P(n)=1/|G|
Iteration 1 n, (0.2) n, (0.166)

ny (0.2)0.1

n, (0.166)

Ilteration 2

n, (0.066)%222

2016-03-16 Lin, Fig 5.7 106

. CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

1: class MAPPER

2 method MAP(nid n,node N)

3: p — N.PACERANK/|N.ADJACENCYLIST|

4 EMIT(nid n,N) > Pass along graph structure
5 for all nodeid m € N.ADJACENCYLIST do

6 EMIT(nid m, p) > Pass PageRank mass to neighbors

1: class REDUCER

2 method REDUCE(nid m, [py, pa, .. .])
3 M — ()

4 for all p € counts [p1,ps,...] do
5: if ISNoDE(p) then
6 M —p > Recover graph structure
7 else

8 S« S+p > Sum incoming PageRank contributions
9

. M.PAGERANK «— s
10: EMIT(nid m,node M)

2016-03-16 Lin, Fig 5.8 107

| Department of Computational and Data Sciences

= MR run over multiple iterations (typically 30)
» The graph structure itself must be passed from iteration to iteration!

= Mapper will
» Initially, load adjacency list and initialize default PR
* <Vvl1l, <v2>+>
» Subsequent iterations will load adjacency list and new PR
* <vl, <v2>+, pril>
» Emit two types of messages from Map
* PR messages and Graph Structure Messages

= Reduce will
» Reconstruct the adjacency list for each vertex

» Update the PageRank values for the vertex based on neighbour’s PR
messages

» Write adjacency list and new PR values to HDFS, to be used by next
Map iteration

e <vl, <v2>+, pril’>
2016-03-16 108

artment of Computational and Data Sciences

= Each Map task parses one or more webpages
» Input: A stream of webpages (WARC)

» Qutput: A stream of (term, URL) tuples

* (long, http://gb.com) (long, http://gb.com) (ago, http://gb.com) ...
(long, http://jn.in) (years, http://jn.in) (ago, http://jn.in) ...

= Shuffle sorts by key and routes tuples to Reducers

= Reducers convert streams of keys into streams of
inverted lists
» Sorts the values for a key (why?) and builds an inverted list
» Output: (long, [http://gb.com, http://jn.in]), (ago,
[http://gb.com, http://jn.in]), (years, [http://jn.in])

2016-03-16 109

Department of Computational and Data Sciences

= URL sizes may be large

» Replace URLs with unique longs, URL ID
* Mapping from URL ID to URL saved as a file
* Inverted Index has <term, [URL ID]+>

» Skip stop words with lot of matching URLs
» Use combiners

= Partition term by prefix alphabet(s)
» One reducer for each term starting with “a”, “b”, etc.
» Part file from each reducer has terms with unique a starting
letter
= Additional metadata
» ldea: Include a mapping from URL ID to <URL, PageRank>?

» Include “term frequency” of term occurrence per URLID in
Inverted Index?

2016-03-16 110

| Department of Computational and Data Sciences

= Even using URL IDs, all IDs per term may not fit in
reduce memory for sorting
» E.g. 17M URLs in 1% of CC data.
» Say 1000 unique words per URL.
» So 17B keys and values generated by Mappers.
» Say 50,000 unique words (keys) in English
» One key would on average have 17B/50K=340K URL IDs

* Peak values would be much higher

= Use a value-to-key conversion design pattern
» Let MR perform sorting, Reducer just emits result

2016-03-16 111

CDS.IISc.in | Department of Computational and Data Sciences

class MAPPER
method MAP(docid n,doc d)
H — new ASSOCIATIVEARRAY
for all term t € doc d do
H{t} — H{t} +1
for all term t € H do
EMiT(tuple (t,n),tf H{t})

class REDUCER
method INITIALIZE
tp-re*u — @
P — new POSTINGSLIST
method REDUCE(tuple (t,n),tf [f])
if £ # tprey A tprey # 0 then
EMIT(term ¢, postings P)
P.Reser()

P.App((n, f))

G:
T

A A S

©

method CLOSE
EMIT(term ¢, postings P)

2016-03-16 Lin, Figure 4.4

Mapper emits <<term, URL ID>, tf>
e j.e.compound key
Partitioner sends all terms to the same
reducer
Per reducer, MR sorts based on compound key
<term, URL ID>
Only one value for each compound key
Reduce task gets list of term and URL ID in
sorted order
* When new term seen, flush index for
“prev” term and start new term
E.g.
¢ <<Ago, 1>, tf1>
e <<Ago, 7>, tf7>
* Flush <Ago, [<1,tf1>,<7,tf7>]
e <<long, 3>, tf3>
* <<long, 4>, tf4>
* <<long, 6>, tf6>
* Flush <Long, [<3,tf3>,<4,tf4>,<6,tf6>]

112

partment of Computational and Data Sciences

= Each Map task loads one of the index files, say, by
alphabet

" [nput terms e.g. “t1 & t2 & t3” passed to each Map
task as AND search

=" Map does lookup and sends <URL ID, t_i> to
reducer

» Optionally send <<PR, URL ID>, t_i> for sorting by PR

= Reducer does set intersection of all t_i fora URL ID
> If all terms match, looks up URL for the URL ID
» If PR stored for each URL, that is returned too

2016-03-16 113

and Data Sciences

Thank You!

©Department of Computational and Data Science, 1ISc, 2016)& /o @ D S

This work is licensed under a Creative Commons Attribution 4.0 International License 114
Copyright for external content used with attribution is retained by their original authors Department of Computational and Data Sciences

http://creativecommons.org/licenses/by/4.0/deed.en_US

