Distributed Snapshots: Determining Global States of a Distributed System
K. Mani Chandy and Leslie Lamport

ACM Transactions on Computer Systems

February 4, 1985

Chandy-Lamport Snapshotting

COS 418: Distributed Systems
Precept 8

Themis Melissaris and Daniel Suo

Global snapshots

Example of a global snapshot

G20 &mn

“Tt+EERAGES ARMNIES
G20 HANGZHOU SUMMIT

h EH - M 20165F984-5H HANGZHOU., CHINA 4-5 SEPTEMBER 2016

But that was easy

* |n our system of world leaders, we were able
to capture their ‘state’ (i.e., likeness) easily

— Synchronized in space
— Synchronized in time

* How would we take a global snapshot if the
leaders were all at home?

* What if Obama told Trudeau that he should
really put on a shirt?

* This message is part of our system state!

Global snapshot is global state

e Each distributed application has a number of
processes (leaders) running on a number of

physical servers

* These processes communicate with each
other via channels (text messaging)

e A captures the local states of each
process (e.g., program variables) along with
the state of each communication channel

Why do we need snapshots?

: restart if the application fails

: remove objects that don’t
have any references

: cah examine the current
application state

. a little easier to work with
than printf...

We could just synchronize clocks

e Each process records state at time some
agreed upon't

— But clocks skew
— And we wouldn’t record messages

* Do we need synchronization?

 What did Lamport realize about ordering
events?

Example of global snapshots v2

* Two processes: P;and P,

- PTG
P4
< SN p R

V4 \ V4 \
'I \ 'I \

1 1
\ P1 I \ PZ 1
\] \ ;
\ / \ Y,

Example of global snapshots v2

* Channel C;, fromP;to P,
* Channel C,; from P,to P,

C12
— . Y

” \\ ,/ ~
/ \ ’ \
{p.) {p)
\ P1 H \ PZ I
\) \)
\ y; \ /

Yt e’

/

Example of global snapshots v2

* Process states for P;and P,

C12

X:1
Y: 2
Z:3

\\\\\

C21

Example of global snapshots v2

* Channel states (i.e., messages) for C;, and C,
* This is our initial global state
* Also a global snapshot

Cy,: [Empty]

r r

I X000 e S |
R | ,/ N ,/ \\‘ : _________
1 1 \

i ¥;:0 i v Py v Py oo Y2
P ! Mo _ el L O P
i Z;:0 | -~ - i Zp: 3

C,,: [Empty]

Example of global snapshots v2

* P, tells P, to change its state variable, X,, from
1to 4

* This is another global snapshot

. | Cir: [X;, = 4] e |
X0 A Xl
 Yi0 Py P2 i Ya2
0 220 F e 12,3

C,,: [Empty]

Example of global snapshots v2

* P, receives the message from P,
* Another global snapshot

Cy,: [Empty]

———————— i X,>4 ro————————

I
' X201 < = SR A |
- | ,/ N ,', \ : _________
1 1 \ \
'Y:0 ! | P, | C P, VY, 2
I \ l \ / L &
P ! Mo _ el L O i

I

C,,: [Empty]

Example of global snapshots v2

* P, changes its state variable, X,, from1to 4
* And another global snapshot

Cy,: [Empty]

r r

' X0 P T | X4
R | ,/ N ,/ \\‘ : _________
1 1 \

i ¥;:0 i v Py v Py o Y2
P ! \~_ _ el L O P
i Z;:0 | -~ - i Zp: 3

C,,: [Empty]

Summary

* The global state changes whenever an event
happens
— Process sends message
— Process receives MeSSdage

— Process takes a step

 Moving from state to state

Chandy-Lamport algorithm

System model

: record a global snapshot (state for
each process and channel)

— N processes in the system with no failures

— There are two FIFO unidirectional channels
between every process pair (P; - P;and P; - P))

— All messages arrive, intact, not duplicated

* Future work relaxes these assumptions

System requirements

Taking a snapshot shouldn’t interfere with
normal application behavior

— Don’t stop sending messages
— Don’t stop the application!

Each process can record its own state

Collect state in a distributed manner
Any process can initiate a snapshot

Initiating a snapshot

* Let’s say process P; initiates the snapshot

* P.records its own state and prepares a special
marker message (distinct from application
messages)

* Send the marker message to all other
processes (using N-1 outbound channels)

e Start recording all incoming messages from
channels C; for jnot equal to /

Propagating a snapshot

* For all processes P; (including the initiator),
consider a message on channel C;

* |f we see marker message for the first time
— P; records own state and marks C;; as empty

— Send the marker message to all other processes
(using N-1 outbound channels)

— Start recording all incoming messages from
channels C; for / not equal to j or k

* Else add all messages from inbound channels
since we began recording to their states

Terminating a snapshot

* All processes have received a marker (and
recorded their own state)

* All processes have received a marker on all the

N-1 incoming channels (and recorded their
states)

* Later, a central server can gather the partial
state to build a global snapshot

Example

* P, initiates a snapshot

Cy,: [Empty]

X,: 4
Y,: 2
Z,:3

_/ \.
R T
ool ol
“ oo “ L “ e e “
<t > N
P T
L L L I

Cy1: [Empty]

23

Example

* First, P, records its state

Cy,: [Empty]

] | | 1
i “ " i
I FIN N !
I oo | e | oo |
HOU RGN
X > 1 N |
1 1 1 1
-——
\\ >

/ \

I N)

1

U4

X;: 0
Y;: 0

[ettt

C,,: [Empty]

24

Example

* Then, P, sends a marker message to P, and
begins recording all messages on inbound
channels

* Meanwhile, P, sent a message to P,

C,,: [<marker>]

= i = i
I ! I

i X;: 0 i e A 1 X4
e 4 \ U \ e
I P \ / v
Y0 { P (P,)l Y2
P ! Mo _ el L O P
i Z;:0 | -~ - i Zp: 3

]

Cy: [My]

Example

* P, receives a marker message for the first
time, so records its state

* P, then sends a marker message to P,

o ' Ci2: [Empty] <marker> __________ '
1 1
X0 | e e | X4

1 /¢ \ 4 \ 1
I | y { N L
' Y:0 i | P, C P, | Y2
e e I\ / \ /o Reemeeeee
1 1 \~- ’/ \~- —'/ 1

i Z;:0 | -~ - i £y 3

I

M, C,:: [<marker>]

Example

* P, has already sent a marker message, so it
records all messages it received on inbound
channels to the appropriate channel’s state

Cy,: [Empty]

r """"" 1 r """"" 1
' X200 T, D X, 4
:____1 _____ | /7 N /7 “ :____2 _____
I i / \ / \ I

i ¥Y.:0 1 L Py L Py 1 Y502

1 \] \] 1
P ! N p AN s P
i Z;:0 | N - i £y 3

I

M; C,,: [Empty]

Example

* Both processes have recorded their state and
all the state of all incoming channels

* Our snapshotted state is highlighted in blue

Cy,: [Empty]

i P
Xy 0 | e | X, 4
R | ,/ \ ,/ \ : _________
1 1 \ \

Y0 (P P, ol Yyr2
P ! \~_ _ \~_ _ O P
i Z;:0 | -~ - i £y 3

M; C,,: [Empty]

Causal consistency

* Related to the Lamport clock partial ordering

* An event is presnapshot if it occurs before the
ocal snapshot on a process

* Postsnapshot if afterwards

* |f event A happens causally before event B,
and B is presnapshot, then A is too

