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Global snapshots



Example of a global snapshot
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But that was easy

* |n our system of world leaders, we were able
to capture their ‘state’ (i.e., likeness) easily

— Synchronized in space
— Synchronized in time

* How would we take a global snapshot if the
leaders were all at home?

* What if Obama told Trudeau that he should
really put on a shirt?

* This message is part of our system state!




Global snapshot is global state

e Each distributed application has a number of
processes (leaders) running on a number of

physical servers

* These processes communicate with each
other via channels (text messaging)

e A captures the local states of each
process (e.g., program variables) along with
the state of each communication channel



Why do we need snapshots?

: restart if the application fails

: remove objects that don’t
have any references

: cah examine the current
application state

. a little easier to work with
than printf...



We could just synchronize clocks

e Each process records state at time some
agreed upon't

— But clocks skew
— And we wouldn’t record messages

* Do we need synchronization?

 What did Lamport realize about ordering
events?



Example of global snapshots v2

* Two processes: P;and P,
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Example of global snapshots v2

* Channel C;, fromP;to P,
* Channel C,; from P,to P,
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Example of global snapshots v2

* Process states for P;and P,
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Example of global snapshots v2

* Channel states (i.e., messages) for C;, and C,
* This is our initial global state
* Also a global snapshot

Cy,: [Empty]
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Example of global snapshots v2

* P, tells P, to change its state variable, X,, from
1to 4

* This is another global snapshot
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Example of global snapshots v2

* P, receives the message from P,
* Another global snapshot

Cy,: [Empty]
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Example of global snapshots v2

* P, changes its state variable, X,, from1to 4
* And another global snapshot

Cy,: [Empty]
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Summary

* The global state changes whenever an event
happens
— Process sends message
— Process receives MeSSdage

— Process takes a step

 Moving from state to state



Chandy-Lamport algorithm



System model

: record a global snapshot (state for
each process and channel)

— N processes in the system with no failures

— There are two FIFO unidirectional channels
between every process pair (P; - P;and P; - P))

— All messages arrive, intact, not duplicated

* Future work relaxes these assumptions



System requirements

Taking a snapshot shouldn’t interfere with
normal application behavior

— Don’t stop sending messages
— Don’t stop the application!

Each process can record its own state

Collect state in a distributed manner
Any process can initiate a snapshot



Initiating a snapshot

* Let’s say process P; initiates the snapshot

* P.records its own state and prepares a special
marker message (distinct from application
messages)

* Send the marker message to all other
processes (using N-1 outbound channels)

e Start recording all incoming messages from
channels C; for jnot equal to /



Propagating a snapshot

* For all processes P; (including the initiator),
consider a message on channel C;

* |f we see marker message for the first time
— P; records own state and marks C;; as empty

— Send the marker message to all other processes
(using N-1 outbound channels)

— Start recording all incoming messages from
channels C; for / not equal to j or k

* Else add all messages from inbound channels
since we began recording to their states



Terminating a snapshot

* All processes have received a marker (and
recorded their own state)

* All processes have received a marker on all the

N-1 incoming channels (and recorded their
states)

* Later, a central server can gather the partial
state to build a global snapshot



Example

* P, initiates a snapshot

Cy,: [Empty]
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Example

* First, P, records its state

Cy,: [Empty]
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Example

* Then, P, sends a marker message to P, and
begins recording all messages on inbound
channels

* Meanwhile, P, sent a message to P,

C,,: [<marker>]
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Example

* P, receives a marker message for the first
time, so records its state

* P, then sends a marker message to P,
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Example

* P, has already sent a marker message, so it
records all messages it received on inbound
channels to the appropriate channel’s state

Cy,: [Empty]
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Example

* Both processes have recorded their state and
all the state of all incoming channels

* Our snapshotted state is highlighted in blue

Cy,: [Empty]
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Causal consistency

* Related to the Lamport clock partial ordering

* An event is presnapshot if it occurs before the
ocal snapshot on a process

* Postsnapshot if afterwards

* |f event A happens causally before event B,
and B is presnapshot, then A is too





