
Assignment 05

Graph Data Structure and Algorithms

DS286.Aug16 Data Structures and Programming

October 28, 2016

Submission is due on or before Monday, 14 November, 2016, 11:59pm
IST.

The assignment carries 100 points, which is 10% of the course weightage.

1 Question

This assignment requires you to design a graph data structure based on an
adjacency list and perform graph algorithms on that for the given input datasets.
You will learn to design an abstract data type (ADT) from the beginning and
reuse C++ Standard Template Library (STL) in implementing this Graph ADT.

Your tasks are as follows:

1. Design an abstract data type Graph to represent a data structure for an
undirected graph. Vertices of the graph are uniquely identified using an
integer ID field, and a templatized value field. The edges of the graph
should have a value field that is templatized to accept any class, and the
edge is uniquely identified by the two vertex IDs it is incident upon. The
graph ADT should allow you to add, remove and list vertices and edges.
The edges incident on a vertex should be maintained as an adjacency list.
The ADT should allow you to traverse to incident edges and adjacent
vertices from a given vertex. You should use C++ STL where possible.

The header file for the graph ADT should be placed in graph.h and its
implementation placed in graph.cpp. These files should only contain the
signature and implementation of the graph ADT, respectively, and should
be well-documented.

2. Using the graph ADT you have defined above, implement the following
graph algorithms and place them in the file algos.cpp with a correspond-
ing header file algos.h.

(a) Depth First Search (DFS): The method dfs(Graph g, int vid)

should be implemented to traverse the graph g in a depth-first man-
ner from the source vertex identified by vid. At each step of the DFS,

1



3

3

2

6
5

2

1

1
4

4

1

5

Figure 1: Sample Graph

you should pick the outgoing edge to the adjacent non-visited vertex
with the smallest ID to traverse on.

The DFS traversal should print the IDs of the vertices in the order
traversed, on a single line separated by a single space between the
IDs, and prefixed with the string DFS. E.g. the DFS traversal of the
graph in Fig. 1 from a source vertex ID 5 should produce the line:
DFS 5 1 2 3 4

terminated by a newline.

(b) Single Source Shortest Path (SSSP): The method sssp(Graph g,

int vid) should take the identifier vid of a source vertex and imple-
ment Dijkstra’s shortest path algorithm to find the shortest distances
from the source vertex to every vertex in the graph g, including the
source. Assume that the edge weights are integers for the templated
edge class.

For each vertex in the connected component that the source vertex
is present in, the SSSP method call should print one line of output
with the vid distance, preceded by a separate line having the string
SSSP, e.g., running SSSP on the graph in Fig. 1 from a source vertex
ID 5 should produce:

SSSP

5 0

4 1

1 2

3 2

2 5

The order of the lines does not matter.

(c) K-means Clustering: The method kmeans(Graph g, int k, int

maxcuts) should take the number of clusters k to be identified in the
graph g, and the maximum of the sum of the undirected edge cuts

2



that are allowed between clusters, maxcuts. The algorithm should
pick k vertices as centers at random and color neighbors using a uni-
form BFS traversal initiated from each center until all vertices in the
connected component are colored with one of the centers. Ignore the
weights of the edges during traversal. Sum the number of edge cuts
between vertices with different colors, and if strictly greater than the
maxcuts threshold, repeat the process with a new set of k random
center vertices. Else, if less than equal to the threshold, stop and
print the clusters as output.

Print each cluster in a single line as a list of vertex IDs separated by
space followed by the number of cuts in a separate line. These should
be preceded by a separate line having the string KMEANS. E.g., with
k = 3 for a given graph having 10 vertices, you will print three lines
having the vertex IDs of each cluster as follows, and a separate line
with the sum of the number of edge cuts between clusters, 4:

KMEANS

3 4 6 2

1 7 9

5 8

4

3. The main() method should be present in the main.cpp file, and accept
as input the parameters listed below. The method should call the DFS,
SSSP and K-Means clustering methods in that specific order with the in-
put parameters and print the results exactly as listed above. There should
be no extra newline or whitespace or debugging output that is printed.
You should write the Makefile yourself to produce an executable named
GraphAlgos.out.

GraphAlgos.out <graph file> <dsp src> <sssp src> <k> <maxcuts>

where:
<graph file> : Name of file containing the input graph as an edge list.
Each line of the file contains the triple for an edge, 〈u v w〉, where u and
v are vertex IDs that the edge is incident upon, and w is the weight of
the edge. Each undirected edge appears only once in the file. For e.g., the
input file for the graph in Fig. 1 would be:

1 2 3

1 5 2

1 4 4

2 3 6

3 4 1

3 5 5

4 5 1

3



<dsp src> : The source vertex ID for the DFS traversal method.
<sssp src> : The source vertex ID for the SSSP method.
<k> : The number of clusters for the K-Means clustering method.
<maxcuts> : The maximum cuts threshold for the K-Means clustering
method.

For e.g., the following is a sample invocation of your executable:

GraphAlgos.out small.in 5 5 3 4

You will separately be given three graph input files small.in, medium.in

and large.in, along with the input parameters for each. You should
ensure that your application runs successfully for each of these inputs and
generates the correct output. You should include the output from each of
these runs in three text files small.out, medium.out and large.out.

Separately, we will test your application against additional input graphs
as well and your evaluation will be based upon these.

2 Submission Instruction

Please follow these instructions carefully. We use automated scripts for evalu-
ation. So a failure to follow these instructions will mean that your submission
will not be evaluated.

• You are not provided with any skeleton code this time. You will need
to write all code by yourself! Refer to the skeleton code given for earlier
assignments as a sample.

• Only write your code in these following source and header files: graph.h,
graph.cpp, algos.h, algos.cpp and main.cpp.

• Include the Makefile and compiled executable file GraphAlgos.out in
your submission.

• For each of the three sample inputs and parameters, submit a text file
containing the outputs from these executions in files named small.out,

medium.out and large.out. These files should only contain the output
printed from your application and not the commandline itself.

• Place all these files in a single folder whose name is determined as follows.
My full name is “Prateeksha Varshney” where “Prateeksha” is my first
name, so the folder name should be 05Prateeksha for my submission.
Please note the capitalization of first letter of the first name. The final
contents of the folder would be as follows:

4



05Prateeksha

|- main.cpp

|- graph.h

|- graph.cpp

|- algos.h

|- algos.cpp

|- GraphAlgos.out

|- Makefile

|- small.out

|- medium.out

|- large.out

• This folder should be compressed using the tar program as follows:
tar -cvf 05Prateeksha.tar 05Prateeksha/

Note: Any other compression format will not be accepted and will be
treated as no submission. Its your responsibility to check if the file can be
properly uncompressed and all files inside are intact.

• Send a separate mail to the TA’s email address prateeksha@grads.cds.iisc.ac.in
with the subject line DS286.Aug16.A05. Do not write anything more or
less in the subject line. Do add any text in the body. Do not send the
assignment as a reply-email to any other mail.

• Only one submission will be accepted. If multiple emails or files are
received, only the first one will be taken as the submission. Only the
submission received before the deadline will be accepted.

• Use only the C++ language for completing this assignment. Make sure the
code compiles and executes correctly on the head node of the turing.cds.iisc.ac.in
server using g++ command. You will need to pass the -std=c++11 flag to
the compiler to use STLs. The code will be compiled and tested on this
machine during evaluation.

• Indent/format the code and add inline comments describing that the code
is supposed to do. This will help you debug better, and give us an insight
on the logic you are using.

• It is your responsibility to remove all debug statements you may have
added during development and testing your code. The evaluation of your
submission is done using automated scripts, and your console output will
be tested against a predetermined correct output. If the outputs do not
match exactly, it will be taken as wrong output.

3 Ethics

You should not get assistance from other students or external sources in directly
solving the assignment. Getting help on generic C++ and data structures con-
cepts, e.g., on using lists, strings, libraries, compilation, etc. is accepted. You

5



are encouraged to post questions to the course mailing list so that the TA, in-
structor or other students can respond. This also ensures you do not have an
unfair advantage/disadvantage over other students. If you have received assis-
tance from other sources, send a separate email to the Instructor and the TA
disclosing the external sources and type of support received.

By making a submission, you are asserting that all code that you submit
was designed and developed by you. Do NOT copy and paste code from anyone
else! All code will be verified using a plagiarism checker, and penalties will be
imposed if plagiarism is found from unattributed sources.

6


