#### Indian Institute of Science Bangalore, India भारतीय विज्ञान संस्थान बंगलौर, भारत

### **DS286** 2016-09-23,26

## L13,14: Trees, Binary Trees, Expression Trees

### Yogesh Simmhan

### simmhan@cds.iisc.ac.in

Slides courtesy Venkatesh Babu, CDS

#### & Sahni textbook

©Department of Computational and Data Science, IISc, 2016

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original author





### Linear Lists and Trees

- Linear lists are useful for <u>serially ordered</u> data
  - $-(e_1,e_2,e_3,...,e_n)$
  - Days of week
  - Months in a year
  - Students in a class
- Trees are useful for <u>hierarchically ordered</u> data
  - Joe's descendants
  - Corporate structure
  - Government Subdivisions
  - Software structure





### What are other examples of hierarchically ordered data?





Figure 11.2 Hierarchical administrative structure of a corporation



Figure 11.4 Module hierarchy for text processor



### **Definition of Tree**

- A tree *t* is a finite non-empty set of elements
- One of these elements is called the root
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.



### **Subtrees**



### Tree Terminology

- The element at the top of the hierarchy is the **root**.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the roo and so on.
- Elements at the lowest level of the hierarchy are the leaves.





### **Other Definitions**

 Leaves, Parent, Grandparent, Siblings, Ancestors, Descendents



Leaves = {Mike,AI,Sue,Chris}
Parent(Mary) = Joe
Grandparent(Sue) = Mary
Siblings(Mary) = {Ann,John}
Ancestors(Mike) = {Ann,Joe}
Descendents(Mary)={Mark,Sue}



### Levels and Height

- Root is at level 1 and its children are at level 2.
- Height = depth = number of levels





### Node Degree

Node degree is the number of children it has





### Tree Degree

### Tree degree is the maximum of node degrees





## **Binary Trees**



### **Binary Tree**

- A finite (possibly empty) collection of elements
- A non-empty binary tree has a root element and the remaining elements (if any) are partitioned into two binary trees
- They are called the left and right sub-trees of the binary tree



## Tree vs. Binary Tree

- A binary tree may be empty; a tree cannot be empty.
- No node in a binary tree may have a degree more than 2, whereas there is no limit on the degree of a node in a tree.
- The subtrees of a binary tree are ordered; those of a tree are not ordered.



different when viewed as a binary tree
same when viewed as a tree

### **Binary Tree for Expressions**



#### Figure 11.5 Expression trees



### **Binary Tree Properties**

- The drawing of every binary tree with n elements, n > 0, has exactly n-1 edges.
  - Each node has exactly 1 parent (except root)
- A binary tree of height h, h >= 0, has <u>at least h</u> and <u>at</u> <u>most 2<sup>h</sup>-1 elements in it.</u>
  - At least 1 element at each level  $\rightarrow$  #elements = h
  - At most  $2^{i-1}$  elements at i-th level  $\rightarrow \Sigma 2^{i-1} = 2^h 1$  $a+ar^1+ar^2+...+ar^{n-1} = a(r^n-1)/(r-1)$



### **Binary Tree Properties**

- 3. The height of a binary tree that contains n elements, n >= 0, is <u>at least</u> [(log<sub>2</sub>(n+1))] and <u>at most</u> n.
  - At least one element at each level  $\rightarrow$  h<sub>max</sub> = #elements (n)
  - From prev: h<sub>min</sub> = ceil(log(n+1))





minimum number of elements

maximum number of elements



## Full Binary Tree

- A full binary tree of height *h* has exactly 2<sup>*h*</sup>-1 nodes
- Numbering the nodes in a full binary tree
  - Number the nodes 1 through  $2^{h}$ -1
  - Number by levels from top to bottom
  - Within a level, number from left to right





### Node Number of Full Binary Tree



- Parent of node *i* is node (i/2), unless i = 1
- Node 1 is the root and has no parent



### Node Number of Full Binary Tree



- Left child of node *i* is node *2i* 
  - where *n* is the total number of nodes
- If 2i > n, node i has no left child.



### Node Number of Full Binary Tree



- Right child of node *i* is node *2i*+1
- If 2i+1 > n, node i has no right child.



### Complete Binary Tree with N Nodes

- Start with a full binary tree that has at least n nodes
- Number the nodes as described earlier
- The binary tree defined by the nodes numbered 1 through n is the n-node complete binary tree
- A full binary tree is a special case of a complete binary tree

### **Complete Binary Tree**



- Complete binary tree with 10 nodes.
- Same node number properties (as in full binary tree) also hold here.



### **Binary Tree Representation**

- Array representation
- Linked representation



### **Array Representation**

• The binary tree is represented in an array by storing each element at the array position corresponding to the number assigned to it.



### **Incomplete Binary Trees**

Complete binary tree with some missing elements







- An n node binary tree needs an array whose length is between n+1 and 2<sup>n</sup>.
- Right-skewed binary tree wastes the most space
- What about left-skewed binary tree?
  - Equally bad, though with trailing blanks that could be trimmed if known ahead



### Linked Representation

- The most popular way to present a binary tree
- Each element is represented by a node that has two link fields (leftChild and rightChild) plus an item field
- Each binary tree node is represented as an object whose data type is BinTreeNode
- The space required by an *n* node binary tree is *n*\*sizeof(BinTreeNode)



### Linked Representation



### Node Class For Linked Binary Tree

### class BinTreeNode {

```
int item;
```

```
BinTreeNode *left, *right;
```

```
BinTreeNode() {
   left = right = NULL;
}
```

### **Common Binary Tree Operations**

- Determine the height
- Determine the number of nodes
- Make a copy
- Determine if two binary trees are identical
- Display the binary tree
- Delete a tree
- If it is an expression tree, evaluate the expression
- If it is an expression tree, obtain the parenthesized form of the expression

### **Binary Tree Traversal**

- Many binary tree operations are done by performing a traversal of the binary tree
- In a traversal, each element of the binary tree is visited exactly once
- During the visit of an element, all actions (make a copy, display, evaluate the operator, etc.) with respect to this element are taken



### **Binary Tree Traversal Methods**

### Preorder

- The root of the subtree is processed first before going into the left then right subtree (root, left, right)
- Inorder
  - After the complete processing of the left subtree first the root is processed followed by the processing of the complete right subtree (left, root, right)
- Postorder
  - The left and right subtree are completely processed, before the root is processed (left, right, root)

### Level order

- The tree is processed one level at a time
- First all nodes in level *i* are processed from left to right
- Then first node of level *i*+1 is visited, and rest of level *i*+1 processed

### Preorder Traversal

# void preOrder(BinTreeNode \*t) { if (t != NULL) { visit(t); // Visit root 1<sup>st</sup> preOrder(t->left); // Left Subtree preOrder(t->right); // Right Subtree } }







### Inorder Traversal

## void inOrder(BinTreeNode \*t) { if (t != NULL) { inOrder(t->left); // Left Subtree 1<sup>st</sup> visit(t); // Visit root inOrder(t->right); // Right Subtree last }







### Inorder by Projection (Squishing)



### Postorder Traversal

## void postOrder(BinTreeNode \*t) { if (t != NULL) { postOrder(t->left); // Left Subtree 1<sup>st</sup> postOrder(t->right); // Right Subtree visit(t); // Visit root last }





### Level Order Traversal

void levelOrder(BinTreeNode \*t){ Queue<BinTreeNode\*> q; while (t != NULL) { visit(t); // visit t // push children to queue if (t->left) q.push(t->left); if (t->right) q.push(t->right); t = q.pop(); // next node to visit }





Add and delete nodes from a queue
Output: a b c d e f g h i j



## Space and Time Complexity

- The space complexity of each of the four <u>traversal</u> <u>algorithms</u> is O(n)
  - Why not Θ(n)? Size of recursion stack/level queue is variable.
- The time complexity of each of the four traversal algorithm is O(n)
  - Each node visited only one



## **Expression Trees**



### Arithmetic Expressions

- (a + b)\*(c + d) + e f/g\*h + 3.25
- Expressions comprise three kinds of entities
  - Operators: +, -, /, \*
  - Operands: a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d), etc.
  - Delimiters (, )



### **Operator Degree**

- Number of operands that the operator requires
- Binary operator requires two operands
  - a + b
  - c / d
  - e f
- Unary operator requires one operand
  - + g
  - - h



### Infix Form

- Normal way to write an expression.
- Binary operators come in between their left and right operands.
  - a \* b
  - a + b \* c
  - a \* b / c
  - (a + b)\*(c + d) + e f/g\*h + 3.25

## **Operator Priorities**

- How do you figure out the operands of an operator?
  - a + b \* c
  - a \* b + c / d
- This is done by assigning operator priorities
  - B O DM AS: Brackets, Order of powers, Division, Multiplication, Addition, Subtraction
- When an operand lies between two operators, the operand associates with the operator with higher priority



### Tie Breaker

 When an operand lies between two operators with same priority, the operand associates with the operator on the <u>left</u>

▶ a\*b/c/d ⊃ ((a\*b)/c)/d



### Delimiters

- Subexpression within brackets/delimiters is treated as a single operand, independent from the remainder of the expression
  - (a + b) \* (c d) / (e f)

## Infix Expression Hard To Parse

- Need operator priorities, tie breaker, and delimiters
- Makes evaluation by program more difficult
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.

### Postfix Form

- The postfix form of a variable or constant is the same as its infix form
  - a, b, 3.25
- The relative order of operands is the same in infix and postfix forms.
- Operators come immediately after the postfix form of their operands.
  - Infix: a+b
  - Postfix: ab+



### Postfix Examples

- Infix = a + b \* cPostfix = a b c \* +
- Infix = a \* b + cPostfix = a b \* c + c
- Infix = (a + b) \* (c d) / (e + f)Postfix = a b + c d - \* e f + /



### **Unary Operators**

- Replace with new symbols
- +a 🗢 a @
- -a **2** a ?
- -a b 🗢 a ? b -

- Scan postfix expression from left to right pushing operands on to a stack
- When an operator is encountered,
  - pop as many operands as this operator needs;
  - evaluate the operator;
  - push the result on to the stack
- This works because, in postfix, operators come immediately after their operands



## Postfix Evaluation (a+b)\*(c-d)/(e+f)

a b+ c d-\* e f+/



a b+ c d-\* e f+/



a b+ c d-\* e f+/



a b+ c d-\* e f+/ a b+ c d-\* e f+/



a b+ c d-\* e f+/ a b+ c d-\* e f+/

(a+b)\*(cd)/(e+f)



### Prefix Form

• The prefix form of a variable or constant is the same as its infix form

▶ a, b, 3.25

- The relative order of operands is the same as in infix and prefix forms
- Operators come immediately before the prefix form of their operands.
  - Infix: a + b
  - Postfix: ab+
  - Prefix: +ab



### **Binary Tree Form**

■ a + b







### **Binary Tree Form** • (a + b) \* (c - d) / (e + f)





### Merits Of Binary Tree Form

- Left and right operands are easy to visualize
- Code optimization algorithms work with the binary tree form of an expression
- Simple recursive evaluation of expression



### **Preorder of Expression Tree**



/ \* + a b - c d + e f
Gives prefix form of expression.



### Inorder of Expression Tree



a + b \* c - d /e + f

- Gives infix form of expression, which is how we normally write math expressions.
  - What about parentheses?
  - Fully parenthesized output of the above tree?

### Postorder of Expression Tree



a b + c d - \* e f + / Gives postfix form of expression.



### Tasks

### Self study (Sahni Textbook)

- Check: Have you read Chapter 10.5 Hashtable?
- **Read**: Chapter 11.0-11.6, Trees & Binary Trees from textbook
- Try: Exercise 7, 9, 13, 15-28 from Chapter 11 of textbook
- Try: In/Pre/Post-order Traversals using Stack, not recursion.
- Try: Prefix expression evaluation
- Finish Assignment 3 by Wed Sep 28 (75 points)
  - Late submissions from Thu-Sun will entail <u>5 points penalty per day</u>
  - Submissions on or after Mon, Oct 3 will not be accepted
- 26 Sep (Mon) Class instead of tutorial
- 30 Sep (Fri) Institute holiday. We will have class at 10am.
- Move Midterm from Oct 5 to Oct 7
  - All lectures till Trees & Searching will be in syllabus



## Questions?



©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

