Department of Computational and Data Sciences

DS286 | 2016-10-21

[19: BTrees

Yogesh Simmhan
simmhan@cds.iisc.ac.in

Slides courtesy:

www.cs.nott.ac.uk/~psznza/G52ADS/btrees2.pdf)
http://www.cs.carleton.edu/faculty/jgoldfea/cs201/spring11/inclass/Tree/BTreefinalNew.pdf C D S
o,

Creative Commons Attribution 4.0 International License

Department of Computational and Data Sciences

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://www.cs.nott.ac.uk/~psznza/G52ADS/btrees2.pdf
http://www.cs.carleton.edu/faculty/jgoldfea/cs201/spring11/inclass/Tree/BTreefinalNew.pdf

Department of Computational and Data Sciences

* Main memory (RAM) is fast, but has limited
capacity

= Different considerations for in-memory vs. on-disk
data structures for search

" Problem: Database too big to fit memory
» Disk reads are slow

= Example: 1,000,000 records on disk

" Binary search might take 20 disk reads
» log2(1M) ~= 20

¢1-0ct-16 0

CDS.lISc.ac.in | Department of Computational and Data Sciences

Searching External Storage

= But disks are accessed “block
at a time” by OS

A
" Blocks are typically 1KiB—4KiB // S
in size ////////////, ‘

» Can span multiple “sectors” on /{/l”"

\\\\“\)

HDD \\\\\\\\ \\\\\\ %

» Access time per block \\\ '

» ~12ms for HDD
» <Ims for SSD

= Say 1KiB block, 100B per i "
re C O rd B. Geometrical sector
C. Track sector
» 10,000 blocks for 1M records D. Cluster

https://en.wikipedia.org/wiki/Disk_sector

¢1-0ct-16 j

ﬂ . CDS.lISc.ac.in | Department of Computational and Data Sciences

Storing & Searching on
External Storage

1,000,000 Records

¢1-0ct-16

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Storing & Searching on
External Storage

Block O | Block1l [Block 2 | oveeeeeeees IBIOCK 99 eeeee e eeeeseneneeees Block 9999

1,000,000 Records

¢1-0ct-16 3

CDS.lISc.ac.in | Department of Computational and Data Sciences

Storlng & Searching on
External Storage

10,000 Records

Block O | Block1l | Block 2 | ceeeeenees IBlOCK 991 . e ee e e e eeeeeeaenenes Block 9999

1,000,000 Records

¢1-0ct-16 ! ! b

CDS.lISc.ac.in | Department of Computational and Data Sciences

Storing & Searching on
External Storage

Block O | Block 1 Block 99

10,000 Records

BlockO | Block1l [Block 2 | coveeeevees IBIOCK 99 e eeeee e Block 9999

1,000,000 Records

¢1-0ct-16 /

CDS.lISc.ac.in | Department of Computational and Data Sciences

Storing & Searching on
External Storage

Block 0
/ / 100 Records

Block 0 | Block 1 Block 99

10,000 Records

Block O | Block1l | Block2 | oveeeveeee. IBIOCK 99 .o Block 9999

1,000,000 Records

¢1-0ct-16

in | Department of Computational and Data Sciences

= Data structures for external memory, not main memory

» Goal is to reduce number of block accesses, not number of
comparisons

" B-Trees
> Proposed by R. Bayer and E. M. McCreigh in 1972.

» “Bayer”, “Balanced”, Bushy”, “Boeing” trees?
» Different from binary trees

= NOTE:

In-memory data structure will be better than on-disk
milliseconds vs. nano seconds

» So in-memory binary tree will be better than on-disk B Tree
But on-disk B Tree better than on-disk binary tree

v

v

v

¢1-0ct-16 9

| Department of Computational and Data Sciences

" Definition: A B-Tree of order m is an m-way tree
with
» All leaf nodes are at the same level.

» All non-leaf nodes (except the root) have at most m and
at least m/2 children.

» The number of keys is one less than the number of
children for non-leaf nodes and at most m-1 and at least
m/2 for leaf nodes.

» The root may have as few as 2 children unless the tree is
the root alone.

¢1-0ct-16 10

| Department of Computational and Data Sciences

" A B- Tree of order 5 is an 5-way tree such that
» All leaf nodes are at the same level.

» All non--leaf nodes (except the root) have at most 5 and
at least 2 children

» The number of keys is one less than the number of
children for non-leaf nodes and at most 4 and at least 2
for leaf nodes

» The root may have as few as 2 children unless the tree is
the root alone.

¢1-0ct-16 11

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

F

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Creating a B-tree of order 5

AGFBKDHMIJESIRXCLNTUP

Deleting Nodes

e Delete E from leaf node

Deleting Nodes

e Delete E

Deleting Nodes

* Borrow from a neighbor

Deleting Nodes

* Delete F --- but can’t borrow from a neighbor

Deleting Nodes

Combine and push the problem up one level

Deleting Nodes

Can’t borrow so combine

Deleting Nodes

Delete M from non-leaf node
Note: immediate predecessor in non-leaf
Is always in a leaf.

Deleting Nodes

Delete M from non-leaf node

Overwrite M with immediate predecessor

Deleting Nodes

Borrow from a neighbor

CDS.lISc.ac.in | Department of Computational and Data Sciences

Practical considerations

 Since each node correspond to a block/page, their
size is usually a power of 2.

e The number of records in a node is
therefore usually even.

 The number of children (the order of the tree) is
therefore usually odd.

B -trees

partment of Computational and Data Sciences

" |f a B-tree has order d, then each node (apart from
the root) has at least d/2 children. So the depth of
the tree is at most log d/2 (size)+1. In the worst
case have to make d-1 comparisons in each node
(linear search, but d-1 is a constant factor).

= Fewer disk accesses than for a binary tree.

= Each node could correspond to one block of data
(plus addresses of successor nodes).

B -trees

| Department of Computational and Data Sciences

" Only leaves contain data
= Non-leaves contain only keys and block numbers

= Access speed is higher because each block can hold
more block numbers.

" Programming is more complicated because there
are two kinds of nodes: leaves and non-leaves.

B -trees

Department of Computational and Data Sciences

= Index: list of key/block pairs.
" |f small enough, could be kept in the main memory.

" |f the index is too large to be loaded in the main
memory, it is often kept in a B-tree.

=" Multiple index files: if different kinds of search have
to be performed, can keep one index for every set
of keys.

B -trees

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Figure 1.2 B-tree Structure

Branch Node Leat Nodes

ITHETRE
431 9F 71
46 : A2D2

vl

461 8B 1C
531 AQ A1
53 : 6D 79

vl

55 9C F6
57 1 B1C1
57 : 50 29

V|

67 ! C4 6B
83 : FF 9D
83 : AFE9Q

Figure 1.2 shows an example index with 30 entries. The doubly linked list

establishes the logical order between the leaf nodes. The root and branch
nodes support quick searching among the leaf nodes.

¢1-0ct-16 16

http://use-the-index-luke.com/sgl/anatomy/the-tree

CDS.lISc.ac.in | Department of Computational and Data Sciences

Tasks

= Self study

» Read: B Trees (online sources)

" Finish Assignment 4 by Wed Oct 26 (75 points)
=" Make progress on CodeChef (100 points)

¢1-0ct-16

17

and Data Sciences

Questions?

©Department of Computational and Data Science, 1ISc, 2016)& A @ D S
— 18

This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors Department of Computational and Data Sciences

http://creativecommons.org/licenses/by/4.0/deed.en_US

