
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

DS286 | 2016-10-26,28

L20-21: Graph Data Structure

Yogesh Simmhan
s immhan@cds . i i s c . ac . in

Slides courtesy:
Venkatesh Babu, CDS, IISc

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

What is a Graph?

 A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

 An edge e = (u,v) is a pair of vertices

 Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),(a,d),

(b,e),(c,d),(c,e),

(d,e)}

CDS.IISc.ac.in | Department of Computational and Data Sciences

Applications
 Electronic circuit design

 Transport networks

 Biological Networks

CS16

http://www.pnas.org/content/103/50/19033/F3.expansion.html http://images.slideplayer.com/18/5684225/slides/slide_28.jpg

CDS.IISc.ac.in | Department of Computational and Data Sciences

Applications

03-Nov-16 4
http://allthingsgraphed.com/2014/10/16/your-linkedin-network/ http://allthingsgraphed.com/2014/11/12/code-graphs-5-top-open-source-data-projects/

Java Call Graph for Neo4JLinkedIn Social Network Graph

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology

 If (v0, v1) is an edge in an undirected graph,
‣ v0 and v1 are adjacent, or are neighbors

‣ The edge (v0, v1) is incident on vertices v0 and v1

 If <v0, v1> is an edge in a directed graph
‣ v0 is adjacent to v1, and v1 is adjacent from v0

‣ The edge <v0, v1> is incident on v0 and v1

‣ v0 is the source vertex and v1 is the sink vertex

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology
 Vertices & edges can have labels that uniquely

identify them
‣ Edge label can be formed from the pair of vertex labels it

is incident upon…assuming only one edge can exist
between a pair of vertices

 Edge weights indicate some measure of distance or
cost to pass through that edge

03-Nov-16 6

3

3

2

6
5

2

1

1
4

4

1

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

e d
i

n




() /
0

1

2

Terminology

 The degree of a vertex is the number of edges incident to
that vertex

 For directed graph,
‣ the in-degree of a vertex v is the number of edges

that have v as the sink vertex
‣ the out-degree of a vertex v is the number of edges

that have v as the source vertex
‣ if di is the degree of a vertex i in a graph G with n

vertices and e edges, the number of edges is

Why? Since adjacent vertices
each count the adjoining edge,
it will be counted twice

CDS.IISc.ac.in | Department of Computational and Data Sciences

0

1 2

3 4 5 6

G2

2

3 3

1 1 1 1

directed graph

0

1

2

G3

in:1, out: 1

in: 1, out: 2

in: 1, out: 0

Examples

3

0

1 2

3

33

3

G1

undirected graphs

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology

 path is a sequence of vertices
<v1,v2,. . .vk> such that
consecutive vertices vi and
vi+1 are adjacent

9
1 2 3 4 5 3 2 3 4 5

3

2

4

1

5

3

2

4

1

5

3

2

4

1

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology

 simple path: no
repeated vertices

 cycle: simple path,
except that the last
vertex is the same as the
first vertex

2 3 5

1 5 4 1

3

2

4

1

5

3

2

4

1

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology

 Shortest Path: Path between two vertices where
the sum of the edge weights is the smallest
‣ Has to be a simple path (why?)

‣ Assume “unit weight” for edges if not specified

03-Nov-16 11

3

3

2

6
5

2

1

1
4

4

1

5

3

2

4

1

5

1 2 3
1 5 3
1 4 3

1 5 4 3

CDS.IISc.ac.in | Department of Computational and Data Sciences

Connected Graph
 connected graph: any two vertices are connected by some path

connected not connected

CDS.IISc.ac.in | Department of Computational and Data Sciences

Connected Graph Example

2
3

8

101

4
5

9
11

6
7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example Of Not Connected

2
3

8

101

4
5

9
11

6
7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Diameter
 A graph’s dimeter is the distance of its longest

shortest path

 if d(u,v) is the distance of the shortest path
between vertices u and v, then:

 diameter = Max(d(u,v)), for all u, v in V

 A disconnected graph has an infinite diameter

03-Nov-16 15http://mathworld.wolfram.com/GraphDiameter.html

d=3 d=4 d=5 d=7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Subgraph

 subgraph: subset of vertices and edges forming a
graph

03-Nov-16 16

0 0

1 2 3

1 2 0

1 2

3
(i) (ii) (iii) (iv)

(a) Some of the subgraph of G1

0

1 2

3

G1

CDS.IISc.ac.in | Department of Computational and Data Sciences

0 0

1

0

1

2

0

1

2

(i) (ii) (iii) (iv)

(b) Some of the subgraph of G3

0

1

2

G3

Subgraphs Examples

CDS.IISc.ac.in | Department of Computational and Data Sciences

Trees & Forests
 tree - connected graph without cycles

 forest - collection of trees

tree

forest
tree

tree

tree

CDS.IISc.ac.in | Department of Computational and Data Sciences

Fully Connected Graph
 Let n = #vertices, and m = #edges

 Complete graph (or) Fully connected graph: One in which all
pairs of vertices are adjacent

 How many total edges in a complete graph?
‣ Each of the n vertices is incident to n-1 edges, however, we would have

counted each edge twice! Therefore, intuitively, m = n(n -1)/2.

If a graph is not
complete:
m < n(n -1)/2

n = 5

m = (5*4)/2 = 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

More Connectivity

n  5
m  4

n = #vertices

m = #edges

 For a tree m = n - 1

n  5
m  3If m < n - 1, G is

not connected

CDS.IISc.ac.in | Department of Computational and Data Sciences

Connected Component
 A connected component is a maximal subgraph

that is connected.
 Cannot add vertices and edges from original graph and

retain connectedness.

 A connected graph has exactly 1 component.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Connected Components

2
3

8

101

4
5

9
11

6
7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Not A Component

2
3

8

101

4
5

9
11

6
7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Clique
 A subgraph C of a graph G with edges between all

pairs of vertices

03-Nov-16 24

6

5

4

7

8

Clique

6

5

7G C

https://www.csc.ncsu.edu/faculty/samatova/practical-graph-mining-with-R

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Maximal Clique

 A maximal clique is a clique that is not part of a
larger clique

03-Nov-16 25

Maximal Clique

6

5

7

8

6

5

4

7

8

Clique

6

5

7G

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Directed vs. Undirected Graph

 An undirected graph is one in which the pair of
vertices in a edge is unordered, (v0, v1) = (v1,v0)

 A directed graph (or Digraph) is one in which each
edge is a directed pair of vertices, <v0, v1> != <v1,v0>

source sink

tail head

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Representation

 Adjacency Matrix

 Adjacency Lists
 Linked Adjacency Lists

 Array Adjacency Lists

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Matrix

 0/1 n x n matrix, where n = # of vertices

 A(i,j) = 1 iff (i,j) is an edge

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Matrix Properties
1 2 3 4 5

1

2

3

4

5

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

 Diagonal entries are zero.
 Adjacency matrix of an undirected graph is

symmetric.
 A(i,j) = A(j,i) for all i and j.

2
3

1

4
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Matrix (Digraph)

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 0 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 1

0 1 1 0 0

 Diagonal entries are zero.

 Adjacency matrix of a directed graph need
not be symmetric.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Matrix

 n2 bits of space

 For an undirected graph, may store only lower or
upper triangle (exclude diagonal)
‣ (n2 -n)/2 bits

 O(n) time to find vertex degree and/or vertices
adjacent to a given vertex.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Lists

 Adjacency list for vertex i is a linear list of vertices
adjacent from vertex i.

 An array of n adjacency lists.

aList[1] = (2,4)

aList[2] = (1,5)

aList[3] = (5)

aList[4] = (5,1)

aList[5] = (2,4,3)

2
3

1

4
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked Adjacency Lists
 Each adjacency list is a chain.

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5

5
5 1
2 4 3

• Array Length = n
• # of chain nodes = 2e (undirected graph)
• # of chain nodes = e (digraph)

2
3

1

4
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Array Adjacency Lists
 Each adjacency list is an array list.

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5

5
5 1
2 4 3

• Array Length = n
• # of list elements = 2e (undirected graph)
• # of list elements = e (digraph)

2
3

1

4
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Storing Weighted Graphs

 Cost adjacency matrix
‣ C(i,j) = cost of edge (i,j) instead of 0/1

 Adjacency lists
‣ Each list element is a pair (adjacent vertex, edge weight)

CDS.IISc.ac.in | Department of Computational and Data Sciences

ADT for Graph
class Vertex<V,E> {

int id;

V value;

int GetId();

V GetValue();

List<Edge<V,E>> Neighbors();

}

class Edge<V,E> {

int id;

E value;

int GetId();

E GetValue();

Vertex<V,E> GetSource();

Vertex<V,E> GetSink();

}

CDS.IISc.ac.in | Department of Computational and Data Sciences

ADT for Graph
class Graph<V,E>{

List<Vertex<V,E>> vertices;
List<Edge<V,E>> edges;

void InsertVertex(Vertex<V,E> v);
void InsertEdge(Edge<V,E> e);

bool DeleteVertex(int vid);
bool DeleteEdge(int eid);

List<Vertex<V,E>> GetVertices();
List<Edge<V,E>> GetEdges();

bool IsEmpty(graph);
}

03-Nov-16 37

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study
‣ Read: Graphs and graph algorithms (online sources)

 Finish Assignment 5 by Mon Nov 14 (100 points)

 Make progress on CodeChef (100 points)

03-Nov-16 38

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Department of Computational and Data Sciences

Questions?

03-Nov-16 39

http://creativecommons.org/licenses/by/4.0/deed.en_US

