

DS286 | 2016-11-04 L24: Heap & Priority Queue Yogesh Simmhan simmhan@cds.iisc.ac.in

Slides courtesy: S223, EECS, WSU CS233, CSE, POSTECH

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

Priority Queue

- Queues used to order items on a FIFO basis
 - Last item inserted is first item removed
 - Order of insertion forms the "priority"
- But cases where items in queue may need to be removed in different order, based on "importance"
 - e.g. boarding a flight by zone, process queue with priorities, shortest distance metric for vertices in SSSP
- Priority Queue
 - Each item in the queue has a value and a priority
 - Priorities have relative ordering, highest to lowest
 - When removing, item in queue with highest priority returned

Priority Queue ADT

- void insert(item, priority)
 - Priority: 0 (high), 1, 2, ..., k (low)
 - Multiple items can have same priority

item remove()

- Returns the item with highest priority
- > smallest priority value [Min Priority Queue]
- > largest priority value [Max Priority Queue]

Goal is to perform "fast" operations

Priority Queue

- Naïve solutions
- Sort items in queue every time you insert them to the queue
 - Ensures highest priority at the head
 - O(n.log n) for insert, O(1) for remove
- Sort items in queue just before you remove item from queue
 - Ensures highest priority at the head
 - O(n.log n) for insert, O(1) for remove...but avoid presorting unecessarilly

Priority Queue

- Simple solutions
- Unordered linked list
 - O(1) insert
 - O(n) remove
- Ordered linked list
 - O(n) insert
 - O(1) remove
- Ordered array
 - O(lg n + n) insert
 - O(n) remove

Binary Heap

- Used to implement priority queues
- Binary tree with two properties
 - Structure property
 - Heap order property

Structure Property

- A binary heap is a complete binary tree
 - Each level (except possibly the bottom most level) is completely filled
 - The bottom most level may be partially filled (from left to right)
- Height of a complete binary tree with N elements is floor(log₂N)

Recall: Complete Binary Tree & Array Representation

Heap Order Property

- A max tree (min tree) is a tree in which the value in each node is greater (less) than or equal to those in its children (if any)
 - Nodes of a max or min tree may have more than two children (i.e., may not be binary tree)

Heap Order Property

- Binary (Min) Heap is a Min Tree
- Heap-order property (for a "Min Heap")
 - For every node X, key(parent(X)) \leq key(X)
 - Except root node, which has no parent
- Thus, minimum key always at root
 - Alternatively, for a "Max Heap", always keep the maximum key at the root
- insert & remove must maintain heap-order property
- Duplicates priority values are allowed
- No order implied for elements which do not share ancestor-descendant relationship

Binary (Max) Heap

11

Binary (Min) Heap

Heap Representation as Array

- Given element at position i in the array
 - Left child(i) = at position 2i
 - Right child(i) = at position 2i + 1
 - Parent(i) = at position floor(i / 2)

Insert at next available slot, maintaining a complete tree

"percolate up" to ensure heap order property

Max Heap Insert

Max Heap Insert

- •Percolate up
- •Exchange the positions with 7

Max Heap Insert

- •Percolate up
- •Exchange the positions with 8

Max Heap Insert

•Percolate up

•Exchange the positions with 9

Insert Complexity

- At each level, we do O(1) work
- Thus the time complexity is O(height) = O(log₂n), where n is the heap size

- Minimum element is always at the root
- Heap decreases by one in size
- Move last element into hole at root
- Percolate down while heap-order property not satisfied

Max Heap Remove

Hole in the root

Remove last item in heap Replace hole with last item

Replace hole with last item

Percolate item down Exchange item with 15

Max Heap Remove

Percolate item down Exchange item with 9

Remove Complexity

- The time complexity of deletion is the same as insertion
- At each level, we do O(1) work
- Thus the time complexity is O(height) = O(log₂n), where n is the heap size

- Construct a new heap from an array of items
- Example: input array = [-,1,2,3,4,5,6,7,8,9,10,11]
- Default method takes O(N lg N) time
 - Perform N inserts
 - O(N log2 N) worst-case
- Can we improve this?
 - Start with given array as the complete tree
 - Adjust the tree (array) as necessary to meet heap order property

- Check each internal node from the bottom right
 - Start at rightmost array position having child, floor(n/2)
- Test children and swap to ensure heap order

Max Heap Initialization

CS233, CSE, POSTECH

Complexity of Initialization

Bulk insert method takes O(N) time

- Height of heap = h
- Number of nodes at level j is <= 2^{j-1}
- Time for each node at level j is O(h-j+1)
- Time for all nodes at level j is <= 2^{j-1}(h-j+1) = t(j)
- Total time is t(1) + t(2) + ... + t(h) = O(2^h) = O(n)

Tasks

- Self study
 - Read: Heap and Priority Queue (online sources)
- Finish Assignment 5 by Mon Nov 14 (100 points)
- Make progress on CodeChef (100 points)

Questions?

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

