
Introduction to

Multiprocessor

Synchronization

Maurice Herlihy

http://cs.brown.edu/courses/cs176/lectures.shtml

Art of Multiprocessor Programming 2

Moore's Law

Clock speed

flattening

sharply

Transistor

count still

rising

Art of Multiprocessor Programming 3

Once roamed the Earth:

the Uniprocesor

memory

cpu

Art of Multiprocessor Programming 4

Endangered:

The Shared Memory Multiprocessor

(SMP)

cache

BusBus

shared memory

cachecache

Art of Multiprocessor Programming 5

Meet he New Boss:

The Multicore Processor

(CMP)

cache

BusBus

shared memory

cachecache
All on the

same chip

Oracle

Niagara

Chip

CDS.IISc.ac.in | Department of Computational and Data Sciences

Turing Cluster

 24 Compute Nodes in two 12 node 3U blades. Each
node has one 8-core AMD Opteron 3380 processor @
2.6GHz, 32GB RAM, 2TB HDD, Gigabit Ethernet port

 1 Head Node with one 6-core Intel Xeon E5-2620 v3
processor @ 2.40GHz, 48GB RAM, 1+4TB HDD, Gigabit
Ethernet ports

 One 24 port L2 Gigabit Ethernet switch

 Running CentOS, MPI, PBS and Apache Hadoop/Yarn

 Mounted on a 24U Rack
 http://cds.iisc.ac.in/internal-resources/computing-resources/

Art of Multiprocessor Programming

CDS.IISc.ac.in | Department of Computational and Data Sciences

Turing Cluster: Xeon E5-2620 v3

http://2eof2j3oc7is20vt9q3g7tlo5xe.wpengine.netdna-cdn.com/wp-content/uploads/2014/09/intel-xeon-e5-v3-block-diagram-detailed.jpg

http://www.enterprisetech.com/wp-content/uploads/2014/09/intel-xeon-e5-v3-die-shot.jpg

http://2eof2j3oc7is20vt9q3g7tlo5xe.wpengine.netdna-cdn.com/wp-content/uploads/2014/09/intel-xeon-e5-v3-block-diagram-detailed.jpg
http://www.enterprisetech.com/wp-content/uploads/2014/09/intel-xeon-e5-v3-die-shot.jpg

Art of Multiprocessor Programming 9

Traditional Scaling Process

User code

Traditional

Uniprocessor

Speedup

1.8x

7x

3.6x

Time: Moore's law

Ideal Multicore Scaling Process

Art of Multiprocessor Programming 10

User code

Multicore

Speedup 1.8x

7x

3.6x

Unfortunately, not so simple…

Actual Multicore Scaling Process

Art of Multiprocessor Programming 11

1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization

require great care…

Art of Multiprocessor Programming 12

Sequential Computation

memory

object object

thread

Art of Multiprocessor Programming 13

Concurrent Computation

memory

object object

Art of Multiprocessor Programming 14

Asynchrony

• Sudden unpredictable delays

– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)

Art of Multiprocessor Programming 15

Model Summary

• Multiple threads

• Single shared memory

• Objects live in memory

• Unpredictable asynchronous delays

17

Concurrency Jargon

• Hardware

– Processors

• Software

– Threads, processes

• Sometimes OK to confuse them,

sometimes not.

Art of Multiprocessor Programming

18

Parallel Primality Testing

• Challenge

– Print primes from 1 to 1010

• Given

– Ten-processor multiprocessor

– One thread per processor

• Goal

– Get ten-fold speedup (or close)

Art of Multiprocessor Programming

Art of Multiprocessor Programming 19

Load Balancing

• Split the work evenly

• Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9

20

Procedure for Thread i

void primePrint {

int i = ThreadID.get(); // IDs in {0..9}

for (j = i*109+1, j<(i+1)*109; j++) {

if (isPrime(j))

print(j);

}

}

Art of Multiprocessor Programming

21

Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads

– Uneven

– Hard to predict

Art of Multiprocessor Programming

Art of Multiprocessor Programming 22

Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads

– Uneven

– Hard to predict

• Need dynamic load balancing

Art of Multiprocessor Programming 23

17

18

19

Shared Counter

each thread

takes a number

24

Procedure for Thread i

int counter = new Counter(1);

void primePrint {

long j = 0;

while (j < 1010) {

j = counter.getAndIncrement();

if (isPrime(j))

print(j);

}

}

Art of Multiprocessor Programming

Art of Multiprocessor Programming 25

Counter counter = new Counter(1);

void primePrint {

long j = 0;

while (j < 1010) {

j = counter.getAndIncrement();

if (isPrime(j))

print(j);

}

}

Procedure for Thread i

Shared counter

object

Art of Multiprocessor Programming 26

Where Things Reside

cache

BusBus

cachecache

1

shared counter

shared

memory

void primePrint {

int i =

ThreadID.get(); // IDs

in {0..9}

for (j = i*109+1,

j<(i+1)*109; j++) {

if (isPrime(j))

print(j);

}

}

code

Local

variables

Art of Multiprocessor Programming 27

Procedure for Thread i

Counter counter = new Counter(1);

void primePrint {

long j = 0;

while (j < 1010) {

j = counter.getAndIncrement();

if (isPrime(j))

print(j);

}

}

Stop when every

value taken

Art of Multiprocessor Programming 28

Counter counter = new Counter(1);

void primePrint {

long j = 0;

while (j < 1010) {

j = counter.getAndIncrement();

if (isPrime(j))

print(j);

}

}

Procedure for Thread i

Increment & return each

new value

29

Counter Implementation

public class Counter {

private long value;

public long getAndIncrement() {

return value++;

}

}

Art of Multiprocessor Programming

Art of Multiprocessor Programming 30

Counter Implementation

public class Counter {

private long value;

public long getAndIncrement() {

return value++;

}

}

Art of Multiprocessor
Programming

31

What It Means

public class Counter {

private long value;

public long getAndIncrement() {

return value++;

}

}

Art of Multiprocessor Programming 32

What It Means

public class Counter {

private long value;

public long getAndIncrement() {

return value++;

}

}

temp = value;

value = temp + 1;

return temp;

Art of Multiprocessor Programming 33

time

Not so good…

Value… 1

read

1

read

1

write

2

read

2

write

3

write

2

2 3 2

35

Challenge

public class Counter {

private long value;

public long getAndIncrement() {

temp = value;

value = temp + 1;

return temp;

}

}

Art of Multiprocessor Programming

Art of Multiprocessor Programming 36

Challenge

public class Counter {

private long value;

public long getAndIncrement() {

temp = value;

value = temp + 1;

return temp;

}

}

Make these steps

atomic (indivisible)

Art of Multiprocessor Programming 37

Hardware Solution

public class Counter {

private long value;

public long getAndIncrement() {

temp = value;

value = temp + 1;

return temp;

}

} ReadModifyWrite()

instruction

Art of Multiprocessor
Programming

38

An Aside: Java™

public class Counter {

private long value;

public long getAndIncrement() {

synchronized {

temp = value;

value = temp + 1;

}

return temp;

}

}

Art of Multiprocessor Programming 39

An Aside: Java™

public class Counter {

private long value;

public long getAndIncrement() {

synchronized {

temp = value;

value = temp + 1;

}

return temp;

}

}
Synchronized block

Art of Multiprocessor Programming 40

An Aside: Java™

public class Counter {

private long value;

public long getAndIncrement() {

synchronized {

temp = value;

value = temp + 1;

}

return temp;

}

}

Mutual Exclusion

41

Mutual Exclusion,

or “Alice & Bob share a pond”

A B

Art of Multiprocessor Programming

42

Alice has a pet

A B

Art of Multiprocessor Programming

43

Bob has a pet

A B

Art of Multiprocessor Programming

44

The Problem

A B

The pets don't

get along

Art of Multiprocessor Programming

45

Formalizing the Problem

• Two types of formal properties in

asynchronous computation:

• Safety Properties

– Nothing bad happens ever

• Liveness Properties

– Something good happens eventually

Art of Multiprocessor Programming

46

Formalizing our Problem

• Mutual Exclusion

– Both pets never in pond simultaneously

– This is a safety property

• No Deadlock

– if only one wants in, it gets in

– if both want in, one gets in

– This is a liveness property

Art of Multiprocessor Programming

47

Simple Protocol

• Idea

– Just look at the pond

• Gotcha

– Not atomic

– Trees obscure the view

Art of Multiprocessor Programming

48

Interpretation

• Threads can't “see” what other threads

are doing

• Explicit communication required for

coordination

Art of Multiprocessor Programming

49

Cell Phone Protocol

• Idea

– Bob calls Alice (or vice-versa)

• Gotcha

– Bob takes shower

– Alice recharges battery

– Bob out shopping for pet food …

Art of Multiprocessor Programming

50

Interpretation

• Message-passing doesn't work

• Recipient might not be

– Listening

– There at all

• Communication must be

– Persistent (like writing)

– Not transient (like speaking)

Art of Multiprocessor Programming

56

Flag Protocol

A B

Art of Multiprocessor Programming

57

Alice's Protocol (sort of)

A B

Art of Multiprocessor Programming

58

Bob's Protocol (sort of)

A B

Art of Multiprocessor Programming

59

Alice's Protocol

• Raise flag

• Wait until Bob's flag is down

• Unleash pet

• Lower flag when pet returns

Art of Multiprocessor Programming

Art of Multiprocessor Programming 60

Bob's Protocol

• Raise flag

• Wait until Alice's flag is down

• Unleash pet

• Lower flag when pet returns

61

Bob's Protocol (2nd try)

• Raise flag

• While Alice's flag is up

– Lower flag

– Wait for Alice's flag to go down

– Raise flag

• Unleash pet

• Lower flag when pet returns

Art of Multiprocessor Programming

Art of Multiprocessor Programming 62

Bob's Protocol

• Raise flag

• While Alice's flag is up

– Lower flag

– Wait for Alice's flag to go down

– Raise flag

• Unleash pet

• Lower flag when pet returns

Bob defers

to Alice

63

The Flag Principle

• Raise the flag

• Look at other's flag

• Flag Principle:

– If each raises and looks, then

– Last to look must see both flags up

Art of Multiprocessor Programming

69

Remarks

• Protocol is unfair

– Bob's pet might never get in

• Protocol uses waiting

– If Bob is eaten by his pet, Alice's pet might

never get in

Art of Multiprocessor Programming

CDS.IISc.ac.in | Department of Computational and Data Sciences

73

The Fable Continues

Bob falls ill, cannot tend to the pets

She gets the pets
‣ Pets get along fine 

But Bob has to feed them

Producer-Consumer Problem

Art of Multiprocessor Programming

75

Bob Puts Food in the Pond

A

Art of Multiprocessor Programming

76

mmm…

Alice releases her pets to Feed

B
mmm…

Art of Multiprocessor Programming

CDS.IISc.ac.in | Department of Computational and Data Sciences

77

Producer/Consumer

Alice and Bob can't meet
‣ Bob’s disease is contagious

‣ So he puts food in the pond

‣ And later, she releases the pets

Avoid
‣ Releasing pets when there's no food

‣ Putting out food if uneaten food remains

Art of Multiprocessor Programming

78

Producer/Consumer

• Need a mechanism so that

– Bob lets Alice know when food has been put

out

– Alice lets Bob know when to put out more

food

Art of Multiprocessor Programming

79

“Can” Solution

A B

co
la

Art of Multiprocessor Programming

80

Bob puts food in Pond

A B

co
la

Art of Multiprocessor Programming

81

Bob knocks over Can

A B

Art of Multiprocessor Programming

82

Alice Releases Pets

A Byum… B
yum…

Art of Multiprocessor Programming

83

Alice Resets Can when Pets are

Fed

A B

co
la

Art of Multiprocessor Programming

Art of Multiprocessor Programming 84

Pseudocode

while (true) {

while (can.isUp()){};

pet.release();

pet.recapture();

can.reset();

}

Alice's code

Art of Multiprocessor Programming 85

Pseudocode

while (true) {

while (can.isUp()){};

pet.release();

pet.recapture();

can.reset();

}

Alice's code

while (true) {

while (can.isDown()){};

pond.stockWithFood();

can.knockOver();

}

Bob's code

86

Correctness

• Mutual Exclusion

– Pets and Bob never together in pond

Art of Multiprocessor Programming

87

Correctness

• Mutual Exclusion

– Pets and Bob never together in pond

• No Starvation

if Bob always willing to feed, and pets always

famished, then pets eat infinitely often.

Art of Multiprocessor Programming

Art of Multiprocessor Programming 88

Correctness

• Mutual Exclusion

– Pets and Bob never together in pond

• No Starvation

if Bob always willing to feed, and pets always
famished, then pets eat infinitely often.

• Producer/Consumer

The pets never enter pond unless there is
food, and Bob never provides food if there
is unconsumed food.

safety

liveness

safety

CDS.IISc.ac.in | Department of Computational and Data Sciences

Spin Locks
Aside

Art of Multiprocessor Programming

Art of Multiprocessor Programming
90

Pseudocode

while (true) {

while (can.isUp()){};

pet.release();

pet.recapture();

can.reset();

}
while (true) {

while (can.isDown()){};

pond.stockWithFood();

can.knockOver();

}

Spin Lock!
Has to be

protected…

What Should you do if you can’t get

a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor

Art of Multiprocessor Programming 91(1)

What Should you do if you can’t get

a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor

Art of Multiprocessor Programming 92

our focus

Basic Spin-Lock

Art of Multiprocessor Programming 93

CS

Resets lock
upon exit

spin
lock

critical
section

...

Basic Spin-Lock

Art of Multiprocessor Programming 94

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock introduces

sequential bottleneck

Basic Spin-Lock

Art of Multiprocessor Programming 95

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from contention

Basic Spin-Lock

Art of Multiprocessor Programming 96

CS

Resets lock
upon exit

spin
lock

critical
section

...
Notice: these are distinct

phenomena

…lock suffers from contention

Basic Spin-Lock

Art of Multiprocessor Programming 97

CS

Resets lock
upon exit

spin
lock

critical
section

...

Seq Bottleneck  no parallelism

…lock suffers from contention

Basic Spin-Lock

Art of Multiprocessor Programming 98

CS

Resets lock
upon exit

spin
lock

critical
section

...
Contention  ???

…lock suffers from contention

Review: Test-and-Set

• Boolean value

• Test-and-set (TAS)

– Swap true with current value

– Return value tells if prior value was true or

false

• Can reset just by writing false

• TAS aka “getAndSet”

Art of Multiprocessor Programming 99

Review: Test-and-Set

Art of Multiprocessor Programming 100

public class AtomicBoolean {

boolean value;

public synchronized boolean
getAndSet(boolean newValue) {

boolean prior = value;

value = newValue;

return prior;

}

}

(5)

Review: Test-and-Set

Art of Multiprocessor Programming 101

public class AtomicBoolean {

boolean value;

public synchronized boolean
getAndSet(boolean newValue) {

boolean prior = value;

value = newValue;

return prior;

}

}
Package

java.util.concurrent.atomic

Review: Test-and-Set

Art of Multiprocessor Programming 102

public class AtomicBoolean {

boolean value;

public synchronized boolean
getAndSet(boolean newValue) {

boolean prior = value;

value = newValue;

return prior;

}

}

Swap old and new

values

Review: Test-and-Set

Art of Multiprocessor Programming 103

AtomicBoolean lock

= new AtomicBoolean(false)

…

boolean prior = lock.getAndSet(true)

Review: Test-and-Set

Art of Multiprocessor Programming 104

AtomicBoolean lock

= new AtomicBoolean(false)

…

boolean prior = lock.getAndSet(true)

(5)

Swapping in true is called

“test-and-set” or TAS

Test-and-Set Locks

• Locking

– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS

– If result is false, you win

– If result is true, you lose

• Release lock by writing false

Art of Multiprocessor Programming 105

Test-and-set Lock

Art of Multiprocessor Programming 106

class TASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}

}

void unlock() {

state.set(false);

}}

Test-and-set Lock

Art of Multiprocessor Programming 107

class TASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}

}

void unlock() {

state.set(false);

}}
Lock state is AtomicBoolean

Test-and-set Lock

Art of Multiprocessor Programming 108

class TASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}

}

void unlock() {

state.set(false);

}}
Keep trying until lock acquired

Test-and-set Lock

Art of Multiprocessor Programming 109

class TASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}

}

void unlock() {

state.set(false);

}}

Release lock by resetting

state to false

Space Complexity

• TAS spin-lock has small “footprint”

• N thread spin-lock uses O(1) space

• As opposed to O(n) Peterson/Bakery

• How did we overcome the W(n) lower

bound?

• We used a RMW operation…

Art of Multiprocessor Programming 110

Performance

• Experiment

– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take?

Art of Multiprocessor Programming 111

Graph

Art of Multiprocessor Programming 112

ideal

ti
m

e

threads

no speedup

because of

sequential

bottleneck

Mystery #1

Art of Multiprocessor Programming 113

ti
m

e

threads

TAS lock

Ideal

What is

going

on?

Test-and-Test-and-Set Locks

• Lurking stage

– Wait until lock “looks” free

– Spin while read returns true (lock taken)

• Pouncing state

– As soon as lock “looks” available

– Read returns false (lock free)

– Call TAS to acquire lock

– If TAS loses, back to lurking

Art of Multiprocessor Programming 114

Test-and-test-and-set Lock

Art of Multiprocessor Programming 115

class TTASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (true) {

while (state.get()) {}

if (!state.getAndSet(true))

return;

}

}

Test-and-test-and-set Lock

Art of Multiprocessor Programming 116

class TTASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (true) {

while (state.get()) {}

if (!state.getAndSet(true))

return;

}

} Wait until lock looks free

Test-and-test-and-set Lock

Art of Multiprocessor Programming 117

class TTASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (true) {

while (state.get()) {}

if (!state.getAndSet(true))

return;

}

}

Then try to

acquire it

Mystery #2

Art of Multiprocessor Programming 118

TAS lock

TTAS lock

Ideal

ti
m

e

threads

Mystery

• Both

– TAS and TTAS

– Do the same thing (in our model)

• Except that

– TTAS performs much better than TAS

– Neither approaches ideal

Art of Multiprocessor Programming 119

Opinion

• Our memory abstraction is broken

• TAS & TTAS methods

– Are provably the same (in our model)

– Except they aren’t (in field tests)

• Need a more detailed model …

Art of Multiprocessor Programming 120

Simple TASLock

• TAS invalidates cache lines

• Spinners

– Miss in cache

– Go to bus

• Thread wants to release lock

– delayed behind spinners

Art of Multiprocessor Programming 121

Test-and-test-and-set

• Wait until lock “looks” free

– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released

– Invalidation storm …

Art of Multiprocessor Programming 122

Local Spinning while Lock is Busy

Art of Multiprocessor Programming 123

Bus

memory

busybusybusy

busy

On Release

Art of Multiprocessor Programming 124

Bus

memory

freeinvalidinvalid

free

On Release

Art of Multiprocessor Programming 125

Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses,

rereads

(1)

On Release

Art of Multiprocessor Programming 126

Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS

(1)

Problems

• Everyone misses

– Reads satisfied sequentially

• Everyone does TAS

– Invalidates others’ caches

• Eventually quiesces after lock acquired

– How long does this take?

Art of Multiprocessor Programming 127

Quiescence Time

Art of Multiprocessor Programming 128

Increses

linearly with

the number of

processors for

bus architectureti
m

e

threads

Mystery Explained

Art of Multiprocessor Programming 129

TAS lock

TTAS lock

Ideal

ti
m

e

threads
Better than TAS

but still not as

good as ideal

Solution: Introduce Delay

Art of Multiprocessor Programming 130

spin locktime
dr1dr2d

• If the lock looks free

• But I fail to get it

• There must be contention

• Better to back off than to collide again

Dynamic Example: Exponential

Backoff

If I fail to get lock

– Wait random duration before retry

– Each subsequent failure doubles expected
wait

Art of Multiprocessor Programming 131

time
d2d4d

spin lock

CDS.IISc.ac.in | Department of Computational and Data Sciences

Concurrent Data
Structures

Art of Multiprocessor Programming

CDS.IISc.ac.in | Department of Computational and Data Sciences

What if you had multiple
producers, consumers?

while (true) {

while (a.isLocked()){};

while (can.isUp()){};

pet.release();

pet.recapture();

can.reset();

}

Alice & Co.

while (true) {

while (b.isLocked()){};

while (can.isDown()){};

pond.stockWithFood();

can.knockOver();

}

Bob & Co.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Does this improve
performance?
 Sequential bottleneck!

Art of Multiprocessor Programming

152

Why do we care About

Sequential Bottlenecks?

• We want as much of the code as possible

to execute in parallel

• A larger sequential part implies reduced

performance

• Amdahl's law: this relation is not linear…

Art of Multiprocessor Programming

Eugene Amdahl

Art of Multiprocessor Programming 153

Amdahl's Law

Speedup =
1 thread execution time

N thread execution time

Art of Multiprocessor Programming 154

Amdahl's Law

Speedup =

n

p
 + p) -(1

1

Art of Multiprocessor Programming 155

Amdahl's Law

Speedup =

n

p
 + p) -(1

1

Parallel

fraction

Art of Multiprocessor Programming 156

Amdahl's Law

Speedup =

n

p
 + p) -(1

1

Parallel

fraction

Sequential

fraction

Art of Multiprocessor Programming 157

Amdahl's Law

Speedup =

n

p
 + p) -(1

1

Parallel

fraction

Sequential

fraction

Number

of

threads

Amdahl's Law (in practice)

Art of Multiprocessor Programming 158

159

Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming

160

Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

1

1- 0.6 +
0.6

10

Speedup = 2.17 =

Art of Multiprocessor Programming

161

Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming

162

Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

1

1- 0.8+
0.8

10

Speedup = 3.57 =

Art of Multiprocessor Programming

163

Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming

Art of Multiprocessor Programming 164

Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

1

1- 0.9 +
0.9

10

Speedup = 5.26 =

165

Example

• Ten processors

• 99% concurrent, 01% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming

Art of Multiprocessor Programming 166

Example

• Ten processors

• 99% concurrent, 01% sequential

• How close to 10-fold speedup?

1

1- 0.99 +
0.99

10

Speedup = 9.17 =

Back to Real-World

Multicore Scaling

Art of Multiprocessor Programming 167

1.8x 2x 2.9x

User code

Multicore

Speedup

Not reducing

sequential % of code

Shared Data Structures

75%

Unshared

25%

Shared

Coarse

Grained

Fine

Grained

75%

Unshared

25%

Shared

Shared Data Structures

75%

Unshared

25%

Shared

Coarse

Grained

Fine

Grained

Why only 2.9 speedup

75%

Unshared

25%

Shared

Honk!

Honk!

Honk!

Shared Data Structures

75%

Unshared

25%

Shared

Coarse

Grained

Fine

Grained

Why fine-grained

parallelism maters

75%

Unshared

25%

Shared

Honk!

Honk!

Honk!

CDS.IISc.ac.in | Department of Computational and Data Sciences

Need for Concurrent
Queues
 Avoid sequential bottleneck by introducing a buffer

between the producers and consumers

 Producers add item to queue

 Consumers consume from queue

Neither wait as long as queue is not full or empty

Art of Multiprocessor Programming

Concurrent Objects

Companion slides for

The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Art of Multiprocessor

Programming

173

Concurrent Computation

memory

object object

Art of Multiprocessor

Programming

174

Objectivism

• What is a concurrent object?

– How do we describe one?

– How do we implement one?

– How do we tell if we’re right?

Art of Multiprocessor

Programming

175

Objectivism

• What is a concurrent object?

– How do we describe one?

– How do we tell if we’re right?

Art of Multiprocessor

Programming

176

FIFO Queue: Enqueue Method

q.enq()

Art of Multiprocessor

Programming

177

FIFO Queue: Dequeue Method

q.deq()/

Art of Multiprocessor

Programming

178

Lock-Based Queue

head

tail0

2

1

5 4

3

yx

capacity = 8

7

6

Art of Multiprocessor

Programming

179

Lock-Based Queue

head

tail0

2

1

5 4

3

capacity = 8

7

6

Fields protected by

single shared lock

yx

class LockBasedQueue<T> {

int head, tail;

T[] items;

Lock lock;

public LockBasedQueue(int capacity) {

head = 0; tail = 0;

lock = new ReentrantLock();

items = (T[]) new Object[capacity];

}

Art of Multiprocessor

Programming

180

A Lock-Based Queue

Fields protected by

single shared lock

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

181

Lock-Based Queue

head

tail

0

2

1

5 4

3

Initially: head = tail

7

6

class LockBasedQueue<T> {

int head, tail;

T[] items;

Lock lock;

public LockBasedQueue(int capacity) {

head = 0; tail = 0;

lock = new ReentrantLock();

items = (T[]) new Object[capacity];

}

Art of Multiprocessor

Programming

182

A Lock-Based Queue

Initially head = tail

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

183

Lock-Based deq()

head

tail0

2

5 4

7

36

1

yx

Art of Multiprocessor

Programming

184

Acquire Lock

head

tail0

2

5 4

7

36

yx

1

Waiting to

enqueue…

My turn …
yx

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

185

Implementation: deq()

Acquire lock at

method start

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

186

Check if Non-Empty

head

tail
0

2

5 4

7

36

1

yx

Waiting to

enqueue…

Not
equal?

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

187

Implementation: deq()

If queue empty

throw exception

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

188

Modify the Queue

head

tail0

2

1

5 4

7

36

head

Waiting to

enqueue…

yx

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

189

Implementation: deq()

Queue not empty?

Remove item and update head

0 1

capacity-1
2

head tail

y z

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

190

Implementation: deq()

Return result

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

191

Release the Lock

tail0

2

1

5 4

7

36

y

x

head

Waiting…

Art of Multiprocessor

Programming

192

Release the Lock

tail0

2

1

5 4

7

36

y

x

head

My turn!

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

193

Implementation: deq()

Release lock no

matter what!

0 1

capacity-1
2

head tail

y z

Implementation: enq()

Art of Multiprocessor Programming

public void enq(Item) throws EmptyException {

lock.lock();

try {

if (tail-head == capacity) throw

new FullException();

items[tail % capacity] = x;

tail++;

} finally {

lock.unlock();

}

}

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

195

Wait-free Queue?

0 1

capacity-1
2

head tail

y z

public class WaitFreeQueue {

int head = 0, tail = 0;

items = (T[]) new Object[capacity];

public void enq(Item x) {

if (tail-head == capacity) throw

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

196

Linearizability

• Each method should
– “take effect”

– Instantaneously

– Between invocation and response events

• Object is correct if this “sequential” behavior is
correct

• Any such concurrent object is
– Linearizable™

• A linearizable object: one all of whose possible
executions are linearizable

public class WaitFreeQueue {

int head = 0, tail = 0;

items = (T[]) new Object[capacity];

public void enq(Item x) {

if (tail-head == capacity) throw

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}
Art of Multiprocessor

Programming

197

Wait-free Queue?

Linearization order is

order head and tail

fields modified

Art of Multiprocessor

Programming

198

Reasoning About

Linearizability: Locking
public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Linearization points

are when locks are

released

0 1

capacity-1
2

head tail

y z

