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Moore's Law

Clock speed 

flattening 

sharply

Transistor 

count still 

rising
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Once roamed the Earth:

the Uniprocesor

memory

cpu
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Endangered: 

The Shared Memory Multiprocessor

(SMP)

cache

BusBus

shared memory

cachecache
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Meet he New Boss: 

The Multicore Processor

(CMP) 

cache

BusBus

shared memory

cachecache
All on the 

same chip

Oracle 

Niagara

Chip



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

Turing Cluster

 24 Compute Nodes in two 12 node 3U blades. Each 
node has one 8-core AMD Opteron 3380 processor @ 
2.6GHz, 32GB RAM, 2TB HDD, Gigabit Ethernet port

 1 Head Node with one 6-core Intel Xeon E5-2620 v3 
processor @ 2.40GHz, 48GB RAM, 1+4TB HDD, Gigabit 
Ethernet ports

 One 24 port L2 Gigabit Ethernet switch

 Running CentOS, MPI, PBS and Apache Hadoop/Yarn

 Mounted on a 24U Rack
 http://cds.iisc.ac.in/internal-resources/computing-resources/
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Turing Cluster: Xeon E5-2620 v3

http://2eof2j3oc7is20vt9q3g7tlo5xe.wpengine.netdna-cdn.com/wp-content/uploads/2014/09/intel-xeon-e5-v3-block-diagram-detailed.jpg

http://www.enterprisetech.com/wp-content/uploads/2014/09/intel-xeon-e5-v3-die-shot.jpg

http://2eof2j3oc7is20vt9q3g7tlo5xe.wpengine.netdna-cdn.com/wp-content/uploads/2014/09/intel-xeon-e5-v3-block-diagram-detailed.jpg
http://www.enterprisetech.com/wp-content/uploads/2014/09/intel-xeon-e5-v3-die-shot.jpg
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Traditional Scaling Process

User code

Traditional

Uniprocessor 

Speedup

1.8x

7x

3.6x

Time: Moore's law



Ideal Multicore Scaling Process
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User code

Multicore

Speedup 1.8x

7x

3.6x

Unfortunately, not so simple…



Actual Multicore Scaling Process
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1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization 

require great care… 
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Sequential Computation

memory

object object

thread



Art of Multiprocessor Programming 13

Concurrent Computation

memory

object object
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Asynchrony

• Sudden unpredictable delays

– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)
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Model Summary

• Multiple threads

• Single shared memory

• Objects live in memory

• Unpredictable asynchronous delays
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Concurrency Jargon

• Hardware

– Processors

• Software

– Threads, processes

• Sometimes OK to confuse them, 

sometimes not.

Art of Multiprocessor Programming
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Parallel Primality Testing

• Challenge

– Print primes from 1 to 1010

• Given

– Ten-processor multiprocessor

– One thread per processor

• Goal

– Get ten-fold speedup (or close)

Art of Multiprocessor Programming



Art of Multiprocessor Programming 19

Load Balancing

• Split the work evenly

• Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9
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Procedure for Thread i

void primePrint {

int i = ThreadID.get(); // IDs in {0..9}

for (j = i*109+1, j<(i+1)*109; j++) {

if (isPrime(j))

print(j);

}

}

Art of Multiprocessor Programming
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Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads

– Uneven

– Hard to predict

Art of Multiprocessor Programming
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Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads

– Uneven

– Hard to predict

• Need dynamic load balancing
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17

18

19

Shared Counter

each thread 

takes a number
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Procedure for Thread i

int counter = new Counter(1);

void primePrint {

long j = 0;

while (j < 1010) {

j = counter.getAndIncrement();

if (isPrime(j))

print(j);

}

}

Art of Multiprocessor Programming
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Counter counter = new Counter(1);

void primePrint {

long j = 0;

while (j < 1010) {

j = counter.getAndIncrement();

if (isPrime(j))

print(j);

}

}

Procedure for Thread i

Shared counter

object
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Where Things Reside

cache

BusBus

cachecache

1

shared counter

shared 

memory

void primePrint {

int i = 

ThreadID.get(); // IDs 

in {0..9}

for (j = i*109+1, 

j<(i+1)*109; j++) {

if (isPrime(j))

print(j);

}

}

code

Local 

variables
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Procedure for Thread i

Counter counter = new Counter(1);

void primePrint {

long j = 0;

while (j < 1010) {

j = counter.getAndIncrement();

if (isPrime(j))

print(j);

}

}

Stop when every 

value taken
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Counter counter = new Counter(1);

void primePrint {

long j = 0;

while (j < 1010) {

j = counter.getAndIncrement();

if (isPrime(j))

print(j);

}

}

Procedure for Thread i

Increment & return each 

new value
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Counter Implementation

public class Counter {

private long value;

public long getAndIncrement() {

return value++;

}

}

Art of Multiprocessor Programming
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Counter Implementation

public class Counter {

private long value;

public long getAndIncrement() {

return value++;

}

}
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What It Means

public class Counter {

private long value;

public long getAndIncrement() {

return value++;

}

}
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What It Means

public class Counter {

private long value;

public long getAndIncrement() {

return value++;

}

}

temp  = value;

value = temp + 1;

return temp;
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time

Not so good…

Value… 1

read 

1

read 

1

write 

2

read 

2

write 

3

write 

2

2 3 2
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Challenge

public class Counter {

private long value;

public long getAndIncrement() {

temp  = value;

value = temp + 1;

return temp;

}

}

Art of Multiprocessor Programming



Art of Multiprocessor Programming 36

Challenge

public class Counter {

private long value;

public long getAndIncrement() {

temp  = value;

value = temp + 1;

return temp;

}

}

Make these steps 

atomic (indivisible)
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Hardware Solution

public class Counter {

private long value;

public long getAndIncrement() {

temp  = value;

value = temp + 1;

return temp;

}

} ReadModifyWrite()

instruction
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An Aside: Java™

public class Counter {

private long value;

public long getAndIncrement() {

synchronized {

temp  = value;

value = temp + 1;

}

return temp;

}

}
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An Aside: Java™

public class Counter {

private long value;

public long getAndIncrement() {

synchronized {

temp  = value;

value = temp + 1;

}

return temp;

}

}
Synchronized block



Art of Multiprocessor Programming 40

An Aside: Java™

public class Counter {

private long value;

public long getAndIncrement() {

synchronized {

temp  = value;

value = temp + 1;

}

return temp;

}

}

Mutual Exclusion
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Mutual Exclusion,

or “Alice & Bob share a pond”

A B

Art of Multiprocessor Programming
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Alice has a pet

A B

Art of Multiprocessor Programming
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Bob has a pet

A B

Art of Multiprocessor Programming
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The Problem

A B

The pets don't

get along

Art of Multiprocessor Programming
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Formalizing the Problem

• Two types of formal properties in 

asynchronous computation: 

• Safety Properties

– Nothing bad happens ever

• Liveness Properties 

– Something good happens eventually

Art of Multiprocessor Programming
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Formalizing our Problem

• Mutual Exclusion

– Both pets never in pond simultaneously

– This is a safety property

• No Deadlock

– if only one wants in, it gets in

– if both want in, one gets in

– This is a liveness property

Art of Multiprocessor Programming
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Simple Protocol

• Idea

– Just look at the pond

• Gotcha

– Not atomic

– Trees obscure the view

Art of Multiprocessor Programming



48

Interpretation

• Threads can't “see” what other threads 

are doing

• Explicit communication required for 

coordination

Art of Multiprocessor Programming
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Cell Phone Protocol

• Idea

– Bob calls Alice (or vice-versa)

• Gotcha

– Bob takes shower

– Alice recharges battery

– Bob out shopping for pet food …

Art of Multiprocessor Programming
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Interpretation

• Message-passing doesn't work

• Recipient might not be

– Listening

– There at all

• Communication must be

– Persistent (like writing)

– Not transient (like speaking)

Art of Multiprocessor Programming
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Flag Protocol

A B

Art of Multiprocessor Programming
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Alice's Protocol (sort of)

A B

Art of Multiprocessor Programming
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Bob's Protocol (sort of)

A B

Art of Multiprocessor Programming
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Alice's Protocol

• Raise flag

• Wait until Bob's flag is down

• Unleash pet

• Lower flag when pet returns

Art of Multiprocessor Programming
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Bob's Protocol

• Raise flag

• Wait until Alice's flag is down

• Unleash pet

• Lower flag when pet returns
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Bob's Protocol (2nd try)

• Raise flag

• While Alice's flag is up

– Lower flag

– Wait for Alice's flag to go down

– Raise flag

• Unleash pet

• Lower flag when pet returns

Art of Multiprocessor Programming
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Bob's Protocol

• Raise flag

• While Alice's flag is up

– Lower flag

– Wait for Alice's flag to go down

– Raise flag

• Unleash pet

• Lower flag when pet returns

Bob defers 

to Alice
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The Flag Principle

• Raise the flag

• Look at other's flag

• Flag Principle:

– If each raises and looks, then

– Last to look must see both flags up

Art of Multiprocessor Programming
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Remarks

• Protocol is unfair

– Bob's pet might never get in

• Protocol uses waiting

– If Bob is eaten by his pet, Alice's pet might 

never get in

Art of Multiprocessor Programming
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The Fable Continues

Bob falls ill, cannot tend to the pets

She gets the pets
‣ Pets get along fine 

But Bob has to feed them

Producer-Consumer Problem

Art of Multiprocessor Programming
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Bob Puts Food in the Pond

A

Art of Multiprocessor Programming
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mmm…

Alice releases her pets to Feed

B
mmm…

Art of Multiprocessor Programming
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Producer/Consumer

Alice and Bob can't meet
‣ Bob’s disease is contagious

‣ So he puts food in the pond

‣ And later, she releases the pets

Avoid
‣ Releasing pets when there's no food

‣ Putting out food if uneaten food remains

Art of Multiprocessor Programming
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Producer/Consumer

• Need a mechanism so that

– Bob lets Alice know when food has been put 

out

– Alice lets Bob know when to put out more 

food

Art of Multiprocessor Programming
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“Can” Solution

A B

co
la

Art of Multiprocessor Programming
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Bob puts food in Pond

A B

co
la

Art of Multiprocessor Programming
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Bob knocks over Can

A B

Art of Multiprocessor Programming
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Alice Releases Pets

A Byum… B
yum…

Art of Multiprocessor Programming
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Alice Resets Can when Pets are 

Fed

A B

co
la

Art of Multiprocessor Programming
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Pseudocode

while (true) {

while (can.isUp()){};

pet.release();

pet.recapture();

can.reset();

}  

Alice's code
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Pseudocode

while (true) {

while (can.isUp()){};

pet.release();

pet.recapture();

can.reset();

}  

Alice's code

while (true) {

while (can.isDown()){};

pond.stockWithFood();

can.knockOver();

}  

Bob's code
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Correctness

• Mutual Exclusion

– Pets and Bob never together in pond

Art of Multiprocessor Programming
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Correctness

• Mutual Exclusion

– Pets and Bob never together in pond

• No Starvation

if Bob always willing to feed, and pets always 

famished, then pets eat infinitely often.

Art of Multiprocessor Programming
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Correctness

• Mutual Exclusion

– Pets and Bob never together in pond

• No Starvation

if Bob always willing to feed, and pets always 
famished, then pets eat infinitely often.

• Producer/Consumer

The pets never enter pond unless there is 
food, and Bob never provides food if there 
is unconsumed food.

safety

liveness

safety
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Spin Locks
Aside

Art of Multiprocessor Programming
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Pseudocode

while (true) {

while (can.isUp()){};

pet.release();

pet.recapture();

can.reset();

}  
while (true) {

while (can.isDown()){};

pond.stockWithFood();

can.knockOver();

}  

Spin Lock!
Has to be 

protected…



What Should you do if you can’t get 

a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor

Art of Multiprocessor Programming 91(1)



What Should you do if you can’t get 

a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor
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our focus



Basic Spin-Lock
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CS

Resets lock 
upon exit

spin 
lock

critical 
section

...



Basic Spin-Lock
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CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock introduces 

sequential bottleneck



Basic Spin-Lock
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CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock suffers from contention



Basic Spin-Lock
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CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
Notice: these are distinct 

phenomena

…lock suffers from contention



Basic Spin-Lock

Art of Multiprocessor Programming 97

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

Seq Bottleneck  no parallelism

…lock suffers from contention



Basic Spin-Lock
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CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
Contention  ???

…lock suffers from contention



Review: Test-and-Set

• Boolean value

• Test-and-set (TAS)

– Swap true with current value

– Return value tells if prior value was true or 

false

• Can reset just by writing false

• TAS aka “getAndSet”

Art of Multiprocessor Programming 99



Review: Test-and-Set
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public class AtomicBoolean {

boolean value;

public synchronized boolean
getAndSet(boolean newValue) {

boolean prior = value;

value = newValue;

return prior;

}

}

(5)



Review: Test-and-Set
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public class AtomicBoolean {

boolean value;

public synchronized boolean
getAndSet(boolean newValue) {

boolean prior = value;

value = newValue;

return prior;

}

}
Package

java.util.concurrent.atomic



Review: Test-and-Set
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public class AtomicBoolean {

boolean value;

public synchronized boolean
getAndSet(boolean newValue) {

boolean prior = value;

value = newValue;

return prior;

}

}

Swap old and new 

values



Review: Test-and-Set

Art of Multiprocessor Programming 103

AtomicBoolean lock

= new AtomicBoolean(false)

…

boolean prior = lock.getAndSet(true)



Review: Test-and-Set
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AtomicBoolean lock

= new AtomicBoolean(false)

…

boolean prior = lock.getAndSet(true)

(5)

Swapping in true is called 

“test-and-set” or TAS



Test-and-Set Locks

• Locking

– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS

– If result is false, you win

– If result is true, you lose 

• Release lock by writing false

Art of Multiprocessor Programming 105



Test-and-set Lock
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class TASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}

}

void unlock() {

state.set(false);

}} 



Test-and-set Lock
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class TASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}

}

void unlock() {

state.set(false);

}} 
Lock state is AtomicBoolean



Test-and-set Lock
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class TASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}

}

void unlock() {

state.set(false);

}} 
Keep trying until lock acquired



Test-and-set Lock
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class TASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}

}

void unlock() {

state.set(false);

}} 

Release lock by resetting 

state to false



Space Complexity

• TAS spin-lock has small “footprint” 

• N thread spin-lock uses O(1) space

• As opposed to O(n) Peterson/Bakery 

• How did we overcome the W(n) lower 

bound? 

• We used a RMW operation… 
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Performance

• Experiment

– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take? 
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Graph
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ideal

ti
m

e

threads

no speedup 

because of 

sequential 

bottleneck



Mystery #1
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ti
m

e

threads

TAS lock

Ideal

What is 

going 

on? 



Test-and-Test-and-Set Locks

• Lurking stage

– Wait until lock “looks” free

– Spin while read returns true (lock taken)

• Pouncing state

– As soon as lock “looks” available

– Read returns false (lock free)

– Call TAS to acquire lock

– If TAS loses, back to lurking
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Test-and-test-and-set Lock
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class TTASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (true) {

while (state.get()) {}

if (!state.getAndSet(true))

return;

}

} 



Test-and-test-and-set Lock

Art of Multiprocessor Programming 116

class TTASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (true) {

while (state.get()) {}

if (!state.getAndSet(true))

return;

}

} Wait until lock looks free



Test-and-test-and-set Lock
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class TTASlock {

AtomicBoolean state =

new AtomicBoolean(false);

void lock() {

while (true) {

while (state.get()) {}

if (!state.getAndSet(true))

return;

}

} 

Then try to 

acquire it



Mystery #2
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TAS lock

TTAS lock

Ideal

ti
m

e

threads



Mystery

• Both

– TAS and TTAS

– Do the same thing (in our model)

• Except that

– TTAS performs much better than TAS

– Neither approaches ideal
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Opinion

• Our memory abstraction is broken

• TAS & TTAS methods

– Are provably the same (in our model)

– Except they aren’t (in field tests)

• Need a more detailed model …
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Simple TASLock 

• TAS invalidates cache lines

• Spinners

– Miss in cache

– Go to bus

• Thread wants to release lock

– delayed behind spinners
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Test-and-test-and-set

• Wait until lock “looks” free

– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released

– Invalidation storm …
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Local Spinning while Lock is Busy
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Bus

memory

busybusybusy

busy



On Release
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Bus

memory

freeinvalidinvalid

free



On Release
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Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses, 

rereads

(1)



On Release
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Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS

(1)



Problems

• Everyone misses

– Reads satisfied sequentially

• Everyone does TAS

– Invalidates others’ caches

• Eventually quiesces after lock acquired

– How long does this take?  
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Quiescence Time
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Increses 

linearly with 

the number of 

processors for 

bus architectureti
m

e

threads



Mystery Explained
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TAS lock

TTAS lock

Ideal

ti
m

e

threads
Better than TAS 

but still not as 

good as ideal



Solution: Introduce Delay
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spin locktime
dr1dr2d

• If the lock looks free

• But I fail to get it

• There must be contention

• Better to back off than to collide again



Dynamic Example: Exponential 

Backoff

If I fail to get lock

– Wait random duration before retry

– Each subsequent failure doubles expected 
wait

Art of Multiprocessor Programming 131

time
d2d4d

spin lock
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Concurrent Data 
Structures
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What if you had multiple 
producers, consumers?

while (true) {

while (a.isLocked()){};

while (can.isUp()){};

pet.release();

pet.recapture();

can.reset();

}  

Alice & Co.

while (true) {

while (b.isLocked()){};

while (can.isDown()){};

pond.stockWithFood();

can.knockOver();

}  

Bob & Co.
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Does this improve 
performance?
 Sequential bottleneck!

Art of Multiprocessor Programming
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Why do we care About 

Sequential Bottlenecks? 

• We want as much of the code as possible 

to execute in parallel

• A larger sequential part implies reduced 

performance  

• Amdahl's law: this relation is not linear…

Art of Multiprocessor Programming

Eugene Amdahl



Art of Multiprocessor Programming 153

Amdahl's Law

Speedup =
1 thread execution time

N thread execution time
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Amdahl's Law

Speedup =

n

p
 + p) -(1

1
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Amdahl's Law

Speedup =

n

p
 + p) -(1

1

Parallel 

fraction



Art of Multiprocessor Programming 156

Amdahl's Law

Speedup =

n

p
 + p) -(1

1

Parallel 

fraction

Sequential 

fraction
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Amdahl's Law

Speedup =

n

p
 + p) -(1

1

Parallel 

fraction

Sequential 

fraction

Number 

of 

threads



Amdahl's Law (in practice)
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Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming
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Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

1

1- 0.6 +
0.6

10

Speedup = 2.17 =

Art of Multiprocessor Programming
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Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming
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Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

1

1- 0.8+
0.8

10

Speedup = 3.57 =

Art of Multiprocessor Programming
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Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming
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Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

1

1- 0.9 +
0.9

10

Speedup = 5.26 =
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Example

• Ten processors

• 99% concurrent, 01% sequential

• How close to 10-fold speedup?

Art of Multiprocessor Programming
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Example

• Ten processors

• 99% concurrent, 01% sequential

• How close to 10-fold speedup?

1

1- 0.99 +
0.99

10

Speedup = 9.17 =



Back to Real-World 

Multicore Scaling
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1.8x 2x 2.9x

User code

Multicore

Speedup

Not reducing 

sequential % of code 
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Shared Data Structures

75%

Unshared

25%

Shared

Coarse

Grained

Fine

Grained

Why only 2.9 speedup

75%

Unshared

25%

Shared

Honk!

Honk!

Honk!



Shared Data Structures

75%

Unshared

25%

Shared

Coarse

Grained

Fine

Grained

Why fine-grained 

parallelism maters

75%

Unshared

25%

Shared

Honk!

Honk!

Honk!
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Need for Concurrent 
Queues
 Avoid sequential bottleneck by introducing a buffer 

between the producers and consumers

 Producers add item to queue

 Consumers consume from queue

Neither wait as long as queue is not full or empty

Art of Multiprocessor Programming



Concurrent Objects

Companion slides for
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by Maurice Herlihy & Nir Shavit
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Concurrent Computation

memory

object object
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Objectivism

• What is a concurrent object?

– How do we describe one?

– How do we implement one?

– How do we tell if we’re right?
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Objectivism

• What is a concurrent object?

– How do we describe one?

– How do we tell if we’re right?
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FIFO Queue: Enqueue Method

q.enq( )
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FIFO Queue: Dequeue Method

q.deq()/
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Lock-Based Queue

head

tail0

2

1

5 4

3

yx

capacity = 8

7

6
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Lock-Based Queue

head

tail0

2

1

5 4

3

capacity = 8

7

6

Fields protected by 

single shared lock

yx



class LockBasedQueue<T> {  

int head, tail;  

T[] items;  

Lock lock;

public LockBasedQueue(int capacity) {    

head = 0; tail = 0;    

lock = new ReentrantLock();    

items = (T[]) new Object[capacity];  

}
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A Lock-Based Queue

Fields protected by 

single shared lock

0 1

capacity-1
2

head tail

y z
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Lock-Based Queue

head

tail

0

2

1

5 4

3

Initially: head = tail

7

6



class LockBasedQueue<T> {  

int head, tail;  

T[] items;  

Lock lock;

public LockBasedQueue(int capacity) {    

head = 0; tail = 0;    

lock = new ReentrantLock();    

items = (T[]) new Object[capacity];  

}
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A Lock-Based Queue

Initially head = tail

0 1

capacity-1
2

head tail

y z
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Lock-Based deq()

head

tail0

2

5 4

7

36

1

yx
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Acquire Lock

head

tail0

2

5 4

7

36

yx

1

Waiting to 

enqueue… 

My turn …
yx



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()

Acquire lock at 

method start

0 1

capacity-1
2

head tail

y z
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Check if Non-Empty

head

tail
0

2

5 4

7

36

1

yx

Waiting to 

enqueue… 

Not 
equal?



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()

If queue empty

throw exception

0 1

capacity-1
2

head tail

y z
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Modify the Queue

head

tail0

2

1

5 4

7

36

head

Waiting to 

enqueue… 

yx



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()

Queue not empty?

Remove item and update head

0 1

capacity-1
2

head tail

y z



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()

Return result

0 1

capacity-1
2

head tail

y z
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Release the Lock

tail0

2

1

5 4

7

36

y

x

head

Waiting…
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Release the Lock

tail0

2

1

5 4
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36

y

x

head

My turn!



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {

lock.unlock();    

}  

} 
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Implementation: deq()

Release lock no 

matter what!

0 1

capacity-1
2

head tail

y z



Implementation: enq()

Art of Multiprocessor Programming

public void enq(Item ) throws EmptyException {

lock.lock();             

try {

if (tail-head == capacity) throw 

new FullException();

items[tail % capacity] = x; 

tail++;

} finally {      

lock.unlock();    

}  

} 

0 1

capacity-1
2

head tail

y z
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Wait-free Queue?

0 1

capacity-1
2

head tail

y z

public class WaitFreeQueue {

int head = 0, tail = 0; 

items = (T[]) new Object[capacity];    

public void enq(Item x) {

if (tail-head == capacity) throw 

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw 

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}

0 1

capacity-1
2

head tail

y z



Art of Multiprocessor 

Programming

196

Linearizability

• Each method should
– “take effect”

– Instantaneously

– Between invocation and response events

• Object is correct if this “sequential” behavior is 
correct

• Any such concurrent object is
– Linearizable™

• A linearizable object: one all of whose possible 
executions are linearizable



public class WaitFreeQueue {

int head = 0, tail = 0; 

items = (T[]) new Object[capacity];    

public void enq(Item x) {

if (tail-head == capacity) throw 

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw 

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}
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Wait-free Queue?

Linearization order is 

order head and tail 

fields modified
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Reasoning About  

Linearizability: Locking 
public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 

Linearization points

are when locks are 

released 

0 1

capacity-1
2

head tail

y z


