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Linked List

• Illustrate these patterns …

• Using a list-based Set

– Common application

– Building block for other apps
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Set Interface

• Unordered collection of items
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Set Interface

• Unordered collection of items

• No duplicates
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Set Interface

• Unordered collection of items

• No duplicates

• Methods

– add(x) put x in set

– remove(x) take x out of set

– contains(x) tests if x in set
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List-Based Sets

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(T x);

}
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List-Based Sets

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(T x);

}

Add item to set
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List-Based Sets

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(Tt x);

}

Remove item from set
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List-Based Sets

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(T x);

}

Is item in set?
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List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}
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List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}

item of interest
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List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}

Usually hash code
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List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}

Reference to next node
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The List-Based Set

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞
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Reasoning about Concurrent 

Objects

• Invariant

– Property that always holds
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Reasoning about Concurrent 

Objects

• Invariant

– Property that always holds

• Established because

– True when object is created

– Truth preserved by each method

• Each step of each method
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Specifically …

• Invariants preserved by

– add()

– remove()

– contains()
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Specifically …

• Invariants preserved by

– add()

– remove()

– contains()

• Most steps are trivial

– Usually one step tricky

– Often linearization point
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Abstract Data Types

• Concrete representation:

• Abstract Type:

{a, b}

a b
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Abstract Data Types

• Meaning of rep given by abstraction

map

S(                                        ) = {a,b}a b
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Blame Game

• Suppose

– add() leaves behind 2 copies of x

– remove() removes only 1

• Which is incorrect?

– If rep invariant says no duplicates

•add() is incorrect

– Otherwise

•remove() is incorrect
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Rep Invariant (partly)

• Sentinel nodes

– tail reachable from head 

• Sorted

• No duplicates



Art of Multiprocessor Programming 55

Sequential List Based Set 

a c d

a b c

add()

remove()
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Sequential List Based Set 

a c d

b

a b c

add()

remove()
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Coarse-Grained Locking

a b d
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Coarse-Grained Locking

a b d

c
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honk!

Coarse-Grained Locking

a b d

c

Simple but hotspot + bottleneck 

honk!
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Coarse-Grained Locking

• Easy, same as synchronized methods

– “One lock to rule them all …”

• Simple, clearly correct

– Deserves respect!

• Works poorly with contention

– Queue locks help

– But bottleneck still an issue



Art of Multiprocessor Programming 63

Fine-grained Locking

• Requires careful thought

– “Do not meddle in the affairs of wizards, for 

they are subtle and quick to anger”

• Split object into pieces

– Each piece has own lock

– Methods that work on disjoint pieces need 

not exclude each other
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Hand-over-Hand locking

a b c
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Hand-over-Hand locking

a b c
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Hand-over-Hand locking

a b c
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Hand-over-Hand locking

a b c
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Hand-over-Hand locking

a b c
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a c d

remove(b)
Why lock victim node?
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Concurrent Removes

a b c d

remove(c)
remove(b)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 81

Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Uh, Oh

a c d

remove(b)
remove(c)
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Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)
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Problem

• To delete node c

– Swing node b’s next field to d

• Problem is,

– Someone deleting b concurrently could 

direct a pointer 

to c

ba c

ba c
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Insight

• If a node is locked

– No one can delete node’s successor

• If a thread locks

– Node to be deleted

– And its predecessor

– Then it works
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Hand-Over-Hand Again

a b c d

remove(b)
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Hand-Over-Hand Again

a b c d

remove(b)
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Hand-Over-Hand Again

a b c d

remove(b)
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Hand-Over-Hand Again

a b c d

remove(b)
Found 

it!
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Hand-Over-Hand Again

a b c d

remove(b)
Found 

it!
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Hand-Over-Hand Again

a c d

remove(b)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

Must 

acquire 

Lock for 

b

remove(c)
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Removing a Node

a b c d

Waiting to 

acquire 

lock for b

remove(c)



Art of Multiprocessor Programming 105

Removing a Node

a b c d

Wait!
remove(c)
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Removing a Node

a b d

Proceed 

to 

remove(b)
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Removing a Node

a b d

remove(b)
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Removing a Node

a b d

remove(b)
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Removing a Node

a d

remove(b)
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Removing a Node

a d
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Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

curr.unlock();

pred.unlock();

}}
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Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

curr.unlock();

pred.unlock();

}}

Key used to order node
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Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

currNode.unlock();

predNode.unlock();

}}

Predecessor and current nodes
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Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

curr.unlock();

pred.unlock();

}}

Make sure 

locks released
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Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

curr.unlock();

pred.unlock();

}}

Everything else
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Remove method

try {

pred = head;

pred.lock();

curr = pred.next;

curr.lock();

…

} finally { … }
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Remove method

try {

pred = head;

pred.lock();

curr = pred.next;

curr.lock();

…

} finally { … }

lock pred == head



try {

pred = head;

pred.lock();

curr = pred.next;

curr.lock();

…

} finally { … }
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Remove method

Lock current



try {

pred = head;

pred.lock();

curr = pred.next;

curr.lock();

…

} finally { … }
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Remove method

Traversing list



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;
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Remove: searching



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;
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Remove: searching

Search key range



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

At start of each loop: 

curr and pred locked
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Remove: searching



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;
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Remove: searching

If item found, remove node



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;
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Remove: searching

Unlock predecessor



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;
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Remove: searching
Only one node locked!



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;
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Remove: searching

demote current



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = currNode;

curr = curr.next;

curr.lock();

}

return false;
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Remove: searching

Find and lock new current



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = currNode;

curr = curr.next;

curr.lock();

}

return false;
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Remove: searching

Lock invariant restored
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Remove: searching

while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Otherwise, not present
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Why does this work?

• To remove node e

– Must lock e

– Must lock e’s predecessor

• Therefore, if you lock a node

– It can’t be removed

– And neither can its successor
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Adding Nodes

• To add node e

– Must lock predecessor

– Must lock successor

• Neither can be deleted

– (Is successor lock actually required?)
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Drawbacks

• Better than coarse-grained lock

– Threads can traverse in parallel

• Still not ideal

– Long chain of acquire/release

– Inefficient
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This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License. 

• You are free:

– to Share — to copy, distribute and transmit the work 

– to Remix — to adapt the work 

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that suggests that 

the authors endorse you or your use of the work). 

– Share Alike. If you alter, transform, or build upon this work, you 

may distribute the resulting work only under the same, similar or a 

compatible license. 

• For any reuse or distribution, you must make clear to others the 

license terms of this work. The best way to do this is with a link 

to

– http://creativecommons.org/licenses/by-sa/3.0/. 

• Any of the above conditions can be waived if you get permission 

from the copyright holder. 

• Nothing in this license impairs or restricts the author's moral 

rights. 

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

