Linked Lists: Locking, Lock-Free,
and Beyond ...

[HE AR

MULTIPROCESSOR
PROGRAMMING

Companion slides for
The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

Linked List

* lllustrate these patterns ...

* Using a list-based Set
— Common application
— Building block for other apps

Art of Multiprocessor Programming

26

Set Interface

 Unordered collection of items

Art of Multiprocessor Programming

27

Set Interface

 Unordered collection of items
* No duplicates

Art of Multiprocessor Programming

28

Set Interface

 Unordered collection of items
* No duplicates

 Methods
—add (x) put x Iin set
— remove (x) take x out of set
— contains (x) tests If x In set

Art of Multiprocessor Programming

29

List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove (T x) ;
public boolean contains (T x);

}

Art of Multiprocessor Programming

30

List-Based Sets

[public boolean add (T x);

Add item to set

Art of Multiprocessor Programming

31

List-Based Sets

[public boolean remove (T x);

Remove item from set

Art of Multiprocessor Programming

32

List-Based Sets

[public boolean contains (T x);]

IS 1tem In set?

Art of Multiprocessor Programming

33

List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}

Art of Multiprocessor Programming

34

List Node

[public T item;

item of Interest

Art of Multiprocessor Programming

35

List Node

[public int key;

Usually hash code

Art of Multiprocessor Programming

36

List Node

public volatile Node next;]

Reference to next node

Art of Multiprocessor Programming

37

The List-Based Set

3=kl

Sorted with Sentinel nodes
(min & max possible keys)

Art of Multiprocessor Programming

(=]

38

Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

Art of Multiprocessor Programming

39

Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

» Established because
— True when object is created

— Truth preserved by each method
« Each step of each method

Art of Multiprocessor Programming

40

Specifically ...

 Invariants preserved by
—add ()

— remove ()

— contains ()

Art of Multiprocessor Programming

41

Specifically ...

 Invariants preserved by
—add ()

— remove ()

— contains ()

* Most steps are trivial
— Usually one step tricky
— Often linearization point

Art of Multiprocessor Programming

42

Abstract Data Types

 Concrete representation:

L=l 5—kl5—~{1]]

* Abstract Type:
{a, b}

Art of Multiprocessor Programming

a7

Abstract Data Types

* Meaning of rep given by abstraction
map

S((>l 3> kl[3>(1) ={a.b}

Art of Multiprocessor Programming

48

Blame Game

e Suppose
—add () leaves behind 2 copies of x
— remove () removes only 1

 Which Is Iincorrect?

— If rep invariant says no duplicates
e add () Is incorrect

— Otherwise
 remove () IS Incorrect

Art of Multiprocessor Programming

52

Rep Invariant (partly)

 Sentinel nodes
— tail reachable from head

e Sorteo
* No duplicates

Art of Multiprocessor Programming

53

Seqguential List Based Set

add ()
(I3—ll] F—d[3—>
remove ()

([F—Gl 33—

Art of Multiprocessor Programming

55

Seqguential List Based Set

add ()

CIB—>@I3\ [c[3—[]3—>

remove ()
(I3—>(a b 3—>(cT=

Art of Multiprocessor Programming

56

Coarse-Grained Locking

é6
([— e[3—E[3—0dI3~>

Art of Multiprocessor Programming

57

Coarse-Grained Locking

6
(T3>l 3+

-

Art of Multiprocessor Programming

58

Coarse-Grained Locking

?
CB—>ED—>[EI3\ @3-

honk'!
11111 l! l

Simple but hotspot + bottleneck

Art of Multiprocessor Programming

59

Coarse-Grained Locking

« Easy, same as synchronized methods
—"One lock to rule them all ...”

« Simple, clearly correct
— Deserves respect!

* Works poorly with contention
— Queue locks help
— But bottleneck still an issue

Art of Multiprocessor Programming

61

Fine-grained Locking

* Requires careful thought

— “Do not meddle In the affairs of wizards, for
they are subtle and quick to anger”

« Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need
not exclude each other

-

Art of Multiprocessor Programming 63

Hand-over-Hand locking

([F—GlF— Il

Hand-over-Hand locking

6

elF—blF—]~

Hand-over-Hand locking

66

Hand-over-Hand locking

Art of Multiprocessor Programming

67

Hand-over-Hand locking

68

Removing a Node

HE g CIE g (I g CIE g Ul g

Oo,

r Programming 69

Removing a Node

Removing a Node

6 6
B (O 5 O E g O E gl

Oo,

Removing a Node

Art of Multiprocessor Programming 72

Removing a Node

6 O
sexanil

O, .

Art of Multiprocessor Programming

73

Removing a Node

i
LLrlaly c[3—>(e[3

Why lock victim node?
remove(b)
O o oa

Art of Multiprocessor Programming 74

Concurrent Removes

HE g CIE g (I g CIE g Ul g

rogramming

Concurrent Removes

[[F=el—bl5— [~

rogramming

Concurrent Removes
([Tl 3+l (c]F—(]

rogramming

Concurrent Removes
(I3l F> (]3]

rogramming

Concurrent Removes

Concurrent Removes

Concurrent Removes

Oo,

Art of Multiprocessor Programming

81

Concurrent Removes

Oo,

Art of Multiprocessor Programming

82

Concurrent Removes

Oo,

Art of Multiprocessor Programming

83

Concurrent Removes

Oo,

Art of Multiprocessor Programming

84

Uh, Oh

SEagth O g ClE g
{iaig

Art of Multiprocessor Programming 85

Uh, Oh

Bad news, ¢ not removed

T~ -
B

Art of Multiprocessor Programming

Problem

* To delete node c
— Swing node b’s next field to d

al Tb

* Problem is,
— Someone deleting b concurrently could

direct a pointer a M 83_’

toC

-,; Art of Multiprocessor Programming 87

N o
2
= < b |

Insight

e |If a node Is locked
— No one can delete node’s successor

 If a thread locks
— Node to be deleted
— And its predecessor
— Then it works

Art of Multiprocessor Programming

88

Hand-Over-Hand Again

HE g CIE g (I g CIE g ClE o

Oo,

89

Hand-Over-Hand Again

Hand-Over-Hand Again

” 2| 5[(e[5>

O

Hand-Over-Hand Again

Art of Multiprocessor Programming 92

Hand-Over-Hand Again

Art of Multiprocessor Programming 93

Hand-Over-Hand Again

SEagdth el 3—>l]3~
O o

Art of Multiprocessor Programming 94

Removing a Node

HE g CIE g (I g CIE g (I B e

remove(b)
O o . a §; :
of Multiprocessor Programming 95

Art

1 ‘,ﬁ
» (-gr EE 5

Removing a Node

([F=>el—b[F—[F—~0][3>

rogramming

Removing a Node
(F=>llF>blF—>(]F—t]3>

rogramming

Removing a Node
(3=l F>bl3—> (]3]~

rogramming

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6 O
B (O E 5O pg I g I E s

remove(b) *
O o . a §; :
Art of Multiprocessor Programming 102

Removing a Node

6 6 o6 o
B OG5 CIE 5 g GG g CIE

103

ust
acquire
Lock for

Removing a Node

6 6 o6 o
B OG5 CIE 5 g GG g CIE

Waiting to ~ 1EIIIIII|=HII!I}
acquire O
o A "*

lock for b
o
Art of Multiprocessor Programming 104

Removing a Node

6 6
el B g CIE o

., * % ;
e Art of Multiprocessor Programming 105
B2 8

Removing a Node

Proceed
to
remove(b)

Art of Multiprocessor Programming 106

Removing a Node

Oo,

Art of Multiprocessor Programming 107

Removing a Node

Removing a Node

([l ‘3]
O o

Art of Multiprocessor Programming 109

Removing a Node

([5—(l ‘3 [~

Remove method

public boolean remove (T item) ({
int key = item.hashCode() ;
Node pred, curr;

try {

} finally {
curr.unlock () ;
pred.unlock() ;

)

—z Art of Multiprocessor Programming 111

B

Remove method

|lint key = item.hashCode() ; |

Key used to order node

Art of Multiprocessor Programming 112

Remove method

[Node pred, curr;

Predecessor and current nodes

Art of Multiprocessor Programming 113

Remove method

[try {

V 4

Make sure

} finally ({ locks released
curr.unlock () ;
kpred.unlock();

Art of Multiprocessor Programming 114

Remove method

S

Everything else

Art of Multiprocessor Programming 115

Remove method

try {

pred = head;
pred.lock() ;

curr = pred.next;
curr.lock() ;

}mfinally { ..}

E Art of Multiprocessor Programming 116
T,

Remove method
lock pred == head

pred = head;
pred.lock() ;

%—;]}»I

>

Art of Multiprocessor Programming 117

Remove method

Lock current

curr = pred.next;
curr.lock () ;

Art of Multiprocessor Programming 118

Remove method

Traversing list

e

s

iC 4

Art of Multiprocessor Programming

119

Remove: searching

while (curr.key <= key) {
i1f (item == curr.item) {
pred.next = curr.next;
return true;

}

pred.unlock() ;
pred = curr;
curr = curr.next;

curr.lock () ; lﬂ:h
}

return false;

E Art of Multiprocessor Programming 120
A &

Remove: searching

[while (curr.key <= key) {

Search key range

Art of Multiprocessor Programming 121

Remove: searching

[while (curr.key <= key)

At start of each loop:

curr and pred lockeo

Art of Multiprocessor Programming

%]}I

>

Remove: searching

~N
if (item == curr.item) ({
pred.next = curr.next;
return true;)

D%I

If item found, remove node LS

Art of Multiprocessor Programming 123

Remove: searching

Unlock predecessor

[pred.unlock();

%DI

0>

Art of Multiprocessor Programming 125

Remove: searching

Only one node locked!

[pred.unlock();

]3>(__:|:<§:|3>I

0>

Art of Multiprocessor Programming 126

Remove: searching

demote current

l

[pred = currT] : T

0>

Art of Multiprocessor Programming 127

Remove: searching

Find and lock new current

curr = curr.next;
curr.lock () ;

L

Art of Multiprocessor Programming

128

Remove: searching

Lock Invariant restored

mb] ED(W}I

curr.lock () ; @

Art of Multiprocessor Programming 129

Remove: searching

Otherwise, not present

[return false;

Art of Multiprocessor Programming 130

Why does this work?

 To remove node e
— Must lock e
— Must lock e’s predecessor

* Therefore, If you lock a node
— |t can’t be removed
— And neither can its successor

Art of Multiprocessor Programming 131

Adding Nodes

* To add node e
— Must lock predecessor
— Must lock successor

* Neither can be deleted
— (Is successor lock actually required?)

Art of Multiprocessor Programming 138

Drawbacks

» Better than coarse-grained lock
— Threads can traverse in parallel

 Still not ideal
— Long chain of acquire/release
— Inefficient

Art of Multiprocessor Programming 141

SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

No'ﬁhing in this license impairs or restricts the author's moral
rights.

- Art of Multiprocessor Programming 297

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

