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Linked List

* lllustrate these patterns ...

* Using a list-based Set
— Common application
— Building block for other apps
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Set Interface

 Unordered collection of items
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Set Interface

 Unordered collection of items
* No duplicates
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Set Interface

 Unordered collection of items
* No duplicates

 Methods
—add (x) put x Iin set
— remove (x) take x out of set
— contains (x) tests If x In set
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List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove (T x) ;
public boolean contains (T x);

}
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List-Based Sets

[public boolean add (T x);

Add item to set
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List-Based Sets

[public boolean remove (T x);

Remove item from set
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List-Based Sets

[public boolean contains (T x); ]

IS 1tem In set?
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List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}
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List Node

[public T item;

item of Interest
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List Node

[public int key;

Usually hash code
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List Node

public volatile Node next;]

Reference to next node
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The List-Based Set

3=kl

Sorted with Sentinel nodes
(min & max possible keys)
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Reasoning about Concurrent
Objects

* Invariant
— Property that always holds
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Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

» Established because
— True when object is created

— Truth preserved by each method
« Each step of each method
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Specifically ...

 Invariants preserved by
—add ()

— remove ()

— contains ()
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Specifically ...

 Invariants preserved by
—add ()

— remove ()

— contains ()

* Most steps are trivial
— Usually one step tricky
— Often linearization point
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Abstract Data Types

 Concrete representation:

L=l 5—kl5—~{1]]

* Abstract Type:
{a, b}
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Abstract Data Types

* Meaning of rep given by abstraction
map

S(( >l 3> kl[3>(1) ={a.b}
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Blame Game

e Suppose
—add () leaves behind 2 copies of x
— remove () removes only 1

 Which Is Iincorrect?

— If rep invariant says no duplicates
e add () Is incorrect

— Otherwise
 remove () IS Incorrect
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Rep Invariant (partly)

 Sentinel nodes
— tail reachable from head

e Sorteo
* No duplicates
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Seqguential List Based Set

add ()
(I3—ll ] F—d[3—>
remove ()

([F—Gl 33—
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Seqguential List Based Set

add ()

CIB—>@I3\ [c[3—[]3—>

remove ()
(I3—>(a b 3—>(cT=
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Coarse-Grained Locking

é6
([— e[ 3—E[3—0dI3~>
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Coarse-Grained Locking

6
(T3>l 3+

-
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Coarse-Grained Locking

?
CB—>ED—>[EI3\ @3-

honk'!
11111 l! l

Simple but hotspot + bottleneck
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Coarse-Grained Locking

« Easy, same as synchronized methods
—"One lock to rule them all ...”

« Simple, clearly correct
— Deserves respect!

* Works poorly with contention
— Queue locks help
— But bottleneck still an issue
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Fine-grained Locking

* Requires careful thought

— “Do not meddle In the affairs of wizards, for
they are subtle and quick to anger”

« Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need
not exclude each other

-
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Hand-over-Hand locking

([F—GlF— Il




Hand-over-Hand locking

6

elF—blF— ]~




Hand-over-Hand locking
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Hand-over-Hand locking
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Hand-over-Hand locking
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Removing a Node
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Removing a Node




Removing a Node
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Removing a Node
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Removing a Node

6 O
sexanil

O, .
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Removing a Node

i
LLrlaly c[3—>(e[ 3

Why lock victim node?
remove(b)
O o oa
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Concurrent Removes

HE g CIE g (I g CIE g Ul g

rogramming




Concurrent Removes
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Concurrent Removes
([Tl 3+l (c]F—(]
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Concurrent Removes
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Concurrent Removes




Concurrent Removes

Oo,
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Concurrent Removes

Oo,
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Concurrent Removes

Oo,
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Concurrent Removes

Oo,
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Uh, Oh

SEagth O g ClE g
{iaig
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Uh, Oh

Bad news, ¢ not removed

T~ -
B
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Problem

* To delete node c
— Swing node b’s next field to d

al Tb

* Problem is,
— Someone deleting b concurrently could

direct a pointer a M 83_’

toC
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Insight

e |If a node Is locked
— No one can delete node’s successor

 If a thread locks
— Node to be deleted
— And its predecessor
— Then it works
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Hand-Over-Hand Again
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Hand-Over-Hand Again




Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again

SEagdth el 3—>l]3~
O o

Art of Multiprocessor Programming 94




Removing a Node

HE g CIE g (I g CIE g (I B e

remove(b)
O o . a §; :
of Multiprocessor Programming 95

Art

1 ‘,ﬁ
» (-gr EE 5



Removing a Node
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Removing a Node
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Removing a Node
(3=l F>bl3—> (]3]~
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Removing a Node




Removing a Node
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Removing a Node
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remove(b) *
O o . a §; :
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node

Proceed
to
remove(b)
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Removing a Node

Oo,
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Removing a Node




Removing a Node

([l ‘3 ]
O o
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Removing a Node

([5—(l ‘3 [~




Remove method

public boolean remove (T item) ({
int key = item.hashCode() ;
Node pred, curr;

try {

} finally {
curr.unlock () ;
pred.unlock() ;

)
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Remove method

|lint key = item.hashCode() ; |

Key used to order node

Art of Multiprocessor Programming 112




Remove method

[Node pred, curr;

Predecessor and current nodes
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Remove method

[try {

V 4

Make sure

} finally ({ locks released
curr.unlock () ;
kpred.unlock();
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Remove method

S

Everything else
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Remove method

try {

pred = head;
pred.lock() ;

curr = pred.next;
curr.lock() ;

}mfinally { ..}
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Remove method
lock pred == head

pred = head;
pred.lock() ;

%—;]}»I

>
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Remove method

Lock current

curr = pred.next;
curr.lock () ;
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Remove method

Traversing list

e

s

iC 4
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Remove: searching

while (curr.key <= key) {
i1f (item == curr.item) {
pred.next = curr.next;
return true;

}

pred.unlock() ;
pred = curr;
curr = curr.next;

curr.lock () ; lﬂ:h
}

return false;
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Remove: searching

[while (curr.key <= key) {

Search key range
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Remove: searching

[while (curr.key <= key)

At start of each loop:

curr and pred lockeo
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Remove: searching

~N
if (item == curr.item) ({
pred.next = curr.next;
return true; )

D%I

If item found, remove node LS

Art of Multiprocessor Programming 123




Remove: searching

Unlock predecessor

[pred.unlock();

%DI

0>
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Remove: searching

Only one node locked!

[pred.unlock();

]3>(__:|:<§:|3>I

0>
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Remove: searching

demote current

l

[pred = currT] : T

0>
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Remove: searching

Find and lock new current

curr = curr.next;
curr.lock () ;

L
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Remove: searching

Lock Invariant restored

mb] ED(W}I

curr.lock () ; @
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Remove: searching

Otherwise, not present

[ return false;
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Why does this work?

 To remove node e
— Must lock e
— Must lock e’s predecessor

* Therefore, If you lock a node
— |t can’t be removed
— And neither can its successor
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Adding Nodes

* To add node e
— Must lock predecessor
— Must lock successor

* Neither can be deleted
— (Is successor lock actually required?)
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Drawbacks

» Better than coarse-grained lock
— Threads can traverse in parallel

 Still not ideal
— Long chain of acquire/release
— Inefficient
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SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

No'ﬁhing in this license impairs or restricts the author's moral
rights.
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