
Linked Lists: Locking, Lock-Free, 

and Beyond …

Companion slides for

The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit



Art of Multiprocessor Programming 26

Linked List

• Illustrate these patterns …

• Using a list-based Set

– Common application

– Building block for other apps



Art of Multiprocessor Programming 27

Set Interface

• Unordered collection of items



Art of Multiprocessor Programming 28

Set Interface

• Unordered collection of items

• No duplicates



Art of Multiprocessor Programming 29

Set Interface

• Unordered collection of items

• No duplicates

• Methods

– add(x) put x in set

– remove(x) take x out of set

– contains(x) tests if x in set



Art of Multiprocessor Programming 30

List-Based Sets

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(T x);

}



Art of Multiprocessor Programming 31

List-Based Sets

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(T x);

}

Add item to set



Art of Multiprocessor Programming 32

List-Based Sets

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(Tt x);

}

Remove item from set



Art of Multiprocessor Programming 33

List-Based Sets

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(T x);

}

Is item in set?



Art of Multiprocessor Programming 34

List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}



Art of Multiprocessor Programming 35

List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}

item of interest



Art of Multiprocessor Programming 36

List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}

Usually hash code



Art of Multiprocessor Programming 37

List Node

public class Node {

public T item;

public int key;

public volatile Node next;

}

Reference to next node



Art of Multiprocessor Programming 38

The List-Based Set

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞



Art of Multiprocessor Programming 39

Reasoning about Concurrent 

Objects

• Invariant

– Property that always holds



Art of Multiprocessor Programming 40

Reasoning about Concurrent 

Objects

• Invariant

– Property that always holds

• Established because

– True when object is created

– Truth preserved by each method

• Each step of each method



Art of Multiprocessor Programming 41

Specifically …

• Invariants preserved by

– add()

– remove()

– contains()



Art of Multiprocessor Programming 42

Specifically …

• Invariants preserved by

– add()

– remove()

– contains()

• Most steps are trivial

– Usually one step tricky

– Often linearization point



Art of Multiprocessor Programming 47

Abstract Data Types

• Concrete representation:

• Abstract Type:

{a, b}

a b



Art of Multiprocessor Programming 48

Abstract Data Types

• Meaning of rep given by abstraction

map

S(                                        ) = {a,b}a b



Art of Multiprocessor Programming 52

Blame Game

• Suppose

– add() leaves behind 2 copies of x

– remove() removes only 1

• Which is incorrect?

– If rep invariant says no duplicates

•add() is incorrect

– Otherwise

•remove() is incorrect



Art of Multiprocessor Programming 53

Rep Invariant (partly)

• Sentinel nodes

– tail reachable from head 

• Sorted

• No duplicates



Art of Multiprocessor Programming 55

Sequential List Based Set 

a c d

a b c

add()

remove()



Art of Multiprocessor Programming 56

Sequential List Based Set 

a c d

b

a b c

add()

remove()



Art of Multiprocessor Programming 57

Coarse-Grained Locking

a b d



Art of Multiprocessor Programming 58

Coarse-Grained Locking

a b d

c



Art of Multiprocessor Programming 59

honk!

Coarse-Grained Locking

a b d

c

Simple but hotspot + bottleneck 

honk!



Art of Multiprocessor Programming 61

Coarse-Grained Locking

• Easy, same as synchronized methods

– “One lock to rule them all …”

• Simple, clearly correct

– Deserves respect!

• Works poorly with contention

– Queue locks help

– But bottleneck still an issue



Art of Multiprocessor Programming 63

Fine-grained Locking

• Requires careful thought

– “Do not meddle in the affairs of wizards, for 

they are subtle and quick to anger”

• Split object into pieces

– Each piece has own lock

– Methods that work on disjoint pieces need 

not exclude each other



Art of Multiprocessor Programming 64

Hand-over-Hand locking

a b c



Art of Multiprocessor Programming 65

Hand-over-Hand locking

a b c



Art of Multiprocessor Programming 66

Hand-over-Hand locking

a b c



Art of Multiprocessor Programming 67

Hand-over-Hand locking

a b c



Art of Multiprocessor Programming 68

Hand-over-Hand locking

a b c



Art of Multiprocessor Programming 69

Removing a Node

a b c d

remove(b)



Art of Multiprocessor Programming 70

Removing a Node

a b c d

remove(b)



Art of Multiprocessor Programming 71

Removing a Node

a b c d

remove(b)



Art of Multiprocessor Programming 72

Removing a Node

a b c d

remove(b)



Art of Multiprocessor Programming 73

Removing a Node

a b c d

remove(b)



Art of Multiprocessor Programming 74

Removing a Node

a c d

remove(b)
Why lock victim node?



Art of Multiprocessor Programming 75

Concurrent Removes

a b c d

remove(c)
remove(b)



Art of Multiprocessor Programming 76

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 77

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 78

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 79

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 80

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 81

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 82

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 83

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 84

Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 85

Uh, Oh

a c d

remove(b)
remove(c)



Art of Multiprocessor Programming 86

Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)



Art of Multiprocessor Programming 87

Problem

• To delete node c

– Swing node b’s next field to d

• Problem is,

– Someone deleting b concurrently could 

direct a pointer 

to c

ba c

ba c



Art of Multiprocessor Programming 88

Insight

• If a node is locked

– No one can delete node’s successor

• If a thread locks

– Node to be deleted

– And its predecessor

– Then it works



Art of Multiprocessor Programming 89

Hand-Over-Hand Again

a b c d

remove(b)



Art of Multiprocessor Programming 90

Hand-Over-Hand Again

a b c d

remove(b)



Art of Multiprocessor Programming 91

Hand-Over-Hand Again

a b c d

remove(b)



Art of Multiprocessor Programming 92

Hand-Over-Hand Again

a b c d

remove(b)
Found 

it!



Art of Multiprocessor Programming 93

Hand-Over-Hand Again

a b c d

remove(b)
Found 

it!



Art of Multiprocessor Programming 94

Hand-Over-Hand Again

a c d

remove(b)



Art of Multiprocessor Programming 95

Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 96

Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 97

Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 98

Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 99

Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 100

Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 101

Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 102

Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming 103

Removing a Node

a b c d

Must 

acquire 

Lock for 

b

remove(c)



Art of Multiprocessor Programming 104

Removing a Node

a b c d

Waiting to 

acquire 

lock for b

remove(c)



Art of Multiprocessor Programming 105

Removing a Node

a b c d

Wait!
remove(c)



Art of Multiprocessor Programming 106

Removing a Node

a b d

Proceed 

to 

remove(b)



Art of Multiprocessor Programming 107

Removing a Node

a b d

remove(b)



Art of Multiprocessor Programming 108

Removing a Node

a b d

remove(b)



Art of Multiprocessor Programming 109

Removing a Node

a d

remove(b)



Art of Multiprocessor Programming 110

Removing a Node

a d



Art of Multiprocessor Programming 111

Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

curr.unlock();

pred.unlock();

}}



Art of Multiprocessor Programming 112

Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

curr.unlock();

pred.unlock();

}}

Key used to order node



Art of Multiprocessor Programming 113

Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

currNode.unlock();

predNode.unlock();

}}

Predecessor and current nodes



Art of Multiprocessor Programming 114

Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

curr.unlock();

pred.unlock();

}}

Make sure 

locks released



Art of Multiprocessor Programming 115

Remove method

public boolean remove(T item) {

int key = item.hashCode();

Node pred, curr;

try {

…

} finally {

curr.unlock();

pred.unlock();

}}

Everything else



Art of Multiprocessor Programming 116

Remove method

try {

pred = head;

pred.lock();

curr = pred.next;

curr.lock();

…

} finally { … }



Art of Multiprocessor Programming 117

Remove method

try {

pred = head;

pred.lock();

curr = pred.next;

curr.lock();

…

} finally { … }

lock pred == head



try {

pred = head;

pred.lock();

curr = pred.next;

curr.lock();

…

} finally { … }

Art of Multiprocessor Programming 118

Remove method

Lock current



try {

pred = head;

pred.lock();

curr = pred.next;

curr.lock();

…

} finally { … }

Art of Multiprocessor Programming 119

Remove method

Traversing list



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 120

Remove: searching



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 121

Remove: searching

Search key range



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

At start of each loop: 

curr and pred locked

Art of Multiprocessor Programming 122

Remove: searching



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 123

Remove: searching

If item found, remove node



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 125

Remove: searching

Unlock predecessor



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 126

Remove: searching
Only one node locked!



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 127

Remove: searching

demote current



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = currNode;

curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 128

Remove: searching

Find and lock new current



while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = currNode;

curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 129

Remove: searching

Lock invariant restored



Art of Multiprocessor Programming 130

Remove: searching

while (curr.key <= key) {

if (item == curr.item) {

pred.next = curr.next;

return true;

}

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Otherwise, not present



Art of Multiprocessor Programming 131

Why does this work?

• To remove node e

– Must lock e

– Must lock e’s predecessor

• Therefore, if you lock a node

– It can’t be removed

– And neither can its successor



Art of Multiprocessor Programming 138

Adding Nodes

• To add node e

– Must lock predecessor

– Must lock successor

• Neither can be deleted

– (Is successor lock actually required?)



Art of Multiprocessor Programming 141

Drawbacks

• Better than coarse-grained lock

– Threads can traverse in parallel

• Still not ideal

– Long chain of acquire/release

– Inefficient



Art of Multiprocessor Programming 297

This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License. 

• You are free:

– to Share — to copy, distribute and transmit the work 

– to Remix — to adapt the work 

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that suggests that 

the authors endorse you or your use of the work). 

– Share Alike. If you alter, transform, or build upon this work, you 

may distribute the resulting work only under the same, similar or a 

compatible license. 

• For any reuse or distribution, you must make clear to others the 

license terms of this work. The best way to do this is with a link 

to

– http://creativecommons.org/licenses/by-sa/3.0/. 

• Any of the above conditions can be waived if you get permission 

from the copyright holder. 

• Nothing in this license impairs or restricts the author's moral 

rights. 

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

