
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS286 | 2016-08-24 & 26

L4: Linear Lists

Yogesh Simmhan
s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Primitive data types

 Boolean

 Integer

 Float

 Byte

 Character

 String

 Typically, are “atomic” data types

 Have well defined meanings and operations
ΚAdditions/subtraction, control flow tests, bit-shifting, length

 Common across different programming languages

24-Aug-16 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Collections of data

Data Structures to store collections of primitive
data types
ΚPrimitive types are called items, elements,

instances, values …depending on context

Properties of the collection
ΚInvariants that must be maintained, irrespective of

operations

Operations on the collection
ΚStandard operations to create, modify, access elements

Different implementations for same abstract
collection

24-Aug-16 3

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear List

Properties
ΚOrdered list of items…precedes, succeeds; first, last

ΚIndex for each item…lookup or address item by index
value

ΚFinite Length for the list…can be empty, size can vary

ΚItems of same type present in the list

Operations
ΚCreate, destroy

ΚLookup by index, item value

ΚFind size, if empty

ΚAdd, delete item

24-Aug-16 4

CDS.IISc.ac.in | Department of Computational and Data Sciences

1-D Array Representation

 Implementation of the abstract list data structure
using programming language
Κ“Backing” Data Structure

 arrays are contiguous memory locations with
fixed capacity

Allow elements of same type to be present at
specific positions in the array

 Index in a Listcan be mapped to a Positionin the
Array
ΚMapping function from list index to array position

24-Aug-16 5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Mapping Function

Say n is the capacity of the array

Simple mapping
Κposition(index) = index

Reverse mapping
Κposition(index) = n - index - 1

Wrap-around mapping
Κposition(index) = (position(0)+index) % n

Κposition(0) = x

24-Aug-16 6

E.g. using same “backing”
array for forward and

reverse list.

E.g. using “backing” array
for queues...add from

front, remove from back.

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations

 void set (index, item)

 item get (index)

 void append(item)

 void remove(index)

 int size ()

 int capacity ()

 boolean isEmpty ()

 int indexOf (item)

24-Aug-16 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 void create (initCapacity)

ΚCreate array with initial capacity (optional hint)

 void set (index, item)

ΚUse mapping function to set value at position

ΚSanity checks?

 item get (index)

ΚUse mapping function to set value at position

ΚSanity checks?

24-Aug-16 8

CDS.IISc.ac.in | Department of Computational and Data Sciences

class List { // list with index starting at 1

int arr [] // backing array for list

int capacity // current capacity of array

int size // current occupied size of list

/**

* Create an empty list with optional

* initial capacity provided. Default capacity of 15

* is used otherwise.

*/

void create (int _capacity){

capacity = _capacity > 0 ? _capacity : 15

arr = new int [capacity] // create backing array

size = 0 // initialize size

}

24-Aug-16 9

CDS.IISc.ac.in | Department of Computational and Data Sciences

// assuming pos = index - 1 mapping fn.
void set (int index, int item){

if(index > capacity) { // grow array, double it
arrNue = int [MAX(index, 2*capacity)]
// copy all items from old array to new
// source, target, src start, trgt start, length
copyAll (arr , arrNue , 0, 0, capacity)
capacity = MAX(index, 2*capacity) // update var.
delete(arr) // free up memory
arr = arrNue

}
if(index < 1) {

cout << ƧInvalid index: ƨ << index << ƧExpect >= 1ƨ
} else {

int pos = index Ƶ1
arr [pos] = item
size++

} // end if
} // end set()

} // end List 1024-Aug-16

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 Increasing capacity

Start with initial capacity given by user, or default

When capacity is reached
ΚCreate array with more capacity, e.g. double it

ΚCopy values from old to new array

ΚDelete old array space

Can also be used to shrink space
ΚWhy?

24-Aug-16 11

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 void append(item)
ΚInsert after current “last” item…use size

ΚSanity checks?

 void remove(index)

ΚRemove item at index

ΚSanity checks?

 int indexOf (item)

ΚGet “first” index of item with given value

ΚSanity checks?

24-Aug-16 12

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 int size ()

 int capacity ()

 boolean isEmpty ()

24-Aug-16 13

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
Complexity
ΚStorage Complexity: Amount of storage required by the

data structure, relative to items stored

ΚList using Array: …

ΚComputational Complexity: Number of CPU cycles
required to perform each data structure operation

Κsize(), set(), get(), indexOf()

Pros and Cons of using Arrays?

24-Aug-16 14

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Representation

Problem with array: Pre-defined capacity, under-
usage, cost to move items when full

Solution: Grow backing data structure dynamically
when we add or remove  Only use as much
memory as required

 Linked lists use pointers to contiguous chain items
ΚNode structure contains item and pointer to next

node in List

ΚAdd or remove nodes when setting or getting items

24-Aug-16 15

CDS.IISc.ac.in | Department of Computational and Data Sciences

Node & Chain

class Node {

int item

Node* next

}

class LinkedList {

Node* head

int size

append() {...}

get() {...}

set() {...}

remove {...}

}
24-Aug-16 16

6 Φ

Node* head address
e.g. 0x37

item Node* next
e.g. null

6 0x54

Node* head address

item Node* next
e.g. 0x54

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Operations

24-Aug-16 17

head=null Initial empty list

6 Φhead=0x37

0x37 Add item 6

6 0x54head=0x37

0x37

4 Φ

0x54 Add item 4

Add items 8, 2

head=0x37 6 0x54

0x37

4 0x7A

0x54

8 0xF1

0x7A

2 Φ

0xF1

Remove 3

head=0x37 6 0x54

0x37

4 0xF1

0x54

2 Φ

0xF1

Remove 1

head=0x54 4 0xF1

0x54

2 Φ

0xF1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Operations

PseudoCodefor
Κget

Κset

Κr emove

Other Operations
Κset()

ΚindexOf ()

Κ...

24-Aug-16 18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity

Storage Complexity
ΚOnly store as many items as you need

ΚBut…

Computational Complexity
Κset(), get(), remove()

ΚindexOf()

Other Pros & Cons?
ΚMemory management, mixed item types

24-Aug-16 21

CDS.IISc.ac.in | Department of Computational and Data Sciences

Choosing between List
implementations
When to pick array based List?

When to pick Linked List?

Other lists
ΚDoubly linked list

ΚSequential lists & Iterators

24-Aug-16 22

CDS.IISc.ac.in | Department of Computational and Data Sciences

n-D Arrays

 Arrays can have more than 1-dimension
Κ2-D Arrays are also called matrices

 Mapping from n-D to 1-D array
ΚConvert A[i][j] to B[k] … i=row index, j=column index
ΚRow Major Order of indexing: k=map(i,j)= i * C+j
ΚColumnMajor Order of indexing: k=map(i,j)=j*R+I

 Extend to 3+ dimension arrays?

24-Aug-16 23
SahniTextbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

n-D Arrays

Array of Arrays representation

 First find pointer for row array

 Then lookup value at column offset in row array

Pros & cons relative to using 1-D array
representation?

24-Aug-16 24
SahniTextbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Matrix Multiplication
// Given a[n][n], b[n][n]

// c[n][n] initialized to 0

for (i = 0; i < N; i ++)

for (j = 0; j < N ; j++)

for (k = 0; k < N; k++)

c[i][j] += a[i][k] * b[k][j];

24-Aug-16 25

C

https://en.wikipedia.org/wiki/Matrix_multiplication

What is the time complexity?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices

Only a small subset of items are populated in
matrix
ΚStudents and courses taken, faculty and courses taught
ÅProduct gives…

ΚAdjacency matrix of social network graph
Åvertices are people, edges are “friends”

ÅRows and columns are people, cell has 0/1 value

Why not use regular 2-D matrix?
Κ1-D representation

ΚArray of arrays representation

24-Aug-16 26

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices:
Linear List representation
Each non-zero item has one entry in list
Κindex: <row, column, value>

Κindex is the (i-1)th non-zero item in row-major order

24-Aug-16 27
SahniTextbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices: Addition
while(p < pMax && q < qMax) {

p1 = A[p].r*C+ A[p].c // get single list index for A

q1 = B[q].r*C+B[q].c

if(p1<q1) // Only A has that index

C[k] = < A[p]. r, A[p].c, A[p]. val > // Copy

p++

else if(p1==q1) // Both A & B have that index

C[k] = <A[p].r, A[p].c, A[p]. val+B [q]. val > // Add

p++

q++

else // Only B has that index

C[k] = <B[q]. r, B[q]. c, B[q]. val > // Copy

q++

k++

}

24-Aug-16 28
See Sahni, Program 7.17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices: Linked
List Representation

24-Aug-16 29
See Sahni, Chapter 7.4

CDS.IISc.ac.in | Department of Computational and Data Sciences

CodeChef (10% weightage)

Send handle & profile link by 29 Aug, 2016 to
mailing list
ΚEveryone must list IISc, Bangalore as their affiliation

Attempt test problem that will be posted on 29
Aug, 2016 before 31 Aug, 2016

Start solving problems/coding contests
independently using that handle between Sep 1 –
Nov 30, 2016

Submit list of successfully solved problems &
contest ranks by Dec 1, 2016

24-Aug-16 30

CDS.IISc.ac.in | Department of Computational and Data Sciences

Announcements & Tasks
 Self study (SahniTextbook)
ΚCheck: Have you read Chapter 1 C++ Review, and Completed

exercises 4, 6, 10, 13, 16, 19, testing of program 1.36?

ΚRead: Chapters 5 & 6 “Linear Lists—Array & Linked
Representations”

ΚRead: Chapters 7.1, 7.4 “Arrays & Matrices”

ΚRead: C++ primitive data types

ΚRead: C++ Standard Template Library (STL) list and vector
data structures

ΚTry:Linked list implementation of List class from assignment

 Finish Assignment 1 by Sun Aug 28 (50 points)
ΚAll submissions MUST work (compile, run) on turing cluster!

24-Aug-16 31

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Questions?

24-Aug-16 32

http://creativecommons.org/licenses/by/4.0/deed.en_US

