
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS286 | 2016-08-24 & 26

L4: Linear Lists

Yogesh Simmhan
s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Primitive data types

 Boolean

 Integer

 Float

 Byte

 Character

 String

 Typically, are “atomic” data types

 Have well defined meanings and operations
‣ Additions/subtraction, control flow tests, bit-shifting, length

 Common across different programming languages

24-Aug-16 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Collections of data

 Data Structures to store collections of primitive
data types
‣ Primitive types are called items, elements,
instances, values…depending on context

 Properties of the collection
‣ Invariants that must be maintained, irrespective of

operations

Operations on the collection
‣ Standard operations to create, modify, access elements

 Different implementations for same abstract
collection

24-Aug-16 3

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear List

 Properties
‣ Ordered list of items…precedes, succeeds; first, last

‣ Index for each item…lookup or address item by index
value

‣ Finite Length for the list…can be empty, size can vary

‣ Items of same type present in the list

Operations
‣ Create, destroy

‣ Lookup by index, item value

‣ Find size, if empty

‣ Add, delete item

24-Aug-16 4

CDS.IISc.ac.in | Department of Computational and Data Sciences

1-D Array Representation

 Implementation of the abstract list data structure
using programming language
‣ “Backing” Data Structure

 arrays are contiguous memory locations with
fixed capacity

 Allow elements of same type to be present at
specific positions in the array

 Index in a List can be mapped to a Position in the
Array
‣ Mapping function from list index to array position

24-Aug-16 5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Mapping Function

 Say n is the capacity of the array

 Simple mapping
‣ position(index) = index

 Reverse mapping
‣ position(index) = n - index - 1

Wrap-around mapping
‣ position(index) = (position(0)+index) % n

‣ position(0) = x

24-Aug-16 6

E.g. using same “backing”
array for forward and

reverse list.

E.g. using “backing” array
for queues...add from

front, remove from back.

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations

 void set(index, item)

 item get(index)

 void append(item)

 void remove(index)

 int size()

 int capacity()

 boolean isEmpty()

 int indexOf(item)

24-Aug-16 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 void create(initCapacity)

‣Create array with initial capacity (optional hint)

 void set(index, item)

‣Use mapping function to set value at position

‣ Sanity checks?

 item get(index)

‣Use mapping function to set value at position

‣ Sanity checks?

24-Aug-16 8

CDS.IISc.ac.in | Department of Computational and Data Sciences

class List { // list with index starting at 1

int arr[] // backing array for list

int capacity // current capacity of array

int size // current occupied size of list

/**

* Create an empty list with optional

* initial capacity provided. Default capacity of 15

* is used otherwise.

*/

void create(int _capacity){

capacity = _capacity > 0 ? _capacity : 15

arr = new int[capacity] // create backing array

size = 0 // initialize size

}

24-Aug-16 9

CDS.IISc.ac.in | Department of Computational and Data Sciences

// assuming pos = index-1 mapping fn.
void set(int index, int item){
if(index > capacity) { // grow array, double it

arrNue = int[MAX(index, 2*capacity)]
// copy all items from old array to new
// source, target, src start, trgt start, length
copyAll(arr, arrNue, 0, 0, capacity)
capacity = MAX(index, 2*capacity) // update var.
delete(arr) // free up memory
arr = arrNue

}
if(index < 1) {

cout << “Invalid index:” << index << “Expect >=1”
} else {

int pos = index – 1
arr[pos] = item
size++

} // end if
} // end set()

} // end List 1024-Aug-16

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 Increasing capacity

 Start with initial capacity given by user, or default

When capacity is reached
‣ Create array with more capacity, e.g. double it

‣ Copy values from old to new array

‣ Delete old array space

 Can also be used to shrink space
‣ Why?

24-Aug-16 11

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 void append(item)
‣ Insert after current “last” item…use size

‣ Sanity checks?

 void remove(index)

‣Remove item at index

‣ Sanity checks?

 int indexOf(item)

‣Get “first” index of item with given value

‣ Sanity checks?

24-Aug-16 12

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 int size()

 int capacity()

 boolean isEmpty()

24-Aug-16 13

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 Complexity
‣ Storage Complexity: Amount of storage required by the

data structure, relative to items stored

‣ List using Array: …

‣ Computational Complexity: Number of CPU cycles
required to perform each data structure operation

‣ size(), set(), get(), indexOf()

 Pros and Cons of using Arrays?

24-Aug-16 14

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Representation

 Problem with array: Pre-defined capacity, under-
usage, cost to move items when full

 Solution: Grow backing data structure dynamically
when we add or remove Only use as much
memory as required

 Linked lists use pointers to contiguous chain items
‣ Node structure contains item and pointer to next

node in List

‣ Add or remove nodes when setting or getting items

24-Aug-16 15

CDS.IISc.ac.in | Department of Computational and Data Sciences

Node & Chain

class Node {

int item

Node* next

}

class LinkedList {

Node* head

int size

append() {...}

get() {...}

set() {...}

remove {...}

}
24-Aug-16 16

6 Φ

Node* head address
e.g. 0x37

item Node* next
e.g. null

6 0x54

Node* head address

item Node* next
e.g. 0x54

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Operations

24-Aug-16 17

head=null Initial empty list

6 Φhead=0x37

0x37 Add item 6

6 0x54head=0x37

0x37

4 Φ

0x54 Add item 4

Add items 8, 2

head=0x37 6 0x54

0x37

4 0x7A

0x54

8 0xF1

0x7A

2 Φ

0xF1

Remove 3

head=0x37 6 0x54

0x37

4 0xF1

0x54

2 Φ

0xF1

Remove 1

head=0x54 4 0xF1

0x54

2 Φ

0xF1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Operations

 PseudoCode for
‣ get

‣ set

‣ remove

Other Operations
‣ set()

‣ indexOf()

‣ ...

24-Aug-16 18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity

 Storage Complexity
‣ Only store as many items as you need

‣ But…

 Computational Complexity
‣ set(), get(), remove()

‣ indexOf()

Other Pros & Cons?
‣ Memory management, mixed item types

24-Aug-16 21

CDS.IISc.ac.in | Department of Computational and Data Sciences

Choosing between List
implementations
When to pick array based List?

When to pick Linked List?

Other lists
‣ Doubly linked list

‣ Sequential lists & Iterators

24-Aug-16 22

CDS.IISc.ac.in | Department of Computational and Data Sciences

n-D Arrays

 Arrays can have more than 1-dimension
‣ 2-D Arrays are also called matrices

 Mapping from n-D to 1-D array
‣ Convert A[i][j] to B[k] … i=row index, j=column index
‣ Row Major Order of indexing: k=map(i,j)=i*C+j
‣ Column Major Order of indexing: k=map(i,j)=j*R+I

 Extend to 3+ dimension arrays?

24-Aug-16 23
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

n-D Arrays

 Array of Arrays representation

 First find pointer for row array

 Then lookup value at column offset in row array

 Pros & cons relative to using 1-D array
representation?

24-Aug-16 24
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Matrix Multiplication
// Given a[n][n], b[n][n]

// c[n][n] initialized to 0

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < N; k++)

c[i][j] += a[i][k] * b[k][j];

24-Aug-16 25

C

https://en.wikipedia.org/wiki/Matrix_multiplication

What is the time complexity?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices

Only a small subset of items are populated in
matrix
‣ Students and courses taken, faculty and courses taught

• Product gives…

‣ Adjacency matrix of social network graph
• vertices are people, edges are “friends”

• Rows and columns are people, cell has 0/1 value

Why not use regular 2-D matrix?
‣ 1-D representation

‣ Array of arrays representation

24-Aug-16 26

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices:
Linear List representation
 Each non-zero item has one entry in list
‣ index: <row, column, value>

‣ index is the (i-1)th non-zero item in row-major order

24-Aug-16 27
Sahni Textbook, Chapter 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices: Addition
while(p < pMax && q < qMax) {

p1 = A[p].r*C+A[p].c // get single list index for A

q1 = B[q].r*C+B[q].c

if(p1<q1) // Only A has that index

C[k] = <A[p].r, A[p].c, A[p].val> // Copy

p++

else if(p1==q1) // Both A & B have that index

C[k] = <A[p].r, A[p].c, A[p].val+B[q].val> // Add

p++

q++

else // Only B has that index

C[k] = <B[q].r, B[q].c, B[q].val> // Copy

q++

k++

}

24-Aug-16 28
See Sahni, Program 7.17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sparse Matrices: Linked
List Representation

24-Aug-16 29
See Sahni, Chapter 7.4

CDS.IISc.ac.in | Department of Computational and Data Sciences

CodeChef (10% weightage)

 Send handle & profile link by 29 Aug, 2016 to
mailing list
‣ Everyone must list IISc, Bangalore as their affiliation

 Attempt test problem that will be posted on 29
Aug, 2016 before 31 Aug, 2016

 Start solving problems/coding contests
independently using that handle between Sep 1 –
Nov 30, 2016

 Submit list of successfully solved problems &
contest ranks by Dec 1, 2016

24-Aug-16 30

CDS.IISc.ac.in | Department of Computational and Data Sciences

Announcements & Tasks
 Self study (Sahni Textbook)

‣ Check: Have you read Chapter 1 C++ Review, and Completed
exercises 4, 6, 10, 13, 16, 19, testing of program 1.36?

‣ Read: Chapters 5 & 6 “Linear Lists—Array & Linked
Representations”

‣ Read: Chapters 7.1, 7.4 “Arrays & Matrices”

‣ Read: C++ primitive data types

‣ Read: C++ Standard Template Library (STL) list and vector
data structures

‣ Try: Linked list implementation of List class from assignment

 Finish Assignment 1 by Sun Aug 28 (50 points)
‣ All submissions MUST work (compile, run) on turing cluster!

24-Aug-16 31

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Questions?

24-Aug-16 32

http://creativecommons.org/licenses/by/4.0/deed.en_US

