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Queue ADT

• FIFO Principle

• Elements inserted only at rear (enqueued) end and
removed from front (dequeued)

• Also called “Head” and “Tail”
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Queue -Methods

• queue New() – Creates and returns an empty
queue

• Enqueue(item v) – Inserts object v at the rear
of the queue

• item Dequeue() – Removes the object from front of 
the queue. Error occurs if the queue is empty

• item Front() – Returns, but does not remove the
front element. An error occurs if the queue is
empty
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Queue – Methods & Invariants

• int Size() – number of items in queue

• boolean IsEmpty() – is size == 0

• Axioms/invariants
‣ Front(Enqueue(New(),v)) = v

‣ Dequeue(Enqueue(New(), v)) = New()

‣ Front(Enqueue(Enqueue(Q, w), v)) =
Front(Enqueue(Q, w))

‣ Dequeue(Enqueue(Enqueue(Q, w), v))= 
Enqueue(Dequeue(Enqueue(Q, w)), v)
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Array Implementation of Queue

• Using array in circular fashion
– Wraparound using mapping function (recollect from List 

ADT discussion)

• A max size N is specified

• Q consists of an N element array and 2 integer 
variables having array index:
– f: index of the front element (head, for dequeue)

– r: index of the element after the rear one (tail, for 
enqueue)

f r

0 N-1Q
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Q

fr

0 N-1

Array Implementation of Queue

• What does f=r mean ?

• Resolve Ambiguity:

 We will never add nth element to Queue (declare full if
the size of queue is N-1) .
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Pseudo Code

• int size()
Return (N-f+r) mod N

• bool isEmpty()
Return(f==r)

• int front()
If isEmpty() then Return QueueEmptyException
Else Return Q[f]
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Pseudo Code

• int Dequeue()
If isEmpty() then Return QueueEmptyException
v = Q[f]
Q[f] = null 
f = (f+1) mod N
Return v

• Enqueue(v)
If size()==n-1 then Return QueueFullException
Q[r] = v
r = (r+1) mod N

Compute Complexity? Storage Complexity?
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Linked List

 Problem with array: Requires the number of
elements a priori.

DATA DATA NULL
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Implementation with linked
List

Head Tail

Φ

Nodes (data, pointer) connected in a chain by links

• Maintain two pointers, to head and tail of linked list.
• The head of the list is FRONT of the queue, the tail of the list is REAR of the queue.
• Why not the opposite?

NOTE: Different 
from what was 
mentioned in 

class.

FRONT of Queue REAR of Queue



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

Example

• Enqueue 7

• Enqueue 8

7 Φ

8

HEAD, TAIL

TAIL = Φ, HEAD = Φ

7

FRONT, REAR

TAIL REARHEAD FRONT

Φ

Tail of linked list is REAR of queue… Enqueue
at tail
Head is FRONT of queue… Dequeue at head
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Example
• Enqueue 6

87

HEAD FRONT TAIL REAR

6

Node n = new Node(6)
n.next = null
TAIL.next = n
TAIL = n // NEW REAR

O(1) complexity to enqueue

Tail of linked list is REAR of queue… Enqueue
at tail
Head is FRONT of queue… Dequeue at head

TAIL’ REAR’

Φ
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Example
• Dequeue → 7

int v = HEAD.value
tmp = HEAD.next
delete(HEAD)
HEAD = tmp // NEW HEAD
return v // 7

O(1) complexity to dequeue

68

HEAD FRONT TAIL REAR

7

HEAD’ FRONT’

Φ

Tail of linked list is REAR of queue… Enqueue
at tail
Head is FRONT of queue… Dequeue at head
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Example

• Enqueue 9

What if Head of linked list is REAR 
of queue, Tail the FRONT?

86

HEAD REAR TAIL FRONT

86

HEAD REAR TAIL FRONT

9

Φ

Φ
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Example
• Enqueue 9

What if Head of linked list is REAR 
of queue, Tail the FRONT?

86

HEAD REAR TAIL FRONT

9

HEAD’ REAR’

Node n = new Node(9)
n.next = HEAD
HEAD = n

O(1) complexity to enqueue

Φ
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Example
• Dequeue → 8 

What if Head of linked list is REAR 
of queue, Tail the FRONT?

8 Φ’6

HEAD REAR TAIL FRONT

9

TAIL’ FRONT’

86

HEAD REAR TAIL FRONT

9 Φ

Φ
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Example
• Dequeue → 8 

What if Head of linked list is REAR 
of queue, Tail the FRONT?
Things don’t work well!

8 Φ’6

HEAD REAR TAIL FRONT

9

TAIL’ FRONT’

int v = TAIL.value // 8
// tail’s “previous” (6) should point to null!

n = HEAD // Can head be null?
while(n.next != TAIL) n = n.next;
n.next = null
delete(TAIL)
TAIL = n
return v

O(N) complexity to dequeue

Φ
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Linked List

typedef struct Node {

int value;

struct Node *next; // pointer to Node

} a_node;

Any linked list is a pointer to a node

typedef Node *list; // head of list

VALUE NEXT
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Double-Ended Queue (Dequeue)

• Supports insertion & deletion from front & rear

• Supports six methods
– InsertFirst(item o) – Inserts ‘o’ at the beginning

of deque

– InsertLast(item o) – Inserts ‘o’ at the end of deque

– item RemoveFirst() – removes the 1st element

– item RemoveLast() – removes the last element

– item First() – return first element

– item Last() - return last element

Problem in implementing using single linked list  with O(1)
e.g. If head is front and tail is rear, RemoveLast will require 
traversal from head to tail’s previous
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Dequeue as Doubly Linked List

 Nodes of doubly linked list have a next and a prev
link

 All the methods of a dequeue using doubly linked 
list have a constant running time O(1)
‣ How?

5 6 8

HEAD TAIL

ΦΦ

prev value next
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Doubly Linked List

typedef struct Node {

int value;

struct Node *next, *prev;

} a_node;

VALUE NEXTPREV
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Delete Element from Doubly 
Linked List

5 6 6 85 86

HEAD

2Φ

Node n = HEAD
while(n.next.value != v) n = n.next;
tmp = n.next // n = 6, tmp = 8
n.next = tmp.next // 6.next = 2
tmp.next.prev = n // 2.prev = 6
delete(tmp) // delete 8

Delete(8)

28 Φ

TAIL

5 6 6 25

HEAD

Φ 26 Φ

TAIL
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Implement Stacks with Deques

Stack Method Deque Method

Size() Size()

IsEmpty() IsEmpty()

Top() Last()

Push() insertLast()

Pop() removeLast()
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Implement Queue with Deques

Stack Method Deque Method

Size() Size()

IsEmpty() IsEmpty()

front() first()

enqueue() insertLast()

dequeue() removeFirst()
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CodeChef: FLOW004

 9/Sep

20-Sep-16 28
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Tasks
 Solve sanity check problem on CodeChef by Sep 14
‣ https://www.codechef.com/problems/FLOW004

 Self study (Sahni Textbook)
‣ Check: Have you read Chapter 8 “Stacks”? Solved

exercises?

‣ Read: Chapter 9, Queues from textbook

‣ Try: Exercise 4, 14, 18 from Chapter 9 of textbook

20-Sep-16 29
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Questions?

20-Sep-16 30
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