
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS286 | 2016-09-09

L9: Queues

Yogesh Simmhan

s i m m h a n @ c d s . i i s c . a c . i n

Slides courtesy Venkatesh Babu, CDS

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue ADT

• FIFO Principle

• Elements inserted only at rear (enqueued) end and
removed from front (dequeued)

• Also called “Head” and “Tail”

5 4 7 7 2 8 0 9

Rear

6

Enqueue(6)

Rear

Dequeue()→2

Front

2

Front

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue -Methods

• queue New() – Creates and returns an empty
queue

• Enqueue(item v) – Inserts object v at the rear
of the queue

• item Dequeue() – Removes the object from front of
the queue. Error occurs if the queue is empty

• item Front() – Returns, but does not remove the
front element. An error occurs if the queue is
empty

CDS.IISc.ac.in | Department of Computational and Data Sciences

Queue – Methods & Invariants

• int Size() – number of items in queue

• boolean IsEmpty() – is size == 0

• Axioms/invariants
‣ Front(Enqueue(New(),v)) = v

‣ Dequeue(Enqueue(New(), v)) = New()

‣ Front(Enqueue(Enqueue(Q, w), v)) =
Front(Enqueue(Q, w))

‣ Dequeue(Enqueue(Enqueue(Q, w), v))=
Enqueue(Dequeue(Enqueue(Q, w)), v)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Array Implementation of Queue

• Using array in circular fashion
– Wraparound using mapping function (recollect from List

ADT discussion)

• A max size N is specified

• Q consists of an N element array and 2 integer
variables having array index:
– f: index of the front element (head, for dequeue)

– r: index of the element after the rear one (tail, for
enqueue)

f r

0 N-1Q

CDS.IISc.ac.in | Department of Computational and Data Sciences

Q

fr

0 N-1

Array Implementation of Queue

• What does f=r mean ?

• Resolve Ambiguity:

 We will never add nth element to Queue (declare full if
the size of queue is N-1) .

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo Code

• int size()
Return (N-f+r) mod N

• bool isEmpty()
Return(f==r)

• int front()
If isEmpty() then Return QueueEmptyException
Else Return Q[f]

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo Code

• int Dequeue()
If isEmpty() then Return QueueEmptyException
v = Q[f]
Q[f] = null
f = (f+1) mod N
Return v

• Enqueue(v)
If size()==n-1 then Return QueueFullException
Q[r] = v
r = (r+1) mod N

Compute Complexity? Storage Complexity?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List

 Problem with array: Requires the number of
elements a priori.

DATA DATA NULL

CDS.IISc.ac.in | Department of Computational and Data Sciences

Implementation with linked
List

Head Tail

Φ

Nodes (data, pointer) connected in a chain by links

• Maintain two pointers, to head and tail of linked list.
• The head of the list is FRONT of the queue, the tail of the list is REAR of the queue.
• Why not the opposite?

NOTE: Different
from what was
mentioned in

class.

FRONT of Queue REAR of Queue

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example

• Enqueue 7

• Enqueue 8

7 Φ

8

HEAD, TAIL

TAIL = Φ, HEAD = Φ

7

FRONT, REAR

TAIL REARHEAD FRONT

Φ

Tail of linked list is REAR of queue… Enqueue
at tail
Head is FRONT of queue… Dequeue at head

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example
• Enqueue 6

87

HEAD FRONT TAIL REAR

6

Node n = new Node(6)
n.next = null
TAIL.next = n
TAIL = n // NEW REAR

O(1) complexity to enqueue

Tail of linked list is REAR of queue… Enqueue
at tail
Head is FRONT of queue… Dequeue at head

TAIL’ REAR’

Φ

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example
• Dequeue → 7

int v = HEAD.value
tmp = HEAD.next
delete(HEAD)
HEAD = tmp // NEW HEAD
return v // 7

O(1) complexity to dequeue

68

HEAD FRONT TAIL REAR

7

HEAD’ FRONT’

Φ

Tail of linked list is REAR of queue… Enqueue
at tail
Head is FRONT of queue… Dequeue at head

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example

• Enqueue 9

What if Head of linked list is REAR
of queue, Tail the FRONT?

86

HEAD REAR TAIL FRONT

86

HEAD REAR TAIL FRONT

9

Φ

Φ

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example
• Enqueue 9

What if Head of linked list is REAR
of queue, Tail the FRONT?

86

HEAD REAR TAIL FRONT

9

HEAD’ REAR’

Node n = new Node(9)
n.next = HEAD
HEAD = n

O(1) complexity to enqueue

Φ

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example
• Dequeue → 8

What if Head of linked list is REAR
of queue, Tail the FRONT?

8 Φ’6

HEAD REAR TAIL FRONT

9

TAIL’ FRONT’

86

HEAD REAR TAIL FRONT

9 Φ

Φ

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example
• Dequeue → 8

What if Head of linked list is REAR
of queue, Tail the FRONT?
Things don’t work well!

8 Φ’6

HEAD REAR TAIL FRONT

9

TAIL’ FRONT’

int v = TAIL.value // 8
// tail’s “previous” (6) should point to null!

n = HEAD // Can head be null?
while(n.next != TAIL) n = n.next;
n.next = null
delete(TAIL)
TAIL = n
return v

O(N) complexity to dequeue

Φ

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List

typedef struct Node {

int value;

struct Node *next; // pointer to Node

} a_node;

Any linked list is a pointer to a node

typedef Node *list; // head of list

VALUE NEXT

CDS.IISc.ac.in | Department of Computational and Data Sciences

Double-Ended Queue (Dequeue)

• Supports insertion & deletion from front & rear

• Supports six methods
– InsertFirst(item o) – Inserts ‘o’ at the beginning

of deque

– InsertLast(item o) – Inserts ‘o’ at the end of deque

– item RemoveFirst() – removes the 1st element

– item RemoveLast() – removes the last element

– item First() – return first element

– item Last() - return last element

Problem in implementing using single linked list with O(1)
e.g. If head is front and tail is rear, RemoveLast will require
traversal from head to tail’s previous

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dequeue as Doubly Linked List

 Nodes of doubly linked list have a next and a prev
link

 All the methods of a dequeue using doubly linked
list have a constant running time O(1)
‣ How?

5 6 8

HEAD TAIL

ΦΦ

prev value next

CDS.IISc.ac.in | Department of Computational and Data Sciences

Doubly Linked List

typedef struct Node {

int value;

struct Node *next, *prev;

} a_node;

VALUE NEXTPREV

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete Element from Doubly
Linked List

5 6 6 85 86

HEAD

2Φ

Node n = HEAD
while(n.next.value != v) n = n.next;
tmp = n.next // n = 6, tmp = 8
n.next = tmp.next // 6.next = 2
tmp.next.prev = n // 2.prev = 6
delete(tmp) // delete 8

Delete(8)

28 Φ

TAIL

5 6 6 25

HEAD

Φ 26 Φ

TAIL

CDS.IISc.ac.in | Department of Computational and Data Sciences

Implement Stacks with Deques

Stack Method Deque Method

Size() Size()

IsEmpty() IsEmpty()

Top() Last()

Push() insertLast()

Pop() removeLast()

CDS.IISc.ac.in | Department of Computational and Data Sciences

Implement Queue with Deques

Stack Method Deque Method

Size() Size()

IsEmpty() IsEmpty()

front() first()

enqueue() insertLast()

dequeue() removeFirst()

CDS.IISc.ac.in | Department of Computational and Data Sciences

CodeChef: FLOW004

 9/Sep

20-Sep-16 28

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Solve sanity check problem on CodeChef by Sep 14
‣ https://www.codechef.com/problems/FLOW004

 Self study (Sahni Textbook)
‣ Check: Have you read Chapter 8 “Stacks”? Solved

exercises?

‣ Read: Chapter 9, Queues from textbook

‣ Try: Exercise 4, 14, 18 from Chapter 9 of textbook

20-Sep-16 29

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Questions?

20-Sep-16 30

http://creativecommons.org/licenses/by/4.0/deed.en_US

