
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

DS286 | 2016-11-07

Midterm Solutions

Yogesh Simmhan
s immhan@cds . i i s c . ac . in

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Delete from Sorted Doubly
Linked List
Node head;

void delete(int val) {

Node curr = head;

while(curr != null && curr.item < val) curr = curr.next;

if(curr == null || curr.item > val) return; // Not found

if(curr.prev == null) head = curr.next; // Delete head

else curr.prev.next = curr.next; // Delete internal

if(curr.next != null) curr.next.prev = curr.prev;

delete curr;

}

05-Dec-16 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dictionary search using
sorted array

05-Dec-16 3

int search(int key, Pair[] slist, int s, int e) {

int match = -1;

if (e < s) return match;

int mid = (s+e)/2;

if (slist[mid].key == key) return slist[mid].val;

else

if (key < slist[mid].key)

return search(key, slist, s, mid-1);

else // key > slist[mid].key

return search(key, slist, mid+1, e);

}

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dictionary search
complexity
 Best case: O(1)

Worst case: O(log n)

 Expected case: O(log n)

05-Dec-16 4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Full Binary Tree of Primes

 Inorder: 7, 3, 11, 2, 13, 5, 17

 Preorder: 2, 3, 7, 11, 5, 13, 17

 Postorder: 7, 11, 3, 13, 17, 5, 2

05-Dec-16 5

2

3 5

7 11 13 17

Levels = 3
Height = 2

(But assuming 3 will be graded since listed in slides)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Levels and Height
• Depth of a Node = Number of edges from the root to

that node
• Height of a Tree = Number of edges from root to

farthest leaf, i.e. Max(depth) over all leaves
• Number of Levels of a Tree = Height + 1

level 1

level 2

level 3

level 4 6

Height = 3

Depth(Al) = 2

Depth(Joe) = 0

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Properties
1. The drawing of every binary tree with n

elements, n > 0, has exactly n-1 edges.

– Each node has exactly 1 parent (except root)

2. A binary tree of height h, h >= 0, has at least h+1 and

at most 2h+1-1 elements in it.
‣ h+1 levels; at least 1 element at each level

#elements = h+1

‣ At most 2i-1 elements at i-th level Σ 2i-1 = 2h+1 -1

a+ar1+ar2+…+ arn = a(rn+1-1)/(r-1)
Note: Some tree definitions

differ between computer
science & discrete math

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary Tree Properties
3. The height of a binary tree that contains n elements,

n >= 0, is at least log2 𝑛 and at most n-1.

– At least one element at each level  hmax = #elements - 1

– From prev: hmin = ceil(log(n+1))

minimum number of elements maximum number of elements

8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Full Binary Tree
• A full binary tree of height h has exactly 2h+1-1 nodes

• Numbering the nodes in a full binary tree
– Number the nodes 1 through 2h+1-1

– Number by levels from top to bottom

– Within a level, number from left to right

9

Note: Some definitions
of full, complete trees
are NOT consistently

used everywhere

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tree height and nodes

Maximum nodes in binary tree with m leaves
‣ Infinity!

 But, if assuming “Proper” Binary tree
‣ i.e. every node has 0 or 2 children

• Every pair of leaf has 1 parent
• Every internal node pair has 1 parent

‣ m+m/2+m/4+…+1=2m-1

‣ Does not have to be full/complete

Minimum height of binary tree with n nodes
‣ Minimum height when it is complete

‣ log2 𝑛
‣ Any reasonable answer is given full points for grading.

05-Dec-16 10

2

3 5

… 11

…

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Basket: Insert, lookup
 BigBasket

‣ Space: O(n) Time: insert() = O(n2), Ω(n.log n); lookup() = O(n.log n)
‣ Takes less space, suitable for storing large number of items in memory
‣ Insertion time upper bound is very high and lower bound is low. Large variability

between upper and lower bounds
‣ Lookup time upper bound is medium.
‣ Well suited when large number of items have to be stored in the ADT, with few

insertions but with many lookups that take medium latency.

 FastBasket
‣ Space: O(n2) Time: insert() = Θ(n1.5); lookup() = O(n)
‣ Takes a lot of space and is not suited for storing large number of items
‣ Insertion time is medium, but it is a tight bound. So good for frequent insertions

with deterministic time bound if size does not grow large (need to delete)
‣ Lookup time upper bound is low, so good for frequent lookups as well.
‣ Well suited for applications with frequent insertions and lookups with low

latency, as long as total size does not grow large and fits within memory.

05-Dec-16 11

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity

05-Dec-16 12

• Specific values of n do not
make things good or bad, e.g.
n=1000 may be horrible for
O(n^2) but n=10^6 may be ok
for O(log n)

• Cant directly compare space
and time complexities

CDS.IISc.ac.in | Department of Computational and Data Sciences

Application Needs

Number of items that will be present at a time

 Size of each item

Memory capacity of machine

 Frequency of inserts and lookups

How important is low latency for insert & lookup?

How predictable do you want the latency for
operations to be?

05-Dec-16 13

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity

 Stack.push() as linked list: O(1), insert at head

 BST.search(key): O(log n) expected when balanced,
O(n) worst case when skewed

05-Dec-16 14

