Parallel FFT

Sathish Vadhiyar

Sequential FFT — Quick Review

Y[i]:nz_llX[k]a)"i,ngn

k=0
27+—-1/n

w==¢€

Twiddle factor — primitive nt" root of unity
in complex plane -

(n/2)-1 (/211 _
Y[il= > X[2klo™ + > X[2k +1]e""
k=0 k=0
(n/2)-1 - (n/2)1 _ _
= Z X[2k]ez(2w—_1/n)kl+ ZX[2k+1]a)le2(27z\/—_1/n)k|
k=0 k=0
(n/2)-1 (n/2)-1

= E ?{[2“]52”\/—_1“/@/2) = 23([2|i I EI]EZﬂx/—_lki/(nIZ)

Sequential FFT — Quick Review

(n/2)th root of unity

~

0 — eZﬁ\/—_ll(n/2) Y
(n/2)-1 K (ni2) _ ki
Y[il= > X[2klo +&' > X[2k+1]e
k=0 k=0

2 (n/2)-point DFTs

Sequential FFT — quick review

X(0) = W Y(0)
X(2) N W2 ;an Y(2)
X(6) ;w o ‘ Y(3)
X PN
X(5) — " A\ Y(5)
X(3) — S \ Y(6)
X(7) V Y(7)

EV

:bwl\)l—k

Sequential FFT — recursive solution

. begin

R_FF

. procedure R_FFT(X, Y, n, w)
. if (n=1) then Y[0] := X[0] else

R_FFT(<X(0), X(2), ..., X[n-2]>,

<Q[O0], Q[1], ..., Q[n/2]>, n/2, w?)
(<X(1), X(3), ..., X[n-1]>,
<T[O], T[1]1, ..., T[n/2]>, n/2, w?)

fori := 0 ton-1do
Y[i] := Q[i mod (n/2)] + wiT(i mod (n/2)];

. end R_FFI

Sequential FFT - iterative solution

1. procedure ITERATIVE_FFT(X, Y, n)
2. begin
3. r :=log n;
4. fori:= 0to n-1do R[i] := X[i];
5. form:=0tor-1do
6. begin
7. fori:= 0 to n-1 do S[i] := R[i];
8. fori:= 0 to n-1do
0. begin
/* Let (b0, b1, b2, ... br-1) be the binary representation of i */
10. ji=(bg..by.10bys1 - D1);
11. k := (bg ... bpy.11by1 -« bry);
12. R[i] := S[j] + S[k] x web b ;-50-0) ;
13. endfor;
14. endfor;

15. fori:= 0 to n-1 do Y[i] := R[i];
16. end ITERATIVE_ FFT

Example of w calculation

m/ |0 1 2 |3 |4 |5 |6 |/

i

0O 000|000{000|000{100{100|100100
1 ,000/000/100|100/010({010|110|110
2 1000/100{010(110|001|101|011 111

For a given m and i, the power of w is computed by
reversing the order of the m+1 most significant bits of i and

Parallel FFT — Binary exchange

000XV g g > Y(0)
0012 \\/ / = ' Y(4) s
e W ; ' e
e / /\\ = ' Y(5) s
110)((3) = > > Y(3) P3
111 X(7) > > > Y(7)

“a

+“—>
r

Binary Exchange

d — number of bits for representing
processes; r — number of bits representing
the elements

The d most significant bits of element |
indicate the process that the element
belongs to.

Only the first d of the r iterations require
communication

In a given iteration, m, a process i
communicates with only one other process
obtained by flipping the (m+1)th MSB of i

Total execution time - ?

~ (n/P)logN + logP(l) + (n/P)logP (b))

Parallel FFT — 2D Transpose

i@ @5
@ C @
@ ®
® @

ol
966 0-
® @ ’@"" @L%%
© 00 0-

-
€66 6-

m=20 m=1

Phase 1 - FFTs along columns

Parallel FFT — 2D Transpose

Po
©
@
a2

Phase 2 - Transpose

Parallel FFT — 2D Transpose

5
“
Wl
Wl
©0060-

Phase 3 - FFTs along columns

2D Transpose

In general, n elements arranged as

vn X Vn

D processes arranged along columns.
Each process owns Vn/p columns

Each process does vVn/p FFTs of size
vn each

Parallel runtime - 2(v/n/p)Vnlogvn +
(p-1)(1)+ n/p(b)

3D Transpose

ni/3 x nl/3 x n1/3 elements
Vp X Vp processes

Steps ?

Parallel runtime -

(n/p)logn(c) + 2(vp-1)(1) + 2(n/p)(b)

In general

For g dimensions:
Parallel runtime -

(n/p)logn + (g-1)(p¥/a-1 -1) [I]+
(g-1)(n/p) [b]

Time due to latency decreases; due to
bandwidth increases

For implementation — only 2D and 3D
transposes are feasible. Moreover, there
are restrictions on n and p in terms of q.

Choice of algorithm

Binary exchange — small latency, large
bandwidth

2D transpose - large latency, small
bandwidth

Other transposes lie between binary
exchange and 2D transpose

For a given parallel computer, based on |
and b, different algorithms can give
different performances for different
problem sizes

