
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh Simmhan & Partha Talukdar, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

L11:MapReduce
Advanced Topics

Yogesh Simmhan
1 6 M a r , 2 0 1 6

SE256:Jan16 (2:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Midterm Exam Review (YS)

 MapReduce features (a)
‣ Map

• Required to be Commutative across different <K,V>. Order in
which Map applied to input data items must not matter.

• Map called concurrently across different <K,V>, in no given
order.

‣ Reduce
• Required to be Commutative over intermediate <K,V[]>. Order

across reducer tasks not defined (sorted only within a reducer).

• Required to be Commutative over V[] within a Reduce function.

• Optionally Associative over V[] within a Reduce function.
o Allows for Reduce to be reused as Combiner.

o If Reduce is not associative, separate Combiner still possible.

2016-03-16 2

CDS.IISc.in | Department of Computational and Data Sciences

 MapReduce features (b) [Lin, Ch 3.1]
‣ Combiner

• Called 0, 1 or more times in Map task. No minimum guarantee.

• Typically, Hadoop MapReduce calls combiner in
o Map task, once per spill file

o Map task, once over merged spill files, if spill files > 3

o Reduce task, during merge

• Combiner called after (mini) shuffle/sort

‣ Using state-object
• Guarantees map.configure() and map.close() called once

• Faster due to light-weight management

• But requires additional user code (shuffle)

• Requires active memory management

• Potential for bugs

2016-03-16 3

CDS.IISc.in | Department of Computational and Data Sciences

 MapReduce features (c) [White, Ch 7]
‣ Map/Reduce being idempotent allows only failing tasks

to be rerun, rather than application to be rerun

‣ Allows speculative execution of Map/Reduce over splits if
one of them is slower (fastest one wins)

‣ Effects of Map/Reduce functions should not be visible to
other Map/Reduce function

2016-03-16 4

CDS.IISc.in | Department of Computational and Data Sciences

 Scalability (a) [Leskovec, Ch 2.5, 2.6]
‣ Typically will benefit from Weak scaling

• As many Map tasks as the number of splits. Controlling
size/number of splits controls weak scaling. Number of splits
proportional to data size.

• As many Reduce tasks as defined in code, or number of unique
keys/partitions. Controlling partitioner will control weak scaling
of Reduce. Weak scaling limited by value distribution for keys
too.

• Shuffle & sort may also benefit from weak scaling on Map and
Reduce sides.

‣ May benefit from strong scaling too
• Map tasks operate on large splits
• Reduce tasks operate on large partitions

2016-03-16 5

CDS.IISc.in | Department of Computational and Data Sciences

 Scalability (b)
m=d/b. As many Map tasks as the
number of splits. Typically HDFS
block size, but can be overridden.

 Scalability (c) [Leskovec, Ch 2.5, 2.6]
‣ Makespan includes Map , shuffle/sort and Reduce times
‣ r=1

• Less partition, shuffle, merge on Map to be done.
• Merge/Sort done by single Reduce task.
• Single reducer may be overwhelmed if large number of <K,V[]>
• BW on reducer is constrained

‣ r=k
• Extreme number of partitions, merges in Map if k is large.
• Merge/Sort done in parallel by reducer tasks
• Overheads of creating reducer tasks if few values per key

‣ Pick r to trade-off number of <k,v[]> per reducer to offset
overhead of creating reducers; balance computation per
reducer.

2016-03-16 6

CDS.IISc.in | Department of Computational and Data Sciences

 Hadoop & HDFS
‣ Replication

• Reliability of data in HDFS since it runs on commodity
hardware. Control over degree of replication/reliability.

• Availability of data even with node failures.

• Flexibility in scheduling Map tasks due to multiple copies. Can
improve compute and network performance by picking
“closest” replica.

• Low sync cost of replication due to write-once, ready-many
model.

‣ Location of replicas [White, Ch 3]
• Rack aware placement of replicas to improve reliability,

availability, and network bandwidth.

• With 3 replicas: one replica on node in local/random rack,
another on a node in a remote rack, and third on a different
node in remote rack

• Reliability, performance, load distribution

2016-03-16 7

CDS.IISc.in | Department of Computational and Data Sciences

 Hadoop & HDFS [White, Ch 7]
‣ Spill files

• Allows Map to generate more output than local memory

• Prevents out of memory exceptions

• Allows incremental shuffle/sort

‣ Sorting
• In-memory sort over each spill file for a Map task

• One or more rounds of Merge-sort of all spill files for a Map
task

• One or more rounds of Merge-sort of input files for a Reduce
task

2016-03-16 8

CDS.IISc.in | Department of Computational and Data Sciences

Assignment B
5pm IST Mar 30, 2016

 Replicate Google’s search engine from 10 years back
using the Common Crawl dataset.
‣ Find the web pages that match a given set of search terms

‣ Rank the webpages and return the top ranked 100 matches

a) MapReduce job to build an inverted index based on
Common Crawl web pages, ignoring stop words [1]

<URL,Webpage> → <Word,URL>*

This MapReduce job will be run once to build the index
and save it to HDFS.

2016-03-16 9

CDS.IISc.in | Department of Computational and Data Sciences

b) Using web graph of Common Crawl data (Assg A), write
MapReduce job to run PageRank algorithm.

<v1, <v2*>> → <v1, pr1>*

This MapReduce job will be run once to build the webpage’s ranks
and saved to HDFS.

c) Given a search phrase, write MapReduce job(s) to:
‣ Find ALL web pages (URLs) that contain ALL the search terms using

the inverted index.

‣ For matching URLs, lookup their PageRank and identify the top 100
pages with the highest page rank.

‣ Return the ranked list of 100 matching URL for the search

‣ These will be run for each search phrase

 Report scalability of (a) and (b).

 Report correctness and latency for (c).

2016-03-16 10

CDS.IISc.in | Department of Computational and Data Sciences

d) Train a classifier in a distributed manner such that given a
webpage's content (e.g., title, content, etc.) from the
Common Crawl dataset, it identifies the country in which
it is hosted.

‣ Training and evaluation data for this classifier may be
obtained by doing a reverse IP geo-lookup on the IP
address associated with each page.

‣ Of course, this information will be hidden to the
classifier during test time.

‣ Please report on data preparation, classifier training
strategies, brief implementation details, and final
evaluation accuracy.

E.g. http://lite.ip2location.com/

2016-03-16 11

http://lite.ip2location.com/

CDS.IISc.in | Department of Computational and Data Sciences

More MR Topics

2016-03-16 12

CDS.IISc.in | Department of Computational and Data Sciences

Inverted Indexes
 Each Map task parses one or more webpages
‣ Input: A stream of webpages (WARC)

‣ Output: A stream of (term, URL) tuples
• (long, http://gb.com) (long, http://gb.com) (ago, http://gb.com) …

(long, http://jn.in) (years, http://jn.in) (ago, http://jn.in) …

 Shuffle sorts by key and routes tuples to Reducers

 Reducers convert streams of keys into streams of
inverted lists
‣ Sorts the values for a key (why?) and builds an inverted list

‣ Output: (long, [http://gb.com, http://jn.in]), (ago,
[http://gb.com, http://jn.in]), (years, [http://jn.in])

132016-03-16

CDS.IISc.in | Department of Computational and Data Sciences

Optimizations & Extensions

 URL sizes may be large
‣ Replace URLs with unique longs, URL ID

• Mapping from URL ID to URL saved as a file
• Inverted Index has <term, [URL ID]+>

‣ Skip stop words with lot of matching URLs
‣ Use combiners

 Partition term by prefix alphabet(s)
‣ One reducer for each term starting with “a”, “b”, etc.
‣ Part file from each reducer has terms with unique a starting

letter

 Additional metadata
‣ Idea: Include a mapping from URL ID to <URL, PageRank>?
‣ Include “term frequency” of term occurrence per URL ID in

Inverted Index?

2016-03-16 14

CDS.IISc.in | Department of Computational and Data Sciences

Challenge

 Even using URL IDs, all IDs per term may not fit in
reduce memory for sorting
‣ E.g. 17M URLs in 1% of CC data.

‣ Say 1000 unique words per URL.

‣ So 17B keys and values generated by Mappers.

‣ Say 50,000 unique words (keys) in English

‣ One key would on average have 17B/50K=340K URL IDs
• Peak values would be much higher

 Use a value-to-key conversion design pattern
‣ Let MR perform sorting, Reducer just emits result

2016-03-16 16

CDS.IISc.in | Department of Computational and Data Sciences

2016-03-16

• Mapper emits <<term, URL ID>, tf>
• i.e. compound key

• Partitioner sends all terms to the same
reducer

• Per reducer, MR sorts based on compound key
<term, URL ID>

• Only one value for each compound key
• Reduce task gets list of term and URL ID in

sorted order
• When new term seen, flush index for

“prev” term and start new term
• E.g.

• <<Ago, 1>, tf1>
• <<Ago, 7>, tf7>

• Flush <Ago, [<1,tf1>,<7,tf7>]
• <<Long, 3>, tf3>
• <<Long, 4>, tf4>
• <<Long, 6>, tf6>

• Flush <Long, [<3,tf3>,<4,tf4>,<6,tf6>]

Lin, Figure 4.4 17

CDS.IISc.in | Department of Computational and Data Sciences

Lookup of Terms

 Each Map task loads one of the index files, say, by
alphabet

 Input terms e.g. “t1 & t2 & t3” passed to each Map
task as AND search

 Map does lookup and sends <URL ID, t_i> to
reducer
‣ Optionally send <<PR, URL ID>, t_i> for sorting by PR

 Reducer does set intersection of all t_i for a URL ID
‣ If all terms match, looks up URL for the URL ID

‣ If PR stored for each URL, that is returned too

2016-03-16 18

CDS.IISc.in | Department of Computational and Data Sciences

PageRank

 Centrality measure of web page quality based on
the web structure
‣ How important is this vertex in the graph?

 Random walk
‣ Web surfer visits a page, randomly clicks a link on that

page, and does this repeatedly.
‣ How frequently would each page appear in this surfing?

 Intuition
‣ Expect high-quality pages to contain “endorsements”

from many other pages thru hyperlinks
‣ Expect if a high-quality page links to another page, then

the second page is likely to be high quality too

2016-03-16 19Lin, Ch 5.3 PAGERANK

CDS.IISc.in | Department of Computational and Data Sciences

PageRank, recursively

 P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

 |G| is number of URLs (vertices) in graph

 α is probability of random jump

 L(n) is set of vertices that link to ‘n’

 C(m) is out-degree of ‘m’

2016-03-16 20

CDS.IISc.in | Department of Computational and Data Sciences

PageRank Iterations

2016-03-16 21

α=0
Initialize P(n)=1/|G|

Lin, Fig 5.7

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

2016-03-16 22Lin, Fig 5.8

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce
 MR run over multiple iterations (typically 30)

‣ The graph structure itself must be passed from iteration to iteration!

 Mapper will
‣ Initially, load adjacency list and initialize default PR

• <v1, <v2>+>

‣ Subsequent iterations will load adjacency list and new PR
• <v1, <v2>+, pr1>

‣ Emit two types of messages from Map
• PR messages and Graph Structure Messages

 Reduce will
‣ Reconstruct the adjacency list for each vertex
‣ Update the PageRank values for the vertex based on neighbour’s PR

messages
‣ Write adjacency list and new PR values to HDFS, to be used by next

Map iteration
• <v1, <v2>+, pr1’>

2016-03-16 23

CDS.IISc.in | Department of Computational and Data Sciences

Reading

 Lin, Chapters 3, 4, 5

2016-03-16 24

