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Learning Objectives

1. Why is MapReduce is useful?

2. How does the MapReduce programming model 
work?

3. How can you design and write simple MR 
applications?

4. How can you design and write more advanced 
MR applications? [L4]
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Motivation

3
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Distributed Systems

 Distributed Computing
‣ Clusters of machines
‣ Connected over network

 Distributed Storage
‣ Disks attached to clusters of machines
‣ Network Attached Storage

 How can we make effective use of multiple machines?

 Commodity clusters vs. HPC clusters
‣ Commodity: Available off the shelf at large volumes
‣ Lower Cost of Acquisition
‣ Cost vs. Performance

• Low disk bandwidth, and high network latency 
• CPU typically comparable (Ceon vs. i3/5/7)

 How can we use many machines of modest capability?

4
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Growth of Commodity Data 
Centres

5http://www.datacenterdynamics.com/app-cloud/cloud-to-eat-
traditional-data-centers-cisco/91432.article
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Degrees of parallelism

Bit/Word

Instruction

Task/Thread

Job

SE252: Introduction to Cloud Computing, Simmhan, 2015
6
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Degrees of Parallelism

 Data parallel vs. Task Parallel
• Independent processes
• Independent data 

dependency

 Tight vs. Loose Coupling

Block/Message

File/Stream

Distributed Files

Do your review…collectively?

1. Blah blah?

SE252: Introduction to Cloud Computing, Simmhan, 2015
7
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Scalability

 System Size: Higher performance when adding 
more machines

 Software: Can framework and middleware work 
with larger systems?

 Technology: Impact of scaling on time, space and 
diversity

 Application: As problem size grows (compute, 
data), can the system keep up?

 Vertical vs Horizontal: ?

…

SE252: Introduction to Cloud Computing, Simmhan, 2015
8
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Scalability Metric

 If the problem size is fixed as 𝑥 and the number of 
processors available is 𝑝

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥)

 If the problem size per processor is fixed as 𝑥 and 
the number of processors available is 𝑝

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥. 𝑝 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥. 𝑝)

9
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
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Ideal Strong/Weak Scaling

10
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
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Strong Scaling

 Amdahl’s Law for Application Scalability
‣ Total problem size is fixed
‣ Speedup limited by sequential bottleneck

 𝑓𝑠 is serial fraction of application

 𝑓𝑝 is fraction of application that can be parallelized

 𝑝 is number of processors

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥)

=
1

𝑓𝑠 +
𝑓𝑝
𝑝

Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
11
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Amdahl’s Law

© Daniels220 at English Wikipedia

© Gorivero

© Martha A. Kim

12
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Weak Scaling
Gustafson’s Law of weak scaling

‣ Problem size increases with # of processors
‣ “Scaled speedup”

 𝛼 is fraction of application that is sequential, when 
parallel work per processor is fixed (different from 𝑓𝑠)

 𝑝 is number of processors

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥. 𝑝 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥. 𝑝)

=
𝛼 + 𝑝. (1 − 𝛼)

𝛼 +
𝑝. (1 − 𝛼)

𝑝
= 𝑝 − 𝛼. (𝑝 − 1)

Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
13
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Weak Scaling

14
© Peahihawaii

Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012



CDS.IISc.in  |  Department of Computational and Data Sciences

Scalability

 Strong vs. Weak Scaling

 Strong Scaling: How the performance varies with 
the # of processors for a fixed total problem size

Weak Scaling: How the performance varies with 
the # of processors for a fixed problem size per 
processor
‣ MapReduce is intended for “Weak Scaling”

15
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Ease of Programming

 Programming distributed systems is difficult
‣ Divide a job into multiple tasks

‣ Understand dependencies between tasks: Control, Data

‣ Coordinate and synchronize execution of tasks

‣ Pass information between tasks

‣ Avoid race conditions, deadlocks

 Parallel and distributed programming 
models/languages/abstractions/platforms try to 
make these easy
‣ E.g. Assembly programming vs. C++ programming

‣ E.g. C++ programming vs. Matlab programming

16
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Availability, Failure

 Commodity clusters have lower reliability
‣ Mass-produced

‣ Cheaper materials

‣ Smaller lifetime (~3 years)

 How can applications easily deal with failures?

 How can we ensure availability in the presence of faults?

17
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Map Reduce

18
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Patterns & Technologies

MapReduce is a distributed data-parallel programming 

model from Google

MapReduce works best with a distributed file system, 

called Google File System (GFS)

 Hadoop is the open source framework implementation 

from Apache that can execute the MapReduce

programming model

 Hadoop Distributed File System (HDFS) is the open 

source implementation of the GFS design

 Elastic MapReduce (EMR) is Amazon’s PaaS

19
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MapReduce

“A simple and powerful interface that enables 

automatic parallelization and distribution of large-

scale computations, combined with an 

implementation of this interface that achieves high 

performance on large clusters of commodity PCs.”

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”, 
OSDI, 2004

20
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MapReduce Design Pattern

 Clean abstraction for programmers

 Automatic parallelization & distribution

 Fault-tolerance

 A batch data processing system

 Provides status and monitoring tools

21
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MapReduce: Data-parallel 
Programming Model
 Process data using map & reduce functions

map(ki, vi)  List<km, vm>[]
‣ map is called on every input item
‣ Emits a series of intermediate key/value pairs

 All values with a given key are grouped together

reduce(km, List<vm>[])  List<kr, vr>[]
‣ reduce is called on every unique key & all its values
‣ Emits a value that is added to the output

Copyright © 2011 Tom White, Hadoop Definitive Guide 22



CDS.IISc.in  |  Department of Computational and Data Sciences

MR Borrows from Functional 
Programming

Functional operations do not modify data 
structures
‣ They always create new ones

‣ Original data still exists in unmodified form (read 
only)

Data flows are implicit in program design

Order of operations does not matter
‣ Commutative: a ◊ b ◊ c = b ◊ a ◊ c = c ◊ b ◊ a

23
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MR Borrows from Functional 
Programming

 In a purely functional setting
‣ Elements computed by map cannot see the 

effects of map on other elements

‣ Order of applying reduce is commutative
• a ◊ b = b ◊ a

• Allowing parallel/reordered execution

‣ More optimizations possible if reduce is also 
associative

• (a ◊ b) ◊ c = a ◊ (b ◊ c)

24
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MapReduce & MPI Scatter-
Gather

25
http://mpitutorial.com/mpi-scatter-gather-and-allgather/

M M M M

R R R M
Routing determined by 

array index/element 
position

Routing determined by key
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MapReduce: Word Count

How now
Brown cow

How does
It work 
now

brown 1
cow 1
does 1
how 2
it 1
now 2
work 1

M

M

M

M

R

R

<how,1>
<now,1>
<brown,1>
<cow,1>
<how,1>
<does,1>
<it,1>
<work,1>
<now,1>

<how,1 1>
<now,1 1>
<brown,1>
<cow,1>
<does,1>
<it,1>
<work,1>

Input Output

Map

Reduce

MapReduce Framework

Map(k1,v1) → list(k2,v2)
Reduce(k2, list(v2)) → list(v2)

Distributed Wordcount 26
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Map
 Input records from the data source 

‣ lines out of files, rows of a database, etc.

 Passed to map function as key-value pairs
‣ Line number, line value

map() produces zero or more intermediate values, 
each associated with an output key

27



CDS.IISc.in  |  Department of Computational and Data Sciences

Map

 Example Wordcount

map(String input_key, String input_value):

// input_key: line number

// input_value: line of text

for each Word w in input_value.tokenize()

EmitIntermediate(w, "1");

(0, “How now brown cow”) →

[(“How”, 1), (“now”, 1), (“brown”, 1), (“cow”, 1)]

28
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 Example: Upper-case Mapper
map(k, v) { emit(k.toUpper(), v.toUpper()); }

(“foo”, “bar”) → (“FOO”, “BAR”)

(“Foo”, “other”) → (“FOO”, “OTHER”)

(“key2”, “data”) → (“KEY2”, “DATA”)

 Example: Filter Mapper
map(k, v) { if (isPrime(v)) then emit(k, v); }

(“foo”, 7) → (“foo”, 7)

(“test”, 10) → () //nothing emitted

29
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Reduce
 All the intermediate values from map for a given 

output key are combined together into a list

 reduce() combines these intermediate values into one 
or more final values for that same output key … 
Usually one final value per key

One output “file” per reducer

30
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Reduce
 Example Wordcount

reduce(String output_key, Iterator intermediate_values)

// output_key: a word

// output_values: a list of counts

int sum = 0;

for each v in intermediate_values

sum += ParseInt(v);

Emit(output_key, AsString(sum));

(“A”, [1, 1, 1]) → (“A”, 3)

(“B”, [1, 1]) → (“B”, 2)

31
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for each w 

in value do 

emit(w,1)

How now
Brown cow

How does
It work now

for all w in 

value do 

emit(w,1)

<How,1>
<now,1>
<brown,1>
<cow,1>

<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>

<brown,1>
<cow,1>

<does,1>
<it,1>
<work,1>

How 2
now 2

does 1
it 1
work 1

brown 1
cow 1

sum = 

sum + value

emit(key,sum)

MapReduce: Word Count Drilldown
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Mapper/Reducer Tasks vs. 
Map/Reduce Methods
Number of Mapper and Reducer tasks is specified 

by user

 Each Mapper/Reducer task can make multiple calls 
to Map/Reduce method, sequentially

Mapper and Reducer tasks may run on different 
machines

 Implementation framework decides 
‣ Placement of Mapper and Reducer tasks on machines

‣ Keys assigned to mapper and reducer tasks

‣ But can be controlled by user…

33
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Maintainer State in Tasks

 Capture state & dependencies across multiple keys 
and values

34

Mapper object

configure

map

close

state

one object per task
Reducer object

configure

reduce

close

state

one call per input 

key-value pair

one call per 

intermediate key

API initialization hook

API cleanup hook.

Called after all Map/Reduce calls done.

www.cs.bu.edu/faculty/gkollios/ada14

State preserved for 

a task, across calls
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Improve Word Count using State?

map(String k, String v)

foreach w in v.tokenize()

emit(w, "1")

reduce(String k, int[] v)

int sum = 0

foreach n in v[]  sum += v

emit(k, sum)
35

mapperInit()

H = new HashMap<String,int>()

map(String k, String v)

foreach w in v.tokenize()

H[w] = H[w] + 1

mapperClose()

foreach w in H.keys()

emit(w, H[w])

reduce(String k, int[] v)

int sum = 0;

foreach n in v[]  sum += v

emit(k, sum)
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Shuffle & Sort
The Magic happens here!

 Shuffle does a “group by” of keys from all mappers
‣ Similar to SQL goupBy operation

 Sort of local keys to Reducer task performed
‣ Keys arriving at each reducer are sorted

‣ No sorting guarantee of keys across reducer tasks

 No ordering guarantees of values for a key
‣ Implementation dependent

 Shuffle and Sort implemented efficiently by framework

36
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Host DHost CHost A

Host CHost BHost A

Map-Shuffle-Sort-Reduce

37
Data-Intensive Text Processing with MapReduce, Jimmy Lin, 2010

Intermediate 
Key-Value Pairs
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Anagram Example

 “An anagram is a type of word play, the result of 
rearranging the letters of a word or phrase to 
produce a new word or phrase, using all the 
original letters exactly once; for example orchestra
can be rearranged into carthorse.” … Wikipedia

 thickens = kitchens, reserved = reversed, 

 cheating = teaching, cause = sauce

 Tom Marvolo Riddle = I am Lord Voldemort

 Problem: Find ALL anagrams in the English 
dictionary of ~1M words (106)

 1M X 1M comparisons?
38
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Anagram Example
public class AnagramMapper extends MapReduceBase implements

Mapper<LongWritable, Text, Text, Text> {

private Text sortedText = new Text();

private Text orginalText = new Text();       

public void map(LongWritable key, Text value,

OutputCollector<Text, Text> outputCollector, Reporter reporter) {

String word = value.toString();

char[] wordChars = word.toCharArray();

Arrays.sort(wordChars);

String sortedWord = new String(wordChars);

sortedText.set(sortedWord);

orginalText.set(word);

// Sort word and emit <sorted word, word>

outputCollector.collect(sortedText, orginalText);

}

}
http://code.google.com/p/hadoop-map-reduce-examples/
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Anagram Example…

40

public void reduce(Text anagramKey, Iterator<Text> anagramValues,

OutputCollector<Text, Text> results, Reporter reporter) {

String output = "";

while(anagramValues.hasNext()) {

Text anagram = anagramValues.next();

output = output + anagram.toString() + "~";

}

StringTokenizer outputTokenizer = 

new StringTokenizer(output,"~");

// if the values contain more than one word 

// we have spotted a anagram.

if(outputTokenizer.countTokens()>=2) {

output = output.replace("~", ",");

outputKey.set(anagramKey.toString());

outputValue.set(output);

results.collect(outputKey, outputValue);

}

}
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Optimization: Combiner
 Logic runs on output of Map tasks, on the map 

machines
‣ “Mini-Reduce,” only on local Map output

 Output of Combiner sent to shuffle
‣ Saves bandwidth before sending data to Reducers

 Same input and output types as Map’s output type 
‣ Map(k,v) → (k’,v’) 

‣ Combine(k’,v’[]) → (k’,v’)

‣ Reduce(k’,v’[]) → (k’’,v’’)

 Reduce task logic can be used as combiner if
commutative & associative. Usually for trivial ops.

 Combiner may be called 0, 1 or more times
41
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Optimization: Partitioner
 Decides assignment of intermediate keys grouped to 

specific Reducer tasks
‣ Affects the load on each reducer task

 Sorting of local keys for Reducer task done after 
partitioning

 Default is hash partitioning
‣ HashPartitioner(key, nParts) → part

‣ Number of Reducer (nParts) tasks known in advance

‣ Returns a partition number [0, nParts)

‣ Default partitioner balances number of keys per Reducer … 
assuming uniform key distribution

‣ May not balance the number of values processed by a Reducer

42
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Map-MiniShuffle-Combine-
Partition-Shuffle-Sort-Reduce

43
Data-Intensive Text Processing with MapReduce, Jimmy Lin, 2010

MiniShuffle

Combine & Partition phases 
could be interchanged, 
based on implementation
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MapReduce for Histogram

44

int bucketWidth = 4 // input

Map(k, v) {
emit(floor(v/bucketWidth), 1) 
// <bucketID, 1>

}

// one reduce per bucketID
Reduce(k, v[]){ 

sum=0;
foreach(n in v[])  sum++;
emit(k, sum)
// <bucketID, frequency>

}

M M

7
2
9
6
0
2
5

2
1

10
3
5
4
0

11
11
6
2
1
8
1

2
4
6
8

10
11
0

1,1
0,1
2,1
1,1
0,1
0,1
1,1

0,1
0,1
2,1
0,1
1,1
1,1
0,1

2,1
2,1
1,1
0,1
0,1
2,1
0,1

0,1
1,1
1,1
2,1
2,1
2,1
0,1

Shuffle
2,1
2,1
2,1
2,1
2,1
2,1
2,1
2,1

0,1
0,1
0,1
0,1
0,1
0,1

1,1
1,1
1,1
1,1
1,1
1,1
1,1
1,1

0,1
0,1
0,1
0,1
0,1
0,1

R R R

2,8 0,12 1,8

Data transfer & 
shuffle between 
Map & Reduce  
(28 items)
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MapReduce for Histogram

45Since Reducer is commutative and associative, its logic can be used as a Combiner

1,1
0,1
2,1
1,1

0,1
0,1
2,1
0,1

2,1
2,1
1,1
0,1

0,1
1,1
1,1
2,1

0,1
0,1
1,1

1,1
1,1
0,1

0,1
2,1
0,1

2,1
2,1
0,1

C C C

2,2 1,5 0,7

C C C

2,6 1,3 0,5

Mini Shuffle

2,1
2,1

1,1
1,1
1,1
1,1
1,1

0,1
0,1
0,1
0,1

0,1
0,1
0,1

Mini Shuffle

2,1
2,1
2,1

1,1
1,1
1,1

0,1
0,1
0,1
0,1
0,1

2,1
2,1
2,1

Shuffle
2,2
2,6

1,5
1,3

0,7
0,5

R R R

2,8 1,8 0,12

int bucketWidth = 4 // input

Map(k, v) {
emit(floor(v/bucketWidth), 1) 
// <bucketID, 1>

}

Combine(k, v[]){ 
// same code as Reduce()

}

// one reduce per bucketID
Reduce(k, v[]){ 

sum=0;
foreach(n in v[])  sum++;
emit(k, sum)
// <bucketID, frequency>

}

6 items

Mini-shuffle 
between Map & 
Combine
(28 items)

M M

7
2
9
6
0
2
5

2
1

10
3
5
4
0

11
11
6
2
1
8
1

2
4
6
8

10
11
0

Combiners for all keys 
may not run. And they 

may run on only a subset 
of values for the key.  
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Combiner Advantage

Mini-Shuffle lowers the overall cost for Shuffle

 E.g. n total items emitted from m mappers

NW Transfer and Disk IO costs
‣ In ideal case, m items vs. n items written and read from 

disk, transferred over network (m<<n)

 Shuffle, less of an impact
‣ If more mapper tasks are present than reducers, higher 

parallelism for doing groupby and mapper-side partial 
sort.

‣ Local Sort on reducer is based on number of unique 
keys, which does not change due to combiner.

46
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TeraSort: Sorting Large Files

 Input is a list of positive numbers (or words)
‣ Say a terabyte of data, 1011 entries

Output is the list of numbers or words in sorted 
order

How can we use MapReduce for this?

47
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TeraSort: Sorting Large Files

 Approach 1
‣ Have n mappers and 1 reducer tasks

‣ Map(key, num) → (num, 0)

‣ Shuffle & Local Sort: All numbers (intermediate keys) to 
the single reducer is sorted by framework

‣ Reduce(num, [0]) → (num+)

‣ Output from the reducer task is in sorted order

‣ NOTE: repeat printing of num if there are duplicate ‘0’

‣ Do we have any scaling?

48
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TeraSort: Sorting Large Files

 Approach 2
‣ n mapper, m reducer tasks

‣ Map(key, num) → (num, 0)

‣ Shuffle & Local Sort: All numbers (intermediate keys) to 
a single reducer are sorted

‣ Reduce(num, [0]) → (num+)

‣ Local output of numbers from each reducer is sorted, 
e.g. m sorted files

‣ Merge Sort separately? O(n.k2)

‣ What is the scaling?

49
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TeraSort: Sorting Large Files

 Approach 3
‣ n mapper, m reducer tasks

‣ Map(key, num) → (num/(MAX/m), num)

‣ Map does a histogram distribution of num into reduce 
method buckets

‣ Reduce(bucketID, num[]) → sort(num[])

‣ Reduce performs a local sort of all local numbers
• Sort managed by us, needs to fit in memory, etc.

‣ Concatenate output of m sorted files

‣ What is the scaling?

50
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TeraSort: Sorting Large Files

 Approach 4
‣ n mapper, m reducer tasks
‣ Map(key, num) → (num, 0)
‣ Partition(num, m) → floor(num/(MAX/m))
‣ Partitioner causes numbers to be range-partitioned to 

each reducer 
• Range of values required, 0..MAX
• Words (string) requires a trie for efficiency

‣ Shuffle & Sort: Local range of numbers to a reducer is 
sorted

‣ Reduce(num, 0) → (num)
‣ Concatenate sorted output from each reducer
‣ What is the scaling?
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Quick Assignment
Find the Mean of a set of numbers
Map Input: ×, int e.g., <×,8>,<×,32>,<×,20>,<×,4>
Reduce Output: ×, int e.g. <×,16>

52
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Computing the Mean: 
Simple Approach

Optimization: Can we use Reducer as Combiner?
www.cs.bu.edu/faculty/gkollios/ada1453

All work performed by single Reducer!
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Computing the Mean:
Using a Combiner

Is this correct? 54
www.cs.bu.edu/faculty/gkollios/ada14
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Computing the Mean: Fixed?

www.cs.bu.edu/faculty/gkollios/ada14
55
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MapReduce: Recap

 Programmers must specify:
map (k, v) → <k’, v’>*
reduce (k’, v’[]) → <k’’, v’’>*
‣ All values with the same key are reduced together

 Optionally, also:
partition (k’, number of partitions) → partition for k’
‣ Often a simple hash of the key, e.g., hash(k’) mod n
‣ Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
‣ Mini-reducers that run in memory after the map phase
‣ Used as an optimization to reduce network traffic

 The execution framework handles everything else…

www.cs.bu.edu/faculty/gkollios/ada14
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“Everything Else”

 The execution framework handles everything else…
‣ Scheduling: assigns workers to map and reduce tasks
‣ “Data distribution”: moves processes to data
‣ Synchronization: gathers, sorts, and shuffles intermediate 

data
‣ Errors and faults: detects worker failures and restarts

 Limited control over data and execution flow
‣ All algorithms must expressed in m, r, c, p

 You don’t know:
‣ Where mappers and reducers run
‣ When a mapper or reducer begins or finishes
‣ Which input a particular mapper is processing
‣ Which intermediate key a particular reducer is processing

www.cs.bu.edu/faculty/gkollios/ada14
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MR Algorithm 
Design

58
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Map-Only Design

Filtering: Distributed Grep
 Input

‣ Lines of text from HDFS

‣ “Search String” (e.g. regex), input parameter to job

Mapper
‣ Search line for string/pattern

‣ Output matching lines

 Reducer
‣ Identity function (output = input), or none at all
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Accumulation
 List of courses with number of students enrolled in each (GoI

scheme with citizens enrolled in each)

 Input
‣ <StudentID, CourseID>
‣ <2482, SE256> <6427, SE252> <1635, E0 259>

 Mapper
‣ Emit <CourseID, 1>
‣ <SE256, 1>, <SE252, 1>, <E0 259, 1>

 Partition
‣ By Course ID

 Sort <E0 259, 1>, <SE252, 1>, <SE256, 1>

 Reduce <E0 259, [1,1]>, <SE252, [1]>, <SE256, [1,1,1]>
‣ Count number of students per Course. 
‣ Output <Course ID, Count>
‣ <SE256, 2>, <SE252, 1>, <E0 259, 3>
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Inverted Index

 Convert from Key:Values to Value:Keys form
‣ E.g. <URL, Lines> => <Word:URL[]>

‣ Useful for building search index

 Input: <URL, Line>

Map: foreach(Word in Line) emit(Word, URL)

 Combiner: Combine URLs for same Word

 Reduce: emit(Word, sort(URL[ ]))
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Inverted Index Example

62Introduction to MapReduce and Hadoop, Matei Zaharia, UC Berkeley
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Join

63

http://www.tomjewett.com/dbdesign/dbdesign.php?page=join.php
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Join
 Given two sets of files, combine the lines having the 

same key in each file

 Input: 
‣ <customer_data>, <order_data>

Mapper: 
‣ emit <cell, customer_data>, <cell, order_data>

 Reduce:
‣ If both keys are unique,

• <cell, [customer_data, order_data]>
• Just concatenate and emit the pair, if there are two items
• If only one item (only customer or order value present), skip

‣ If either or both keys are not unique,
• <cell, [customer_data*, order_data*]>
• Emit cross product of customer_data* and order_data* values, 

i.e., local join for each cell key 64
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Reverse graph edge directions 
& output in node order

65Parallel Programming with Hadoop/MapReduce, Tao Yang

 Input: adjacency list of graph (e.g. 3 nodes and 4 edges)
(3, [1, 2])         (1, [3])

(1, [2, 3])   (2, [1, 3])

(3, [1])

 node_ids in the output values are also sorted.  
But Hadoop only sorts on keys!

MapReduce format
‣ Input:     (3, [1, 2]),   (1, [2, 3]).

‣ Intermediate: (1, [3]), (2, [3]),   (2, [1]), (3, [1]).  (reverse edge 
direction)

‣ Out:  (1,[3])  (2, [1, 3])  (3, [[1]).

1 2

3

1 2

3


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More Algorithms

Numerical Integration

 PageRank

 Regression Tree

 Try these yourselves!
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Scalable Hadoop 
Algorithms: Themes
 Avoid object creation

‣ Inherently costly operation

‣ Garbage collection

 Avoid buffering
‣ Limited heap size

‣ Works for small datasets, but won’t scale!

www.cs.bu.edu/faculty/gkollios/ada14
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Importance of Local 
Aggregation
 Ideal scaling characteristics:

‣ Twice the data, twice the running time

‣ Twice the resources, half the running time

Why can’t we achieve this?
‣ Synchronization requires communication

‣ Communication kills performance

 Thus… avoid communication!
‣ Reduce intermediate data via local aggregation

‣ Combiners can help

www.cs.bu.edu/faculty/gkollios/ada14
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Design Pattern for Local 
Aggregation
 “In-mapper combining”

‣ Fold the functionality of the combiner into the 
mapper by preserving state across multiple map 
calls

Advantages
‣ Speed

‣ Why is this faster than actual combiners?

Disadvantages
‣ Explicit memory management required

‣ Potential for order-dependent bugs

www.cs.bu.edu/faculty/gkollios/ada14



CDS.IISc.in  |  Department of Computational and Data Sciences

Combiner Design

Combiners and reducers share same method 
signature
‣ Sometimes, reducers can serve as combiners

‣ Often, not…

Remember: combiner are optional 
optimizations
‣ Should not affect algorithm correctness

‣ May be run 0, 1, or multiple times

Example: find average of all integers associated 
with the same key

www.cs.bu.edu/faculty/gkollios/ada14
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Assignment A
Due on Wed Feb 3, 2016 Sun Feb 7, 2016 by 
midnight IST

10% weightage 15% weightage

74
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Objectives

 Defining simple analytics over large text and graph 
datasets, and translating them into MapReduce algos.

Writing new MR applications & improving performance 
existing ones using combiners and partitioners.

 Generating large synthetic datasets for evaluation.

 Awareness of memory/CPU used by Mappers/Reducer 
tasks.

 Analysis of MapReduce application logs to evaluate 
performance and scalability.

 Learning to start assignments early on a shared cluster 


75
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SIMPLE ANALYTICS OVER TEXT DATA

 Source: Common Crawl, Nov 2015*
‣ Internet Archive: WayBack Machine, www.archive.org

 Total data: 1.8 Billion pages (1,800,000,000,000), 
150TB (150,000,000,000,000)

 Course data: 0.5% of WWW
‣ 750GB raw data, 180GB compressed data in 180 files
‣ HDFS://SE256/CC

Web ARChive (WARC) file format
‣ HTTP headers and responses
‣ Content body
‣ Hadoop input format readers provided (1 split per file)

76
*http://blog.commoncrawl.org/2015/12/november-2015-crawl-archive-now-available/
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SIMPLE ANALYTICS OVER TEXT DATA

77
More files will be added gradually to total 180
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78
HTTP Request/ 

Response/Metadata
Content Body

Peek inside an uncompressed WARC file …
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SIMPLE ANALYTICS OVER TEXT DATA

 Sample program provided 
‣ Uses WARCFileInputFormat to read the files and 

return ArchiveReader

‣ Extracts HTTP header’s content-length attribute –
Summation of size of all content

‣ Checks if the content-type is HTML, and if so, extracts 
the content of the body – Summation of size of HTML 
content

 Demo…

79
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SIMPLE ANALYTICS OVER TEXT DATA

1. Country’s Digital Footprint & Correlation

MR job to return the number of unique webpages in 
which each country is mentioned, and total number 
of times a country is mentioned. 

Is there correlation between the GDP and mentions?

2. Partnerships & Feuds between Countries

MR Job to find Top 20 pairs of countries frequently 
mentioned together in the same webpage. 

Is there a reason why?

80
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SIMPLE ANALYTICS OVER TEXT DATA

3. Popularity Contests

Define a problem to find which of two entities are 
popular, e.g., “Martian” vs. “The Big Short”, “Swacch
Bharath” vs. “Jan Dhan”. Write an MR job to find it. 

Is the answer as expected? Can this help predict future? 
(Oscars!)

4. Pre-processing & Transforming Data

MR job to generate the graph of this crawl dataset as an 
adjacency list (SourceURL→LinkedURL1, LinkedURL2, …)

Can you run the default MR PageRank algorithm sample
on this? What does it show?
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SIMPLE ANALYTICS OVER TEXT DATA

5. Analyze Weak Scaling

Experiments on one of the above to analyse weak 
scaling. Plots and analysis.

82
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Simple Analytics over Graph Data

 Source: Twitter, July 2009*
‣ What is Twitter, a Social Network or a News Media?, 

Haewoon Kwak, et al, WWW, 2010

 Total data: 

‣ 41.7 million users, 1.47 billion social relations, 

‣ 26GB raw size

‣ HDFS://SE256/TWITTER

 Data Format

‣ Directed graph as an edge list

‣ UserID \t FollowerID \n

83
*http://an.kaist.ac.kr/traces/WWW2010.html
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Simple Analytics over Graph Data

84
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Simple Analytics over Graph Data

 Sample program provided 
‣ Counts the number of unique vertices and edges

‣ Uses partitioner to sends vertices to one reducer, edges 
to another

‣ Inefficient…takes ~2hrs. Do not run on original data 
without optimization. Smaller test graph will be 
provided.

 Demo…
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Simple Analytics over Graph Data

1. Improving efficiency of MR

Write a combiner such that the MR job is much faster 
~10mins.

2. PowerLaw Distribution of Graph

MR Job to test if Twitter follows a Powerlaw
distribution for the number incoming and the 
number of outgoing edges. 

Plot the frequency distribution graphs.
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Simple Analytics over Graph Data

87Graph Structure in the Web — Revisited or A Trick of the 
Heavy Tail, Robert Meusel, et al, ACM WWW, 2014

en.wikipedia.org/wiki/Power_law
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Simple Analytics over Graph Data

3. Recommender Service (Extra Credit)

Write one or more MR job(s) that recommends 
people to follow for a given user UA. 

Say the given user UA follows users {U1, U2, …, Ui}. 

Identify other users {UB, UC, UD,…} who follow the 
same set of users {U1, U2, …, Ui} as UA, plus additional 
ones, {Uk,..., Um}. 

From these additional followees {Uk,..., Um}, find the 
ones who are most frequently followed by {UB, UC, 
UD,…} and recommend them to user UA to follow.

88WTF: The Who to Follow Service at Twitter, Pankaj Gupta, et al, ACM WWW, 2013
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Generating and Sorting Datasets 

1. Generating Aadhaar numbers for Benchmarks

MR Job to generate 12 digit positive random long numbers in 
the range of 100,000,000,000 to 999,999,999,999.

Given probability distribution for 90 equi-width intervals, e.g. 
(10×1010,11×1010]: 0.012211111

MR job to validate and print the actual distribution.

2. Sorting Large Numbers

MR application to sort these numbers such that the load on 
each reducer task is balanced.

3. Analyze Weak Scaling

Experiments on the sort MR job to analyse weak scaling. Plots 
and analysis.
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 Try small inputs first before going to larger ones

 Use wildcards to use a subset of inputs
‣ 1 file: *-00001*.gz 10 files: *-0002*.gz 100 files: *-000*.gz
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Pravega Data Science

91

http://www.iisc.dsschack.com/
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Assignment A posted on Jan 25, due 
Feb 10

Assignment Preparation (by 20/Jan)
Wordcount, Distributed Grep, Random Int64 generator

on Course Cluster

Monitoring, Logging and Performance measurement

 How long does grep and sort Linux commands take?
‣ 1MB, 10MB, 100MB, 1GB integer files
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Reading

Hadoop, HDFS & YARN
‣ Data-Intensive Text Processing with MapReduce, Jimmy 

Lin and Chris Dyer, 2010
‣ Hadoop: The Definitive Guide, 4th Edition, 2015
‣ Apache Hadoop YARN: Moving Beyond MapReduce and 

Batch Processing with Apache Hadoop, 2015

93

Additional Resources

 Textbook (Leskovec) Chapters 1.3, 2.1-2.3, 2.5-2.6

 Lin & Dryer, Chapters 2, 3




