
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh Simmhan & Partha Talukdar, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

L2-4:Programming for
Large Datasets

MapReduce

Yogesh Simmhan
1 3 / 2 0 / 2 7 J a n , 2 0 1 6

SE256:Jan16 (2:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Learning Objectives

1. Why is MapReduce is useful?

2. How does the MapReduce programming model
work?

3. How can you design and write simple MR
applications?

4. How can you design and write more advanced
MR applications? [L4]

2

CDS.IISc.in | Department of Computational and Data Sciences

Motivation

3

CDS.IISc.in | Department of Computational and Data Sciences

Distributed Systems

 Distributed Computing
‣ Clusters of machines
‣ Connected over network

 Distributed Storage
‣ Disks attached to clusters of machines
‣ Network Attached Storage

 How can we make effective use of multiple machines?

 Commodity clusters vs. HPC clusters
‣ Commodity: Available off the shelf at large volumes
‣ Lower Cost of Acquisition
‣ Cost vs. Performance

• Low disk bandwidth, and high network latency
• CPU typically comparable (Ceon vs. i3/5/7)

 How can we use many machines of modest capability?

4

CDS.IISc.in | Department of Computational and Data Sciences

Growth of Commodity Data
Centres

5http://www.datacenterdynamics.com/app-cloud/cloud-to-eat-
traditional-data-centers-cisco/91432.article

CDS.IISc.in | Department of Computational and Data Sciences

Degrees of parallelism

Bit/Word

Instruction

Task/Thread

Job

SE252: Introduction to Cloud Computing, Simmhan, 2015
6

CDS.IISc.in | Department of Computational and Data Sciences

Degrees of Parallelism

 Data parallel vs. Task Parallel
• Independent processes
• Independent data

dependency

 Tight vs. Loose Coupling

Block/Message

File/Stream

Distributed Files

Do your review…collectively?

1. Blah blah?

SE252: Introduction to Cloud Computing, Simmhan, 2015
7

CDS.IISc.in | Department of Computational and Data Sciences

Scalability

 System Size: Higher performance when adding
more machines

 Software: Can framework and middleware work
with larger systems?

 Technology: Impact of scaling on time, space and
diversity

 Application: As problem size grows (compute,
data), can the system keep up?

 Vertical vs Horizontal: ?

…

SE252: Introduction to Cloud Computing, Simmhan, 2015
8

CDS.IISc.in | Department of Computational and Data Sciences

Scalability Metric

 If the problem size is fixed as 𝑥 and the number of
processors available is 𝑝

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥)

 If the problem size per processor is fixed as 𝑥 and
the number of processors available is 𝑝

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥. 𝑝 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥. 𝑝)

9
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012

CDS.IISc.in | Department of Computational and Data Sciences

Ideal Strong/Weak Scaling

10
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012

CDS.IISc.in | Department of Computational and Data Sciences

Strong Scaling

 Amdahl’s Law for Application Scalability
‣ Total problem size is fixed
‣ Speedup limited by sequential bottleneck

 𝑓𝑠 is serial fraction of application

 𝑓𝑝 is fraction of application that can be parallelized

 𝑝 is number of processors

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥)

=
1

𝑓𝑠 +
𝑓𝑝
𝑝

Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
11

CDS.IISc.in | Department of Computational and Data Sciences

Amdahl’s Law

© Daniels220 at English Wikipedia

© Gorivero

© Martha A. Kim

12

CDS.IISc.in | Department of Computational and Data Sciences

Weak Scaling
Gustafson’s Law of weak scaling

‣ Problem size increases with # of processors
‣ “Scaled speedup”

 𝛼 is fraction of application that is sequential, when
parallel work per processor is fixed (different from 𝑓𝑠)

 𝑝 is number of processors

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥. 𝑝 =
𝑡𝑖𝑚𝑒(1, 𝑥)

𝑡𝑖𝑚𝑒(𝑝, 𝑥. 𝑝)

=
𝛼 + 𝑝. (1 − 𝛼)

𝛼 +
𝑝. (1 − 𝛼)

𝑝
= 𝑝 − 𝛼. (𝑝 − 1)

Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012
13

CDS.IISc.in | Department of Computational and Data Sciences

Weak Scaling

14
© Peahihawaii

Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012

CDS.IISc.in | Department of Computational and Data Sciences

Scalability

 Strong vs. Weak Scaling

 Strong Scaling: How the performance varies with
the # of processors for a fixed total problem size

Weak Scaling: How the performance varies with
the # of processors for a fixed problem size per
processor
‣ MapReduce is intended for “Weak Scaling”

15

CDS.IISc.in | Department of Computational and Data Sciences

Ease of Programming

 Programming distributed systems is difficult
‣ Divide a job into multiple tasks

‣ Understand dependencies between tasks: Control, Data

‣ Coordinate and synchronize execution of tasks

‣ Pass information between tasks

‣ Avoid race conditions, deadlocks

 Parallel and distributed programming
models/languages/abstractions/platforms try to
make these easy
‣ E.g. Assembly programming vs. C++ programming

‣ E.g. C++ programming vs. Matlab programming

16

CDS.IISc.in | Department of Computational and Data Sciences

Availability, Failure

 Commodity clusters have lower reliability
‣ Mass-produced

‣ Cheaper materials

‣ Smaller lifetime (~3 years)

 How can applications easily deal with failures?

 How can we ensure availability in the presence of faults?

17

CDS.IISc.in | Department of Computational and Data Sciences

Map Reduce

18

CDS.IISc.in | Department of Computational and Data Sciences

Patterns & Technologies

MapReduce is a distributed data-parallel programming

model from Google

MapReduce works best with a distributed file system,

called Google File System (GFS)

 Hadoop is the open source framework implementation

from Apache that can execute the MapReduce

programming model

 Hadoop Distributed File System (HDFS) is the open

source implementation of the GFS design

 Elastic MapReduce (EMR) is Amazon’s PaaS

19

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce

“A simple and powerful interface that enables

automatic parallelization and distribution of large-

scale computations, combined with an

implementation of this interface that achieves high

performance on large clusters of commodity PCs.”

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”,
OSDI, 2004

20

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce Design Pattern

 Clean abstraction for programmers

 Automatic parallelization & distribution

 Fault-tolerance

 A batch data processing system

 Provides status and monitoring tools

21

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce: Data-parallel
Programming Model
 Process data using map & reduce functions

map(ki, vi)  List<km, vm>[]
‣ map is called on every input item
‣ Emits a series of intermediate key/value pairs

 All values with a given key are grouped together

reduce(km, List<vm>[])  List<kr, vr>[]
‣ reduce is called on every unique key & all its values
‣ Emits a value that is added to the output

Copyright © 2011 Tom White, Hadoop Definitive Guide 22

CDS.IISc.in | Department of Computational and Data Sciences

MR Borrows from Functional
Programming

Functional operations do not modify data
structures
‣ They always create new ones

‣ Original data still exists in unmodified form (read
only)

Data flows are implicit in program design

Order of operations does not matter
‣ Commutative: a ◊ b ◊ c = b ◊ a ◊ c = c ◊ b ◊ a

23

CDS.IISc.in | Department of Computational and Data Sciences

MR Borrows from Functional
Programming

 In a purely functional setting
‣ Elements computed by map cannot see the

effects of map on other elements

‣ Order of applying reduce is commutative
• a ◊ b = b ◊ a

• Allowing parallel/reordered execution

‣ More optimizations possible if reduce is also
associative

• (a ◊ b) ◊ c = a ◊ (b ◊ c)

24

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce & MPI Scatter-
Gather

25
http://mpitutorial.com/mpi-scatter-gather-and-allgather/

M M M M

R R R M
Routing determined by

array index/element
position

Routing determined by key

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce: Word Count

How now
Brown cow

How does
It work
now

brown 1
cow 1
does 1
how 2
it 1
now 2
work 1

M

M

M

M

R

R

<how,1>
<now,1>
<brown,1>
<cow,1>
<how,1>
<does,1>
<it,1>
<work,1>
<now,1>

<how,1 1>
<now,1 1>
<brown,1>
<cow,1>
<does,1>
<it,1>
<work,1>

Input Output

Map

Reduce

MapReduce Framework

Map(k1,v1) → list(k2,v2)
Reduce(k2, list(v2)) → list(v2)

Distributed Wordcount 26

CDS.IISc.in | Department of Computational and Data Sciences

Map
 Input records from the data source

‣ lines out of files, rows of a database, etc.

 Passed to map function as key-value pairs
‣ Line number, line value

map() produces zero or more intermediate values,
each associated with an output key

27

CDS.IISc.in | Department of Computational and Data Sciences

Map

 Example Wordcount

map(String input_key, String input_value):

// input_key: line number

// input_value: line of text

for each Word w in input_value.tokenize()

EmitIntermediate(w, "1");

(0, “How now brown cow”) →

[(“How”, 1), (“now”, 1), (“brown”, 1), (“cow”, 1)]

28

CDS.IISc.in | Department of Computational and Data Sciences

 Example: Upper-case Mapper
map(k, v) { emit(k.toUpper(), v.toUpper()); }

(“foo”, “bar”) → (“FOO”, “BAR”)

(“Foo”, “other”) → (“FOO”, “OTHER”)

(“key2”, “data”) → (“KEY2”, “DATA”)

 Example: Filter Mapper
map(k, v) { if (isPrime(v)) then emit(k, v); }

(“foo”, 7) → (“foo”, 7)

(“test”, 10) → () //nothing emitted

29

CDS.IISc.in | Department of Computational and Data Sciences

Reduce
 All the intermediate values from map for a given

output key are combined together into a list

 reduce() combines these intermediate values into one
or more final values for that same output key …
Usually one final value per key

One output “file” per reducer

30

CDS.IISc.in | Department of Computational and Data Sciences

Reduce
 Example Wordcount

reduce(String output_key, Iterator intermediate_values)

// output_key: a word

// output_values: a list of counts

int sum = 0;

for each v in intermediate_values

sum += ParseInt(v);

Emit(output_key, AsString(sum));

(“A”, [1, 1, 1]) → (“A”, 3)

(“B”, [1, 1]) → (“B”, 2)

31

CDS.IISc.in | Department of Computational and Data Sciences

for each w

in value do

emit(w,1)

How now
Brown cow

How does
It work now

for all w in

value do

emit(w,1)

<How,1>
<now,1>
<brown,1>
<cow,1>

<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>

<brown,1>
<cow,1>

<does,1>
<it,1>
<work,1>

How 2
now 2

does 1
it 1
work 1

brown 1
cow 1

sum =

sum + value

emit(key,sum)

MapReduce: Word Count Drilldown

CDS.IISc.in | Department of Computational and Data Sciences

Mapper/Reducer Tasks vs.
Map/Reduce Methods
Number of Mapper and Reducer tasks is specified

by user

 Each Mapper/Reducer task can make multiple calls
to Map/Reduce method, sequentially

Mapper and Reducer tasks may run on different
machines

 Implementation framework decides
‣ Placement of Mapper and Reducer tasks on machines

‣ Keys assigned to mapper and reducer tasks

‣ But can be controlled by user…

33

CDS.IISc.in | Department of Computational and Data Sciences

Maintainer State in Tasks

 Capture state & dependencies across multiple keys
and values

34

Mapper object

configure

map

close

state

one object per task
Reducer object

configure

reduce

close

state

one call per input

key-value pair

one call per

intermediate key

API initialization hook

API cleanup hook.

Called after all Map/Reduce calls done.

www.cs.bu.edu/faculty/gkollios/ada14

State preserved for

a task, across calls

CDS.IISc.in | Department of Computational and Data Sciences

Improve Word Count using State?

map(String k, String v)

foreach w in v.tokenize()

emit(w, "1")

reduce(String k, int[] v)

int sum = 0

foreach n in v[] sum += v

emit(k, sum)
35

mapperInit()

H = new HashMap<String,int>()

map(String k, String v)

foreach w in v.tokenize()

H[w] = H[w] + 1

mapperClose()

foreach w in H.keys()

emit(w, H[w])

reduce(String k, int[] v)

int sum = 0;

foreach n in v[] sum += v

emit(k, sum)

CDS.IISc.in | Department of Computational and Data Sciences

Shuffle & Sort
The Magic happens here!

 Shuffle does a “group by” of keys from all mappers
‣ Similar to SQL goupBy operation

 Sort of local keys to Reducer task performed
‣ Keys arriving at each reducer are sorted

‣ No sorting guarantee of keys across reducer tasks

 No ordering guarantees of values for a key
‣ Implementation dependent

 Shuffle and Sort implemented efficiently by framework

36

CDS.IISc.in | Department of Computational and Data Sciences

Host DHost CHost A

Host CHost BHost A

Map-Shuffle-Sort-Reduce

37
Data-Intensive Text Processing with MapReduce, Jimmy Lin, 2010

Intermediate
Key-Value Pairs

CDS.IISc.in | Department of Computational and Data Sciences

Anagram Example

 “An anagram is a type of word play, the result of
rearranging the letters of a word or phrase to
produce a new word or phrase, using all the
original letters exactly once; for example orchestra
can be rearranged into carthorse.” … Wikipedia

 thickens = kitchens, reserved = reversed,

 cheating = teaching, cause = sauce

 Tom Marvolo Riddle = I am Lord Voldemort

 Problem: Find ALL anagrams in the English
dictionary of ~1M words (106)

 1M X 1M comparisons?
38

CDS.IISc.in | Department of Computational and Data Sciences

Anagram Example
public class AnagramMapper extends MapReduceBase implements

Mapper<LongWritable, Text, Text, Text> {

private Text sortedText = new Text();

private Text orginalText = new Text();

public void map(LongWritable key, Text value,

OutputCollector<Text, Text> outputCollector, Reporter reporter) {

String word = value.toString();

char[] wordChars = word.toCharArray();

Arrays.sort(wordChars);

String sortedWord = new String(wordChars);

sortedText.set(sortedWord);

orginalText.set(word);

// Sort word and emit <sorted word, word>

outputCollector.collect(sortedText, orginalText);

}

}
http://code.google.com/p/hadoop-map-reduce-examples/

CDS.IISc.in | Department of Computational and Data Sciences

Anagram Example…

40

public void reduce(Text anagramKey, Iterator<Text> anagramValues,

OutputCollector<Text, Text> results, Reporter reporter) {

String output = "";

while(anagramValues.hasNext()) {

Text anagram = anagramValues.next();

output = output + anagram.toString() + "~";

}

StringTokenizer outputTokenizer =

new StringTokenizer(output,"~");

// if the values contain more than one word

// we have spotted a anagram.

if(outputTokenizer.countTokens()>=2) {

output = output.replace("~", ",");

outputKey.set(anagramKey.toString());

outputValue.set(output);

results.collect(outputKey, outputValue);

}

}

CDS.IISc.in | Department of Computational and Data Sciences

Optimization: Combiner
 Logic runs on output of Map tasks, on the map

machines
‣ “Mini-Reduce,” only on local Map output

 Output of Combiner sent to shuffle
‣ Saves bandwidth before sending data to Reducers

 Same input and output types as Map’s output type
‣ Map(k,v) → (k’,v’)

‣ Combine(k’,v’[]) → (k’,v’)

‣ Reduce(k’,v’[]) → (k’’,v’’)

 Reduce task logic can be used as combiner if
commutative & associative. Usually for trivial ops.

 Combiner may be called 0, 1 or more times
41

CDS.IISc.in | Department of Computational and Data Sciences

Optimization: Partitioner
 Decides assignment of intermediate keys grouped to

specific Reducer tasks
‣ Affects the load on each reducer task

 Sorting of local keys for Reducer task done after
partitioning

 Default is hash partitioning
‣ HashPartitioner(key, nParts) → part

‣ Number of Reducer (nParts) tasks known in advance

‣ Returns a partition number [0, nParts)

‣ Default partitioner balances number of keys per Reducer …
assuming uniform key distribution

‣ May not balance the number of values processed by a Reducer

42

CDS.IISc.in | Department of Computational and Data Sciences

Map-MiniShuffle-Combine-
Partition-Shuffle-Sort-Reduce

43
Data-Intensive Text Processing with MapReduce, Jimmy Lin, 2010

MiniShuffle

Combine & Partition phases
could be interchanged,
based on implementation

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce for Histogram

44

int bucketWidth = 4 // input

Map(k, v) {
emit(floor(v/bucketWidth), 1)
// <bucketID, 1>

}

// one reduce per bucketID
Reduce(k, v[]){

sum=0;
foreach(n in v[]) sum++;
emit(k, sum)
// <bucketID, frequency>

}

M M

7
2
9
6
0
2
5

2
1

10
3
5
4
0

11
11
6
2
1
8
1

2
4
6
8

10
11
0

1,1
0,1
2,1
1,1
0,1
0,1
1,1

0,1
0,1
2,1
0,1
1,1
1,1
0,1

2,1
2,1
1,1
0,1
0,1
2,1
0,1

0,1
1,1
1,1
2,1
2,1
2,1
0,1

Shuffle
2,1
2,1
2,1
2,1
2,1
2,1
2,1
2,1

0,1
0,1
0,1
0,1
0,1
0,1

1,1
1,1
1,1
1,1
1,1
1,1
1,1
1,1

0,1
0,1
0,1
0,1
0,1
0,1

R R R

2,8 0,12 1,8

Data transfer &
shuffle between
Map & Reduce
(28 items)

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce for Histogram

45Since Reducer is commutative and associative, its logic can be used as a Combiner

1,1
0,1
2,1
1,1

0,1
0,1
2,1
0,1

2,1
2,1
1,1
0,1

0,1
1,1
1,1
2,1

0,1
0,1
1,1

1,1
1,1
0,1

0,1
2,1
0,1

2,1
2,1
0,1

C C C

2,2 1,5 0,7

C C C

2,6 1,3 0,5

Mini Shuffle

2,1
2,1

1,1
1,1
1,1
1,1
1,1

0,1
0,1
0,1
0,1

0,1
0,1
0,1

Mini Shuffle

2,1
2,1
2,1

1,1
1,1
1,1

0,1
0,1
0,1
0,1
0,1

2,1
2,1
2,1

Shuffle
2,2
2,6

1,5
1,3

0,7
0,5

R R R

2,8 1,8 0,12

int bucketWidth = 4 // input

Map(k, v) {
emit(floor(v/bucketWidth), 1)
// <bucketID, 1>

}

Combine(k, v[]){
// same code as Reduce()

}

// one reduce per bucketID
Reduce(k, v[]){

sum=0;
foreach(n in v[]) sum++;
emit(k, sum)
// <bucketID, frequency>

}

6 items

Mini-shuffle
between Map &
Combine
(28 items)

M M

7
2
9
6
0
2
5

2
1

10
3
5
4
0

11
11
6
2
1
8
1

2
4
6
8

10
11
0

Combiners for all keys
may not run. And they

may run on only a subset
of values for the key.

CDS.IISc.in | Department of Computational and Data Sciences

Combiner Advantage

Mini-Shuffle lowers the overall cost for Shuffle

 E.g. n total items emitted from m mappers

NW Transfer and Disk IO costs
‣ In ideal case, m items vs. n items written and read from

disk, transferred over network (m<<n)

 Shuffle, less of an impact
‣ If more mapper tasks are present than reducers, higher

parallelism for doing groupby and mapper-side partial
sort.

‣ Local Sort on reducer is based on number of unique
keys, which does not change due to combiner.

46

CDS.IISc.in | Department of Computational and Data Sciences

TeraSort: Sorting Large Files

 Input is a list of positive numbers (or words)
‣ Say a terabyte of data, 1011 entries

Output is the list of numbers or words in sorted
order

How can we use MapReduce for this?

47

CDS.IISc.in | Department of Computational and Data Sciences

TeraSort: Sorting Large Files

 Approach 1
‣ Have n mappers and 1 reducer tasks

‣ Map(key, num) → (num, 0)

‣ Shuffle & Local Sort: All numbers (intermediate keys) to
the single reducer is sorted by framework

‣ Reduce(num, [0]) → (num+)

‣ Output from the reducer task is in sorted order

‣ NOTE: repeat printing of num if there are duplicate ‘0’

‣ Do we have any scaling?

48

CDS.IISc.in | Department of Computational and Data Sciences

TeraSort: Sorting Large Files

 Approach 2
‣ n mapper, m reducer tasks

‣ Map(key, num) → (num, 0)

‣ Shuffle & Local Sort: All numbers (intermediate keys) to
a single reducer are sorted

‣ Reduce(num, [0]) → (num+)

‣ Local output of numbers from each reducer is sorted,
e.g. m sorted files

‣ Merge Sort separately? O(n.k2)

‣ What is the scaling?

49

CDS.IISc.in | Department of Computational and Data Sciences

TeraSort: Sorting Large Files

 Approach 3
‣ n mapper, m reducer tasks

‣ Map(key, num) → (num/(MAX/m), num)

‣ Map does a histogram distribution of num into reduce
method buckets

‣ Reduce(bucketID, num[]) → sort(num[])

‣ Reduce performs a local sort of all local numbers
• Sort managed by us, needs to fit in memory, etc.

‣ Concatenate output of m sorted files

‣ What is the scaling?

50

CDS.IISc.in | Department of Computational and Data Sciences

TeraSort: Sorting Large Files

 Approach 4
‣ n mapper, m reducer tasks
‣ Map(key, num) → (num, 0)
‣ Partition(num, m) → floor(num/(MAX/m))
‣ Partitioner causes numbers to be range-partitioned to

each reducer
• Range of values required, 0..MAX
• Words (string) requires a trie for efficiency

‣ Shuffle & Sort: Local range of numbers to a reducer is
sorted

‣ Reduce(num, 0) → (num)
‣ Concatenate sorted output from each reducer
‣ What is the scaling?

51

CDS.IISc.in | Department of Computational and Data Sciences

Quick Assignment
Find the Mean of a set of numbers
Map Input: ×, int e.g., <×,8>,<×,32>,<×,20>,<×,4>
Reduce Output: ×, int e.g. <×,16>

52

CDS.IISc.in | Department of Computational and Data Sciences

Computing the Mean:
Simple Approach

Optimization: Can we use Reducer as Combiner?
www.cs.bu.edu/faculty/gkollios/ada1453

All work performed by single Reducer!

CDS.IISc.in | Department of Computational and Data Sciences

Computing the Mean:
Using a Combiner

Is this correct? 54
www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.in | Department of Computational and Data Sciences

Computing the Mean: Fixed?

www.cs.bu.edu/faculty/gkollios/ada14
55

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce: Recap

 Programmers must specify:
map (k, v) → <k’, v’>*
reduce (k’, v’[]) → <k’’, v’’>*
‣ All values with the same key are reduced together

 Optionally, also:
partition (k’, number of partitions) → partition for k’
‣ Often a simple hash of the key, e.g., hash(k’) mod n
‣ Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
‣ Mini-reducers that run in memory after the map phase
‣ Used as an optimization to reduce network traffic

 The execution framework handles everything else…

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.in | Department of Computational and Data Sciences

“Everything Else”

 The execution framework handles everything else…
‣ Scheduling: assigns workers to map and reduce tasks
‣ “Data distribution”: moves processes to data
‣ Synchronization: gathers, sorts, and shuffles intermediate

data
‣ Errors and faults: detects worker failures and restarts

 Limited control over data and execution flow
‣ All algorithms must expressed in m, r, c, p

 You don’t know:
‣ Where mappers and reducers run
‣ When a mapper or reducer begins or finishes
‣ Which input a particular mapper is processing
‣ Which intermediate key a particular reducer is processing

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.in | Department of Computational and Data Sciences

MR Algorithm
Design

58

CDS.IISc.in | Department of Computational and Data Sciences

Map-Only Design

Filtering: Distributed Grep
 Input

‣ Lines of text from HDFS

‣ “Search String” (e.g. regex), input parameter to job

Mapper
‣ Search line for string/pattern

‣ Output matching lines

 Reducer
‣ Identity function (output = input), or none at all

59

CDS.IISc.in | Department of Computational and Data Sciences

Accumulation
 List of courses with number of students enrolled in each (GoI

scheme with citizens enrolled in each)

 Input
‣ <StudentID, CourseID>
‣ <2482, SE256> <6427, SE252> <1635, E0 259>

 Mapper
‣ Emit <CourseID, 1>
‣ <SE256, 1>, <SE252, 1>, <E0 259, 1>

 Partition
‣ By Course ID

 Sort <E0 259, 1>, <SE252, 1>, <SE256, 1>

 Reduce <E0 259, [1,1]>, <SE252, [1]>, <SE256, [1,1,1]>
‣ Count number of students per Course.
‣ Output <Course ID, Count>
‣ <SE256, 2>, <SE252, 1>, <E0 259, 3>

60

CDS.IISc.in | Department of Computational and Data Sciences

Inverted Index

 Convert from Key:Values to Value:Keys form
‣ E.g. <URL, Lines> => <Word:URL[]>

‣ Useful for building search index

 Input: <URL, Line>

Map: foreach(Word in Line) emit(Word, URL)

 Combiner: Combine URLs for same Word

 Reduce: emit(Word, sort(URL[]))

61

CDS.IISc.in | Department of Computational and Data Sciences

Inverted Index Example

62Introduction to MapReduce and Hadoop, Matei Zaharia, UC Berkeley

CDS.IISc.in | Department of Computational and Data Sciences

Join

63

http://www.tomjewett.com/dbdesign/dbdesign.php?page=join.php

CDS.IISc.in | Department of Computational and Data Sciences

Join
 Given two sets of files, combine the lines having the

same key in each file

 Input:
‣ <customer_data>, <order_data>

Mapper:
‣ emit <cell, customer_data>, <cell, order_data>

 Reduce:
‣ If both keys are unique,

• <cell, [customer_data, order_data]>
• Just concatenate and emit the pair, if there are two items
• If only one item (only customer or order value present), skip

‣ If either or both keys are not unique,
• <cell, [customer_data*, order_data*]>
• Emit cross product of customer_data* and order_data* values,

i.e., local join for each cell key 64

CDS.IISc.in | Department of Computational and Data Sciences

Reverse graph edge directions
& output in node order

65Parallel Programming with Hadoop/MapReduce, Tao Yang

 Input: adjacency list of graph (e.g. 3 nodes and 4 edges)
(3, [1, 2]) (1, [3])

(1, [2, 3])  (2, [1, 3])

(3, [1])

 node_ids in the output values are also sorted.
But Hadoop only sorts on keys!

MapReduce format
‣ Input: (3, [1, 2]), (1, [2, 3]).

‣ Intermediate: (1, [3]), (2, [3]), (2, [1]), (3, [1]). (reverse edge
direction)

‣ Out: (1,[3]) (2, [1, 3]) (3, [[1]).

1 2

3

1 2

3



CDS.IISc.in | Department of Computational and Data Sciences

More Algorithms

Numerical Integration

 PageRank

 Regression Tree

 Try these yourselves!

69

CDS.IISc.in | Department of Computational and Data Sciences

Scalable Hadoop
Algorithms: Themes
 Avoid object creation

‣ Inherently costly operation

‣ Garbage collection

 Avoid buffering
‣ Limited heap size

‣ Works for small datasets, but won’t scale!

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.in | Department of Computational and Data Sciences

Importance of Local
Aggregation
 Ideal scaling characteristics:

‣ Twice the data, twice the running time

‣ Twice the resources, half the running time

Why can’t we achieve this?
‣ Synchronization requires communication

‣ Communication kills performance

 Thus… avoid communication!
‣ Reduce intermediate data via local aggregation

‣ Combiners can help

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.in | Department of Computational and Data Sciences

Design Pattern for Local
Aggregation
 “In-mapper combining”

‣ Fold the functionality of the combiner into the
mapper by preserving state across multiple map
calls

Advantages
‣ Speed

‣ Why is this faster than actual combiners?

Disadvantages
‣ Explicit memory management required

‣ Potential for order-dependent bugs

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.in | Department of Computational and Data Sciences

Combiner Design

Combiners and reducers share same method
signature
‣ Sometimes, reducers can serve as combiners

‣ Often, not…

Remember: combiner are optional
optimizations
‣ Should not affect algorithm correctness

‣ May be run 0, 1, or multiple times

Example: find average of all integers associated
with the same key

www.cs.bu.edu/faculty/gkollios/ada14

CDS.IISc.in | Department of Computational and Data Sciences

Assignment A
Due on Wed Feb 3, 2016 Sun Feb 7, 2016 by
midnight IST

10% weightage 15% weightage

74

CDS.IISc.in | Department of Computational and Data Sciences

Objectives

 Defining simple analytics over large text and graph
datasets, and translating them into MapReduce algos.

Writing new MR applications & improving performance
existing ones using combiners and partitioners.

 Generating large synthetic datasets for evaluation.

 Awareness of memory/CPU used by Mappers/Reducer
tasks.

 Analysis of MapReduce application logs to evaluate
performance and scalability.

 Learning to start assignments early on a shared cluster


75

CDS.IISc.in | Department of Computational and Data Sciences

SIMPLE ANALYTICS OVER TEXT DATA

 Source: Common Crawl, Nov 2015*
‣ Internet Archive: WayBack Machine, www.archive.org

 Total data: 1.8 Billion pages (1,800,000,000,000),
150TB (150,000,000,000,000)

 Course data: 0.5% of WWW
‣ 750GB raw data, 180GB compressed data in 180 files
‣ HDFS://SE256/CC

Web ARChive (WARC) file format
‣ HTTP headers and responses
‣ Content body
‣ Hadoop input format readers provided (1 split per file)

76
*http://blog.commoncrawl.org/2015/12/november-2015-crawl-archive-now-available/

CDS.IISc.in | Department of Computational and Data Sciences

SIMPLE ANALYTICS OVER TEXT DATA

77
More files will be added gradually to total 180

CDS.IISc.in | Department of Computational and Data Sciences

78
HTTP Request/

Response/Metadata
Content Body

Peek inside an uncompressed WARC file …

CDS.IISc.in | Department of Computational and Data Sciences

SIMPLE ANALYTICS OVER TEXT DATA

 Sample program provided
‣ Uses WARCFileInputFormat to read the files and

return ArchiveReader

‣ Extracts HTTP header’s content-length attribute –
Summation of size of all content

‣ Checks if the content-type is HTML, and if so, extracts
the content of the body – Summation of size of HTML
content

 Demo…

79

CDS.IISc.in | Department of Computational and Data Sciences

SIMPLE ANALYTICS OVER TEXT DATA

1. Country’s Digital Footprint & Correlation

MR job to return the number of unique webpages in
which each country is mentioned, and total number
of times a country is mentioned.

Is there correlation between the GDP and mentions?

2. Partnerships & Feuds between Countries

MR Job to find Top 20 pairs of countries frequently
mentioned together in the same webpage.

Is there a reason why?

80

CDS.IISc.in | Department of Computational and Data Sciences

SIMPLE ANALYTICS OVER TEXT DATA

3. Popularity Contests

Define a problem to find which of two entities are
popular, e.g., “Martian” vs. “The Big Short”, “Swacch
Bharath” vs. “Jan Dhan”. Write an MR job to find it.

Is the answer as expected? Can this help predict future?
(Oscars!)

4. Pre-processing & Transforming Data

MR job to generate the graph of this crawl dataset as an
adjacency list (SourceURL→LinkedURL1, LinkedURL2, …)

Can you run the default MR PageRank algorithm sample
on this? What does it show?

81

CDS.IISc.in | Department of Computational and Data Sciences

SIMPLE ANALYTICS OVER TEXT DATA

5. Analyze Weak Scaling

Experiments on one of the above to analyse weak
scaling. Plots and analysis.

82

CDS.IISc.in | Department of Computational and Data Sciences

Simple Analytics over Graph Data

 Source: Twitter, July 2009*
‣ What is Twitter, a Social Network or a News Media?,

Haewoon Kwak, et al, WWW, 2010

 Total data:

‣ 41.7 million users, 1.47 billion social relations,

‣ 26GB raw size

‣ HDFS://SE256/TWITTER

 Data Format

‣ Directed graph as an edge list

‣ UserID \t FollowerID \n

83
*http://an.kaist.ac.kr/traces/WWW2010.html

CDS.IISc.in | Department of Computational and Data Sciences

Simple Analytics over Graph Data

84

CDS.IISc.in | Department of Computational and Data Sciences

Simple Analytics over Graph Data

 Sample program provided
‣ Counts the number of unique vertices and edges

‣ Uses partitioner to sends vertices to one reducer, edges
to another

‣ Inefficient…takes ~2hrs. Do not run on original data
without optimization. Smaller test graph will be
provided.

 Demo…

85

CDS.IISc.in | Department of Computational and Data Sciences

Simple Analytics over Graph Data

1. Improving efficiency of MR

Write a combiner such that the MR job is much faster
~10mins.

2. PowerLaw Distribution of Graph

MR Job to test if Twitter follows a Powerlaw
distribution for the number incoming and the
number of outgoing edges.

Plot the frequency distribution graphs.

86

CDS.IISc.in | Department of Computational and Data Sciences

Simple Analytics over Graph Data

87Graph Structure in the Web — Revisited or A Trick of the
Heavy Tail, Robert Meusel, et al, ACM WWW, 2014

en.wikipedia.org/wiki/Power_law

CDS.IISc.in | Department of Computational and Data Sciences

Simple Analytics over Graph Data

3. Recommender Service (Extra Credit)

Write one or more MR job(s) that recommends
people to follow for a given user UA.

Say the given user UA follows users {U1, U2, …, Ui}.

Identify other users {UB, UC, UD,…} who follow the
same set of users {U1, U2, …, Ui} as UA, plus additional
ones, {Uk,..., Um}.

From these additional followees {Uk,..., Um}, find the
ones who are most frequently followed by {UB, UC,
UD,…} and recommend them to user UA to follow.

88WTF: The Who to Follow Service at Twitter, Pankaj Gupta, et al, ACM WWW, 2013

CDS.IISc.in | Department of Computational and Data Sciences

Generating and Sorting Datasets

1. Generating Aadhaar numbers for Benchmarks

MR Job to generate 12 digit positive random long numbers in
the range of 100,000,000,000 to 999,999,999,999.

Given probability distribution for 90 equi-width intervals, e.g.
(10×1010,11×1010]: 0.012211111

MR job to validate and print the actual distribution.

2. Sorting Large Numbers

MR application to sort these numbers such that the load on
each reducer task is balanced.

3. Analyze Weak Scaling

Experiments on the sort MR job to analyse weak scaling. Plots
and analysis.

89

CDS.IISc.in | Department of Computational and Data Sciences

 Try small inputs first before going to larger ones

 Use wildcards to use a subset of inputs
‣ 1 file: *-00001*.gz 10 files: *-0002*.gz 100 files: *-000*.gz

90

CDS.IISc.in | Department of Computational and Data Sciences

Pravega Data Science

91

http://www.iisc.dsschack.com/

CDS.IISc.in | Department of Computational and Data Sciences

Assignment A posted on Jan 25, due
Feb 10

Assignment Preparation (by 20/Jan)
Wordcount, Distributed Grep, Random Int64 generator

on Course Cluster

Monitoring, Logging and Performance measurement

 How long does grep and sort Linux commands take?
‣ 1MB, 10MB, 100MB, 1GB integer files

CDS.IISc.in | Department of Computational and Data Sciences

Reading

Hadoop, HDFS & YARN
‣ Data-Intensive Text Processing with MapReduce, Jimmy

Lin and Chris Dyer, 2010
‣ Hadoop: The Definitive Guide, 4th Edition, 2015
‣ Apache Hadoop YARN: Moving Beyond MapReduce and

Batch Processing with Apache Hadoop, 2015

93

Additional Resources

 Textbook (Leskovec) Chapters 1.3, 2.1-2.3, 2.5-2.6

 Lin & Dryer, Chapters 2, 3

