S, Indian Institute of Science Department of Computational and Data Sciences

A .
4 J ® Bangalore, India
h 2

L5-6:Runtime
Platforms
Hadoop and HDFS

Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Learning Objectives

1. How does HDFS work? Why is it effective?

2. How does Hadoop MapReduce work? Why is it
effective?

3. Optimizations for performance and reliability in
Hadoop MR

2016-02-10

CDS.IISc.in | Department of Computational and Data Sciences

Data Centre Architecture Recap

" Commodity hardware
» 1000’s machines of medium performance and reliability
> Failure is a given. Design to withstand failure.

= Network bottlenecks

> Hierarchical network design
> Push compute to data

Aggregation switch

<—» 8 gigabit
<«—» 1 gigabit

Rack switch

2016-02-10

Introduction to MapReduce and Hadoop, Matei Zaharia, UC Berkeley

CDS.IISc.in | Department of Computational and Data Sciences

Data Centre Architecture Recap

= |/O bottlenecks & failure
» Multiple disks for cumulative bandwidth
> Data redundancy: Hot/Hot

= Example: How long to read 150TB of CC data?
» Say you can store 150GB in a SATA disk
e SATA Disk bandwidth is 3Gbps - 111hrs
» Say you have 50 disks of 3Gbps, each with 3TB
* 1/O controller in node handles 10Gbps - 33hrs to read
» Say cluster with 12 nodes, 4 disks of 3TB each
e (150/12)TB *1000*8bits/10Gbps = 2.7hrs to read

» Say cluster with 12 nodes, dual Ethernet, reading over
network

e (150/12)TB*1000*8/2Gbps = 13.9hrs to read

= Time to read across network is not very different from
time to read from stressed disk

2 Ol 6 _ 0 Z - 10 GrayWaulf, Scalable Clustered Architecture for Data Intensive Computing, Szalay,
HICSS, 2008

CDS.IISc.in | Department of Computational and Data Sciences

E.g. Open Cloud Server

* High density: 24 blades /
chassis, 96 blades / rack

= Compute blades
» Dual socket, 4 HDD, 4 SSD
» 16-32 CPU cores
» 4-16TB HDD/SSD

= JBOD Blade
» 10 to 80 HDDs, 6G or 12G SAS
» 40-160TB HDD

2016-02-10 http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns

. CDS.IISc.in | Department of Computational and Data Sciences

Class Cluster

= Nodes

> 8 core AMD Opteron
3380, 2.6GHz

» 32GB DDR3
» 2TB HDD
» 1Gbps LAN

= 12 nodes, 3U

= 1 Gigabit within switch,
10Gbps across switches

2016-02-10 http://www.supermicro.com/Aplus/system/3U/3012/AS-3012MA-H12TRF.cfm

yutational and Data Sciences

Cisce’s Data Center in Texas

w
(«B)
wJ
o
2
(&
v
(3=}
od
A=}
[
=
c
(3=}
=
o
.m
o
(3=}
o
=
{ o 1§
=
(=}
J
S
(=)
ofd
—
(«B)
=

\

‘%_
ye!

5~ ~0~0 G~ OGO~~~

&

2 V‘Q\ 4 \. \\FM.
45/ 3
(Ml V.

»01(Geogle’s Data Center in Georgia

CDS.IISc.in | Department of Computational and Data Sciences

Zglﬁl_\ﬂiqﬁ)soft’s Data Center in Ireland

CDS.IISc.in | Department of Computational and Data Sciences

2016'—\{]52'91'3 Data Center in Utah

| Department of Computational and Data Sciences

Doug Cutting and Hadoop the elephant

Hadoop was created by Doug Cutting (Yahoo) and Mike
Cafarella (UW) in 2006.
Cutting's son, then 2, was just beginning to talk and called his
beloved stuffed yellow elephant "Hadoop" (with the stress on

the first syllable).

2016‘02‘10 http://www.cnbc.com/id/100769719
https://en.wikipedia.org/wiki/Apache Hadoop#History

http://www.cnbc.com/id/100769719
https://en.wikipedia.org/wiki/Apache_Hadoop#History

irtment of Computational and Data Sciences

namenode job submission node

namenode daemon jobtracker
="
- =" 4" N
- - "
o -“' .,

tasktracker tasktracker tasktracker

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system

Figure 2.6: Architecture of a complete Hadoop cluster, which consists of three separate compo-

nents: the HDFS master (called the namenode). the job submission node (called the jobtracker),
and many slave nodes (three shown here). Each of the slave nodes runs a tasktracker for exe-

cuting map and reduce tasks and a datanode daemon for serving HDFS data.

2016'02'10 Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer, 2010

. CDS.IISc.in | Department of Computational and Data Sciences

Hadoop: Big Picture Interactions

) HDFS
. replication
) HDFS
. replication
Figure 2-4. MigpReduce j:tu flow with multiple red{ice tasks
. J\. \. y,
Data Node TaskTracker TaskTracker Data Node

2016-02-10 Hadoop: The Definitive Guide, 4t Edition, 2015

CDS.IISc.in | Department of Computational and Data Sciences

Hadoop Distributed
File System

2016-02-10

CDS.IISc.in | Department of Computational and Data Sciences

Hadoop Distributed File System
(HDFS)

= Based on Google File System (GFS)
= Optimized for huge files

= Write once, read many
> Create new data. Never update-in-place, only append.
» No write locks needed. Initial cost of writes is amortized.

= Optimized for sequential reads
> Typically, start at a point and read to completion

" Throughput (cumulative bandwidth) favoured over low
latency
» Low total time for all data than time per small files

= Survive high disk/node failures
» Both persistence, availability

¢016-02-10 The Google File System, Sanjay Ghemawat, et al, SOSP, 2003

Department of Computational and Data Sciences

= Files are split into blocks of equal size
» Unit of data that can be read or written
» Block sizes are large, e.g. 128MB

» Blocks themselves are persisted on local disks, e.g. using
POSIX file system

» Blocks are replicated

= Advantages
> Larger reads/writes (throughput)
» Files can be larger than single disk

» Eases distributed management
e Same size, opaque content, complexity pushed up.
e Unit of recovery, replication

2016-02-10

irtment of Computational and Data Sciences

= Master-slave architecture

» Master manages namespace, directory/file names/tree
structure, metadata, block ids, permissions

» Slave manages blocks containing data

HDFS namenode

Application - block id) ffoo/bar
e name, block i N
HDFS Client [, SRl block 342
Fy (block id, block location)

T instructions to datanode

datanode state

(block id, byte range)

HDFS datanode HDFS datanode
Linux file system Linux file system

&8 - B .-

Figure 2.5: The architecture of HDFS. The namenode (master) is responsible for maintaining

block data

the file namespace and directing clients to datanodes (slaves) that actually hold data blocks
containing user data.

2016-02-10

Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer, 2010

in | Department of Computational and Data Sciences

Name Node

= Persists names, trees, metadata, permissions on
disk
> Namespace image (fsimage)
» Edit log of deltas (rename, permission, create)
» Mapping from files to list of blocks

= Security is not a priority

= Block location not persistent, kept in-memory

» Mapping from blocks to locations is dynamic
« Why?
» Reconstructs location of blocks from data nodes

2016-02-10

CDS.IISc.in | Department of Computational and Data Sciences

Master: Name Node

" Detects health of FS
> |s data node alive?
> |s data block under-replicated?
» Rebalancing block allocation across data nodes,
improved disk utilization
= Coordinates file operations
» Directs application clients to datanodes for reads
» Allocates blocks on datanodes for writes

2016-02-10

Department of Computational and Data Sciences

Name Node

= Single Point of failure! (Hadoop 1.x)
» Upgrades - Downtime
> Failure—> Data loss (file names, file:block ID mapping)
» Secondary NameNode (Stale backup), multiple FS

* NameNode High Availability (Hadoop 2.x)

> Cold standby can take time
* 10mins to load, 1hr for block list

» Active acks after write to NFS

> Hot standby refreshed periodically

> Loads current status into memory

» Shared NFS should be reliable! ‘cbename todes

» DataNodes send heartbeat to both
* But ops received only from active

All name space edits
logged to shared storage

2016-02-10

CDS.IISc.in | Department of Computational and Data Sciences

Slave/\Worker: Data Node

= Store & retrieve blocks
= Respond to client and master requests for block operations
= Sends heartbeat every 3 secs for liveliness

= Periodically sends list of block IDs and location on that node
= Piggyback on heartbeat message

= e.g., send block list every hour

2016-02-10

CDS.IISc.in | Department of Computational and Data Sciences

File Reads

= Clients get list of data nodes locations for each block from
NameNode, sorted by distance

= Blocks read in order
» Connection opened and closed to nearest DataNode for each block
» Tries alternate on network failure, checksum failure

1: apen IETOTCU | | 2 getblocklocations :
HDFS R FileSystem g emeNode
client .3 read
..,.__:"'"u-.‘
e FsData namenode
6: close”™ M InputStream
client JYM :

client node
4 readé Seread
v T
Datalode DataNode M
datanode datanode datanode

Figure 3-2. A client reading data from HDFS
2016-02-10 Hadoop: Ine DeTinitive GUlde, 4% EAITIoNn, ZUL5

AISc.in | Department of Computational and Data Sciences

= Clients get list of data nodes to store a block’s replica
> First copy on same data node as client, or random.
» Second is off-rack. Third on same rack as second.

= Blocks written in order. Forwarded in a pipeline. Acks
from all replicas expected before next block written.

2: (reate
HDFs _1_:_‘1‘-??_‘_‘-?_____.. S NameNode
d.“nt _'J"._HFII-I.E B b. I I I n“de I
B o FSData od
client JVM TA I I I I
client node -
- (===
4; write packet 5: ack packet
Pipeline of DataNode [l DataNode [DataNode | | | |
datanodes n a | | | |
datanode datanode datanode
rack
4 data center

Figure 3-4. A client writing data to HDFS
2016-02-10 Hadoop: The Definitive Guide, 4th Edition, 2015

. CDS.IISc.in | Department of Computational and Data Sciences

Hadoop YARN

Yet Another Resource Negotiator

2016-02-10

. CDS.IISc.in | Department of Computational and Data Sciences

MapReduce vl —
MapReduce v2 (YARN)

MapReduce
Distributed Processing

MapReduce
Distributed Processing

YARN
Resource Scheduling and Negotiation

HDFS
Distributed Storage

Figure 3.1 The Hadoop 1.0 ecosystem. MapReduce and HDFS are the
core components, while other components are built around the core.

HDFS
Distributed Storage

Figure 3.2 YARN adds a more general interface to run non-MapReduce
jobs within the Hadoop framework

2016'02'10 Apache Hadoop YARN, Arun C. Murthy, et al, HortonWorks, Addison Wesley, 2014

An | Department of Computational and Data Sciences

" Designed for scalability
» 10k nodes, 400k tasks

= Designed for availability

> Separate application management from resource
management

" [mprove utilization

> Flexible slot allocation. Slots not bound to Map or
Reduce types.

" Go beyond MapReduce

2016-02-10

| Department of Computational and Data Sciences

= ResourceManager for cluster

» Keeps track of nodes, capacities, allocations
> Failure and recovery (heartbeats)

= Coordinates scheduling of jobs on the cluster
» Decides which node to allocate to a job
» Ensures load balancing

= Used by programming frameworks to schedule
distributed applications

» MapReduce, Spark, etc.

" NodeManager
» Offers slots with given capacity on a host to schedule tasks
> Container maps to one or more slots

2016-02-10

. CDS.IISc.in | Department of Computational and Data Sciences

YARN Application Lifecycle

Map Reduce Client

- r L "
B Contalner, ,

L "

v, |

Figure 4.1 YARN architecture with two clients (MapReduce and MPI).
The client MPI AM, is running an MPI application and the client MR AM, is
running a MapReduce application.

2016'02'10 Apache Hadoop YARN, Arun C. Murthy, et al, HortonWorks, Addison Wesley, 2014

CDS.IISc.in | Department of Computational and Data Sciences

vlvs.v2 Application
Lifecycle

MapReduce Status ———= MapReduce Status ——3

Job Submission ------- > Job Submission -====--= -
Node Status ————3
Resource Request -------
Figure 3.3 Current Hadoop MapReduce control elements Figure 2.4 New YARN control elements

2016_02'10 Apache Hadoop YARN, Arun C. Murthy, et al, HortonWorks, Addison Wesley, 2014

CDS.IISc.in | Department of Computational and Data Sciences

MapReduce Job Lifecycle

——————————

» Container requests

]
1 | Application | |
' client
]
are aware of block | —
locality , .
I]
: NodeManager :
I]
I]
| 2b:launch H
1 h 4 1
: Container | -
1 1 1
| Application ! 1 I I
i process : 4a:start 1 NodeManager E
| i Container | % .
| nodemanagernode ! 4I:|.Iaunch‘ '
------------ | Container "
1 1
: Application :
H process I
1 1
1 1
: node manager node :

Figure 4-2. How YARN runs an application

2016-02-10 Hadoop: The Definitive Guide, 4t Edition, 2015

. CDS.IISc.in | Department of Computational and Data Sciences

Scheduler
l ApplicationManager

' Continuous Finished

Heartbeat
Container Request
Kill Option Container
Status
Start Containers
Containerheartbeat by Sending CLC
statustoAM
Status
Y Response ‘

Figure 4.2 ApplicationMaster NodeManager interaction.

2016’02'10 Apache Hadoop YARN, Arun C. Murthy, et al, HortonWorks, Addison Wesley, 2014

CDS.IISc.in | Department of Computational and Data Sciences

Schedulingin YARN

= Scheduler has narrow
mandate e
= F[FO, as soon as resource el B2 '
available o
. 7] e
= Capacity 5
> using different queues, min | e
capacity per queue _:
> Allocate excess resource to wrasnose
more loaded
" Fair u V|
> Give all available
> Redistribute as jobs arrive kil e

Figure 4-3. Cluster utilization over time when running a large job and a small job un-
der the FIFO Scheduler (i), Capacity Scheduler (ii), and Fair Scheduler (iii)

Hadoop: The Definitive Guide, 4t Edition, 2015

2016-02-10

. CDS.IISc.in | Department of Computational and Data Sciences

Hadoop MapReduce

2016-02-10

CDS.IISc.in | Department of Computational and Data Sciences

“;F“"’:* Trunjob IS
dient JYM :
client node :

3: copy job
TESOUTCES §

i 6initialize

v

NodeManager
5b: launch
job %,

MRAppMaster

" node manager node

... Lgetnew application

4:submit application

ResourceManager

Sa:start

A T:retrieve

B input splits

Shared
Filesystem
(e.g., HDFS)

.‘.........

10: retrieve job resources

= YarnChild

" resource manager node
5a: start container .+~

" 8 allocate resources

NodeManager

Bb: launch
¥
task JVM

M:run'
h 4

MapTask
or
ReduceTask

node manager node

Figure 7-1. How Hadoop runs a MapReduce job

2016-02-10

Hadoop: The Definitive Guide, 4" Edition, 2015

| Department of Computational and Data Sciences

= Data blocks converted to one or more “splits”

» Typically, 1 split per block ... reduce task creation
overhead vs. overwhelm single task

= Each split handled by a single Mapper task

= Records read from each split, forms Key-Value pair
input to Map function

= Compute tasks are moved to data block location, if
possible
» Enhances data locality

2016-02-10

Department of Computational and Data Sciences

node
|
| || |
<l b |
=
e =
| |
T
rack
[Map task data center
I HDFS block

Figure 2-2. Data-local (a), rack-local (b), and off-rack (c) map tasks

2016-02-10

CDS.IISc.in | Department of Computational and Data Sciences

Reduce | 1: getStat
“:’mmm b e Job ResourceManager

client JYM
client node

resource manager node

getJobStatus
NodeManager
NodeManager
MRAppMaster LSS 3
node manager node task JVM
YamChild
[progress or
FISha":d counter updated ;
Tesyrem statusUpdate]
(e.g., HDFS) prdtet:
MapTask
or
ReduceTask
node manager node

Figure 7-3. How status updates are propagated through the MapReduce system

2016-02-10 Hadoop: The Definitive Guide, 4t Edition, 2015

CDS.IISc.in | Department of Computational and Data Sciences

""""
e
"

Local Disk Local Disk
Copy “Sort” Reduce
phase phase phase
map task arlmun reduce task
5|;|||| 0 3.;;; fetch |, ,-

input Condik i
split Y &
partitions } | " _ i
L / / mixture of in-memory and on-disk data
e \= ~
%‘-‘.‘ . el u.n..,...-b_
Other maps ", Other reduces

Figure 7-4. Shuffle and sort in MapReduce
= Spills when memory buffer full

Divides the data into partitions for each reducer

= performs an in-memory sort by key, per partition
= Runs combiner if present on sorted output and writes

If >3 spill files, runs combiner again.
= Qutputs merged, partitioned and sorted into single file on disk

2016-02-10 Hadoop: The Definitive Guide, 4t Edition, 2015

CDS.IISc.in | Department of Computational and Data Sciences

Local Disk Local Disk
Copy “Sort” Reduce
phase phase phase
map task Pt reduce task

5|;|||| 93.5}; fetch L[

""""
e
"

" Hmmut

L 1 Kmimaﬁn—mmaryundqn-dﬁskdam
; X‘ ~

T

Other maps ", Other reduces

Figure 7-4. Shuffle and sort in MapReduce

= Reducer copies as soon as map output available

> COﬁIed to reducer memory if small, then merged/spilled to
disk on overflow

" Incremental merge sort takes place in background

: FuIIII rgerge/sort takes place before reduce method
calle

2016-02-10 Hadoop: The Definitive Guide, 4th Edition, 2015

CDS.IISc.in | Department of Computational and Data Sciences

Fault Tolerance

" |dempotent, “side-effect free”

= Save data to local disk before reduce
= Task crash & recover

=" Node crash & recover

= Skipping bad records

2016-02-10

. CDS.IISc.in | Department of Computational and Data Sciences

Re-execution

= Redundant execution
" [mprove Utilization
= Speculative execution
" Locating stragglers

2016-02-10

CDS.IISc.in | Department of Computational and Data Sciences

Reading

* Hadoop: The Definitive Guide, 4t" Edition, 2015
> Chapters 3, 4, 7

Additional Resources

= Apache Hadoop YARN: Moving Beyond MapReduce
and Batch Processing with Apache Hadoop, 2015

> Chapters 1, 3,4, 7

2016-02-10

