# **Molecular Dynamics**

#### Sathish Vadhiyar

Courtesy: Dr. David Walker, Cardiff University

# **Molecular Dynamics**

- Application in many areas including biological systems (e.g. drug discovery), metallurgy (e.g. interaction of metal with liquids) etc.
- A domain consisting of number of particles (molecules)
- Each molecule, i is exerted a force, f<sub>ij</sub> by another molecule, j
- Forces are of two kinds:
  - Non-bonded forces computations of pairwise interactions.
  - Bonded forces computations of interactions between molecules that are connected by bonds. Connectivities are fixed. Hence these forces depend on topology of the structure

# **Molecular Dynamics**

- □ The sum of all the forces,  $F_i = \sum_j f_{ij}$  makes the particles assume a new position and velocity
- Particles that are r distance apart do not influence each other
- Thus non-bonded forces are only computed between atoms that are within this cutoff distance
- Given initial velocities and positions of particles, their movements are followed for discrete time steps

# MD Parallelization

- □ 3 methods
- □ 1. Atom decomposition
- 2. Space decomposition
- □ 3. Force decomposition

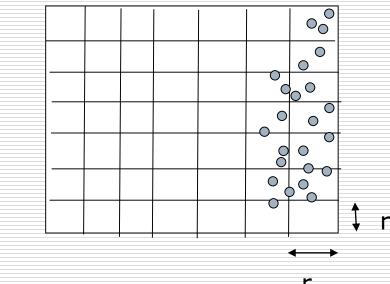
# Atom Decomposition

- Each processor is assigned N/P atoms and updates their positions and velocities irrespective of where they move in the physical domain
- The computational work involved can be represented by the NxN matrix, F, where Fi,j is the non-bonded force on atom i due to atom j
- x and f are vectors that represent positions of and total force on each atom

# Atom Decomposition

- For parallelization, F, x and f are distributed with 1-D block distribution across processors. i.e., every processor computes consecutive N/P rows
- Each processor will need the positions of many atoms owned by other processors; hence each processor stores a copy of all N atom positions, x
- Hence this algorithm is also called replicated data algorithm

# **RD** Algorithm


- For each time step
  - each processor computes forces on its atoms
- updates positions
- processors communicate their positions to all the other processors
- Different atoms have different neighbor entitites; hence the F matrix has to be load balanced
- The main disadvantage is the all-to-all communication of x; also causes memory overhead since x is replicated

# Method 2 – Space decomposition

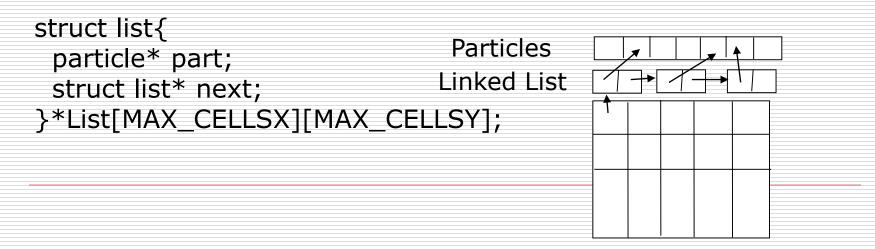
- Similar to Jacobi parallelization. Domain or space is decomposed
- In Jacobi iterations (2D), communication requirements are known in advance
- In a typical Molecular Dynamics simulation problem, the amount of data that are communicated between processors are not known in advance
- The communication is slightly irregular

# Space Decomposition - Solution

# The cutoff distance, r is used to reduce the time for summation from O(n<sup>2</sup>)



Domain decomposed into cells of size rxr


Particles in one cell interact with particles in the neighbouring 8 cells and particles in the same cell

# Space Decomposition - Solution

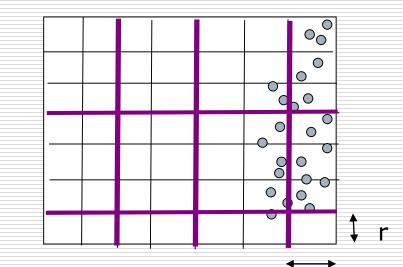
Data structures:

An array of all particles. Each element holds <position, velocity>

- A 2D array of linked lists, one for each cell. Each element of a linked list contains pointers to particles.
- struct particle{
- double position[2];
- double velocity[2];
- } Particles[MAX\_PARTICLES];



# Space Decomposition – Sequential Logic


Initialize Particles and Lists;

```
for each time step
for each particle i
Let cell(k, l) hold i
F[i] = 0;
for each particle j in this cell and neighboring 8 cells, and
are r distance from i{
    F[i]+= f[i, j];
    }
    update particle[i].{position, velocity} due to F[i];
    if new position in new cell (m,n) update Lists[k,l] and
    Lists[m,n]
```

# MD – Space Decomposition

#### A 2D array of processors similar to Laplace

Each processor holds a set of cells



#### **Differences:**

- •A processor can communicate with the diagonal neighbors
- •Amount of data communicated varies over time steps
- •Receiver does not know the amount of data

# MDS – parallel solution

## □ Steps

1. Communication – Each processor communicates parameters of the particles on the boundary cells to its 8 neighboring cells

Challenges – to communicate diagonal cells

2. Update – Each processor calculates new particle velocities and positions

3. Migration – Particles may migrate to cells in other processors

Other challenges:

- 1. Appropriate packing of data.
- 2. Particles may have to go through several hops during migration

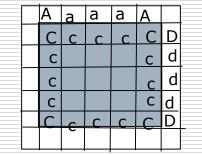
Assumptions:

1. For simplicity, let us assume that particles are transported to only neighboring cells during migration

## Communication of boundary data

|   |   |   |   |   |   |  |   |   |   |   |   |   | _ |   |
|---|---|---|---|---|---|--|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |  |   |   |   |   |   |   |   |   |
|   | Α | а | а | а | Α |  |   | В | b | b | b | В |   |   |
|   | а |   |   |   | а |  |   | b |   |   |   | b |   | - |
|   | а |   |   |   | а |  |   | b |   |   |   | b |   |   |
|   | а |   |   |   | а |  |   | b |   |   |   | b |   |   |
|   | Α | а | а | а | Α |  |   | В | b | b | b | В |   |   |
|   |   | - |   |   |   |  | _ |   |   |   |   |   |   |   |
| L |   |   |   |   |   |  |   |   |   |   |   |   |   |   |
|   |   | · |   |   |   |  |   |   |   |   |   |   |   |   |
|   | С | С | С | С | С |  |   | П | d | d | Ь | П |   |   |
|   |   | ~ | C |   | - |  |   |   | u | d | d |   |   |   |

|  |   |   |   |   |   |  | Ι. |   |   |   |   |   |   |
|--|---|---|---|---|---|--|----|---|---|---|---|---|---|
|  | С | С | С | С | C |  |    | D | d | d | d | D |   |
|  | С |   |   |   | с |  |    | d |   |   |   | d |   |
|  | С |   |   |   | С |  |    | d |   |   |   | d |   |
|  | С |   |   |   | С |  |    | d |   |   |   | d |   |
|  | С | C | С | С | С |  |    | D | d | d | d | d |   |
|  |   |   |   |   |   |  |    |   |   |   |   |   | _ |


### Communication of boundary data

|   | Α | а | а | а | Α |   | В | b | b | b | В |  |
|---|---|---|---|---|---|---|---|---|---|---|---|--|
|   | а |   |   |   | а |   | b |   |   |   | b |  |
|   | а |   |   |   | а | - | b |   |   |   | b |  |
|   | а |   |   |   | а |   | b |   |   |   | b |  |
| 1 | Α | а | а | а | Α |   | В | b | b | b | В |  |
|   |   |   |   |   |   |   |   |   |   |   |   |  |

| С | С | С | С | С |  | D | d | d | d | D |  |
|---|---|---|---|---|--|---|---|---|---|---|--|
| С |   |   |   | С |  | d |   |   |   | d |  |
| С |   |   |   | с |  | d |   |   |   | d |  |
| С |   |   |   | С |  | d |   |   |   | d |  |
| С | C | С | С | С |  | D | d | d | d | d |  |
|   |   |   |   |   |  |   |   |   |   |   |  |

| Α | а | а | а | Α | В |
|---|---|---|---|---|---|
| а |   |   |   | а | b |
| а |   |   |   | а | b |
| а |   |   |   | а | b |
| Α | а | а | а | Α | В |
| C | С | с | С | С |   |

| A | D | U  | D  | D | D        |   |
|---|---|----|----|---|----------|---|
| а | b |    |    |   | b        |   |
| а | b |    |    |   | b        |   |
| а | b |    |    |   | b        |   |
| Α | В | b  | b  | b | В        |   |
|   | D | d  | d  | d | D        |   |
|   |   |    |    |   |          |   |
|   |   | 1. | 1. |   | <u> </u> | F |



|   |   | В | b | b | b | В |  |
|---|---|---|---|---|---|---|--|
| _ | С | D | d | d | d | D |  |
|   | С | d |   |   |   | d |  |
|   | С | d |   |   |   | d |  |
|   | С | d |   |   |   | d |  |
|   | С | D | d | d | d | d |  |
| _ |   |   | 3 |   |   |   |  |

## Communication of boundary data

| a a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |   |   |   |   |  |   |   |   |   |   |   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---|---|---|---|---|---|--|
| a       a       a       b       b       b       a       a       b       a       a       b       a       a       b       a       a       b       a       a       b       a       b       a       a       b       a       b       a       a       b       a       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b |   |   |   |   |   |   |  |   |   |   |   |   |   |  |
| a a   a a   a a   a a   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b   b b <td></td> <td>Α</td> <td>а</td> <td>а</td> <td>а</td> <td>Α</td> <td></td> <td></td> <td>В</td> <td>b</td> <td>b</td> <td>b</td> <td>В</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Α | а | а | а | Α |  |   | В | b | b | b | В |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | а |   |   |   | а |  |   | b |   |   |   | b |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | а |   |   |   | а |  |   | b |   |   |   | b |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | а |   |   |   | а |  |   | b |   |   |   | b |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | A | а | а | а | Α |  |   | В | b | b | b | В |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ľ |   |   |   |   |   |  |   |   |   |   |   |   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |   |   |   |   |  |   |   |   |   |   |   |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t |   |   |   |   |   |  |   |   |   |   |   |   |  |
| d     d     d     c     d     c     d       d     d     d     d     d     c     c     d       c     c     d     d     d     d     c     c     d       c     c     d     d     d     d     c     c     d       c     c     c     d     d     d     c     c     c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | С | С | С | С | С |  |   | D | d | d | d | D |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I | С |   |   |   | с |  |   | d |   |   |   | d |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | С |   |   |   |   |  | - |   |   |   |   |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | С |   |   |   |   |  | - | _ |   |   |   |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | C | C | С | С | С |  | ⊢ | - | Ч | d | d |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |   |   |   |   |  |   |   |   |   |   |   |  |

Can be achieved by ?

Shift left, shift right, shift up, shift down

#### Left shift

```
nsend = 0;
for(i=0; i<local_cellsx; i++){
  for each particle p in cell (i, 1){
    pack position of p in sbuf
    nsend += 2
  }
```

Update:

- Similar to sequential program.
- A processor has all the required information for calculating F<sub>i</sub> for all its particles
- Thus new position and velocity determined.
- If new position belongs to the same cell in the same processor, do nothing
- If new position belongs to the different cell in the same processor, update link lists for old and new cells.

# MDS – parallel solution – 3rd step

If new position belongs to the different cell in a different processor – particle migration
for each particle p
update {position, velocity}
determine new cell
if new cell # old cell
delete p from list of old cell
if(different processor)
pack p into appropriate communication buffer
remove p from particle array

Shift left Shift right Shift up Shift down

# MDS – parallel solution – 3rd step

- This shifting is a bit different from the previous shifting
- A processor may just act as a transit point for a particle
- Hence particles have to be packed with care

#### Shift left:

```
for(i=0; i<particles; i++){
  read next 4 numbers in {x, y vx, vy}
  if(particle in this process)
    add particle to particle array
    determine cell
    add particle to list for the cell
  else
    put data in the appropriate comm. buffer for</pre>
```

put data in the appropriate comm. buffer for the next up or down shifts

# MDS – comments

- Generic solution
  - A particle can move to any cell
  - Force can be from any distance
- Load balancing

# Force Decomposition

- For computing the total force on an atom due to all the other atoms, the individual force contributions from the other atoms are independent and can be parallelized
- Fine-grained parallelism
- Especially suitable for shared-memory (OpenMP) parallelization

# Hybrid Decomposition

- Divide the domain into cells (spatial decomposition)
- Create a parallel thread whose responsibility is to compute interacting forces between every pairs of cells (force decomposition)