Parallel Machine Learning

* k-NN used for classification and regression problems

e Commonly used data structure: k-d trees

* For the given multi-dimensional data, construct a k-d tree
 Similar to

k-d tree construction example

k-d Tree Construction

[x] .
e 5] o .
S9a he g o he
¥ $ LY fa ¥ % f.
[
te * te
® ‘e * a3 1 -

k-d Tree Nearest Neighbor Search

Nearest neighbour search
neing kd- tree

Two steps in k-NN

1. k-d tree construction
2. K-d tree search

Parallelization

* Option 1:
* Tree construction: Partition data sets among processors; Each processor
constructs local k-d tree

e Search: Query sent to all processors which perform search in local k-d trees;

each processor returns the top neighbors from which the k nearest are
chosen

Parallelization

* Option 1: Poor work efficiency, i.e., wasted work

* Option 2:
* Global k-d tree construction in all the processors

* For each processors, one half of data is given to one half of processors, and
the other half of data given to other processors

» After this recursive division, the top part of the tree is replicated in all the
processors

* The processors then construct local k-d trees for their subdomains

Searching the global k-d tree

* Query sent to the processors that takes care of the subdomain of the
query
* The processor forms the local k nearest neighbors

* Forms a radius based on these neighbors

e Sends the query to the nearby processors consisting of subdomains
that are spanned by the radius

* The processors search for points within the radius and send their
results to the origin processor

P, o e 3
L] : a
. ==, :
L e "\,_.
Fl. I-'. .E ‘1\-'-" o
| l|l o -
i ¥]
13 |
A 3P,
a .::"-\. -|.___—F"'T: i\.-'-
S o
] [}
FI

Figure 3. Figure shows the data points (denoted by o) in 2D space divided
among 5 nodes. Query point 18 shown as X. KNN with k& = 3 18 run in
node P, (owner of X). This returns 3 points owned by F; and a max

distance (denoted by green circle around X). Only F> and Py might own
points within this radius. KNN is run on % and P, for X and the closest

3 points are chosen (within purple circle around X))

Optimization

e Queries can be batched
e Software pipelining can be performed between the stages

Algorithm

Algorithm 1 Finding %k-nearest neighbors from the local kd-
tree. Input: kd-tree T', Query g, k&, search radius, r (default
r = oo). Output: A set, ¥ of & nearest neighbors within r.
procedure FINDKNN(T.q. k., r)
r' < r; push (root,0) into S
while S is not empty do

1:
2
3
4 (node, d) «— pop from S
5: if node 18 leaf then
6
7
8
9

for each particle = in node do

compute distance, d[x]| of x from ¢
if d[z] < r' then

: if |H| < k then
10: add = into H

11 if |H| = k then

12: r' — H.mari dis

13: else if d[r] < max distance in H then
14: replace the topmost point // by =
15: r' — d[x]

16: else

Algorithm

16:
17:

18:
19:

-

il e

21:
22:
23:
24:

25:

else

if d < v then

d' «— g[node.dim| — node.median
d — Vdxd+d +d
(' « closer child of node from g
('5 «— other child of node
if d' < r' then

push (Cs,d’) into S

push (C1,d) into S

References

* PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed
Architectures. IPDPS 2016.

