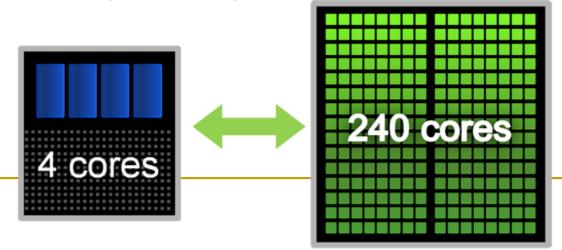
Many-core Architectures


Sathish Vadhiyar
Introduction to Scalable Systems

Introduction

- Graphical Processing Unit
- A single CPU can consist of 2, 4, 8 or 12 cores
- GPUs consist of a large number of lightweight cores
- Primarily proposed for graphics applications
 - Consists of stages with each stage consisting of independent computations

GPU and CPU, CUDA

- Typically GPU and CPU coexist in a heterogeneous setting
- "Less" computationally intensive part runs on CPU (coarse-grained parallelism), and more intensive parts run on GPU (fine-grained parallelism)
- NVIDIA's GPU architecture is called CUDA (Compute Unified Device Architecture) architecture, accompanied by CUDA programming model, and CUDA C language

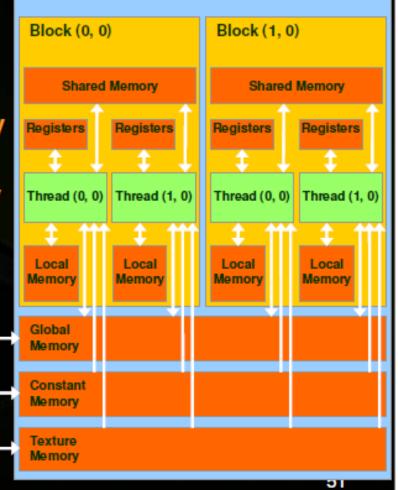
SPs and SMX

- GPU cores are called streaming processors (SPs)
- SP cores grouped into streaming multiprocessors (SMX)
- Promotes coarse and fine-level parallelism
- Kepler K40 15 SMXs consisting of 192 SP cores each for a total of 2880 SP cores
- Light-weight 745 MHz
- SIMD execution (actually SIMT)

Streaming Multiprocessor (SMX)

Architecture

- 65536 registers
- 192 SP cores
- 64 DP cores
- 32 Special functional units (SFUs)
- 32 load/store units
- 16 texture filtering units



Shared memory size = 16/32/48 K

CUDA Memory Spaces

- Each thread can:
 - Read/write per-thread registers
 - Read/write per-thread local memory
 - Read/write per-block shared memory
 - Read/write per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory
- The host can read/write global, constant, and texture memory (stored in DRAM)

Grid

Host

Memory Hierarchy

- Global or Device memory:
 - Can be accessed by all the threads executing in all the SMXs
 - Can be accessed by the CPU host
 - Kepler K40: 12 GB
- Shared memory:
 - In each SMX
 - Shared by all the threads of a thread block executing in a SMX
 - Kepler K40: 64 KB can be configured as 16/32/48KB for shared memory, with the rest for L1 cache

Memory Hierarchy

- Registers
 - In each SMX
 - Used for storing the local data of the threads
 - Kepler k40: 64K registers in each SMX
- Constant and texture memory
 - Accessed by all the threads
 - Texture memory: used to improve performance of reads that exhibit spatial locality among the threads
- Latency of data access
 - Device memory: 200-400 clock cycles (about 300 ns)
 - Shared memory: 20-30 clock cycles (about 5 ns)

Differences with the CPU threads

- Context switching fast: The state of a thread (thread block) stored in shared memory and registers stay till execution completion
- Cache explicitly managed: User's program will have to explicitly bring the frequently accessed data from the device to the shared memory