Near-neighbor or Mesh Based Paradigm

Sathish Vadhiyar

Introduction

Mesh based Cartesian topology is another popular model

- Canon's algorithm (already covered)
- □ In this class: Floyd's APSP

All-Pairs Shortest Paths Floyd's Algorithm

- □ Consider a subset S = {v1,v2,...,vk} of vertices for some k <= n
- Consider finding shortest path between vi and vj
- Consider all paths from vi to vj whose intermediate vertices belong to the set S; Let p_{i,j}^(k) be the minimum-weight path among them with weight d_{i,j}^(k)

All-Pairs Shortest Paths Floyd's Algorithm

- □ If vk is not in the shortest path, then $p_{i,j}^{(k)} = p_{i,j}^{(k-1)}$
- If vk is in the shortest path, then the path is broken into two parts - from vi to vk, and from vk to vj
- $\Box \text{ So } d_{i,i}^{(k)} = \min\{d_{i,i}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,i}^{(k-1)}\}$
- The length of the shortest path from vi to vj is given by d_{i,i}⁽ⁿ⁾.

 \Box In general, solution is a matrix $D^{(n)}$

Parallel Formulation 2-D Block Mapping

- Processors laid in a 2D mesh
- During kth iteration, each process Pi,j needs certain segments of the kth row and kth column of the D(k-1) matrix
- □ For d_{l,r}^(k): following are needed
 - d_{I,k}^(k-1) (from a process along the same process row)
 - d_{k,r}^(k-1) (from a process along the same process column)
 - Figure 10.8

Parallel Formulation 2D Block Mapping

- During kth iteration, each of the root(p) processes containing part of the kth row sends it to root(p)-1 in same column;
- □ Similarly for the same row
- □ Figure 10.8
- □ Time complexity?

Sources/References

####