
Shared Memory Parallelism -

OpenMP

Sathish Vadhiyar
Credits/Sources:

OpenMP C/C++ standard (openmp.org)

OpenMP tutorial (http://www.llnl.gov/computing/tutorials/openMP/#Introduction)

OpenMP sc99 tutorial presentation (openmp.org)

Dr. Eric Strohmaier (University of Tennessee, CS594 class, Feb 9, 2000)

http://www.llnl.gov/computing/tutorials/openMP/#Introduction

Introduction

◼ A portable programming model and standard for
shared memory programming using compiler
directives

◼ Directives?: constructs or statements in the program
applying some action on a block of code

◼ A specification for a set of compiler directives, library
routines, and environment variables – standardizing
pragmas

◼ Easy to program; easy for code developer to convert
his sequential to parallel program by throwing
directives

◼ First version in 1997, development over the years till
the latest 4.5 in 2015

Fork-Join Model

◼ Begins as a single thread
called master thread

◼ Fork: When parallel construct
is encountered, team of
threads are created

◼ Statements in the parallel
region are executed in parallel

◼ Join: At the end of the parallel
region, the team threads
synchronize and terminate

OpenMP consists of…

◼ Work-sharing constructs

◼ Synchronization constructs

◼ Data environment constructs

◼ Library calls, environment variables

Introduction

◼ Mainly supports loop-level parallelism

◼ Specifies parallelism for a region of code: fine-
level parallelism

◼ The number of threads can be varied from one
region to another – dynamic parallelism
❑ Follows Amdahl’s law – sequential portions in the

code

❑ Applications have varying phases of parallelism

◼ Also supports
❑ Coarse-level parallelism – sections and tasks

❑ Executions on accelerators

❑ SIMD vectorizations

❑ task-core affinity

parallel construct

#pragma omp parallel [clause [, clause] …] new-line

 structured-block

Clause: Can support nested

parallelism

Parallel construct - Example

#include <omp.h>

main () {

int nthreads, tid;

 #pragma omp parallel private(nthreads, tid) {

 …

 }

}

Work sharing construct

◼ For distributing the execution among the threads

that encounter it

◼ 3 types of work sharing constructs – loops,

sections, single

for construct

◼ For distributing the iterations among the threads

#pragma omp for [clause [, clause] …] new-

line

 for-loop

Clause:

for construct

◼ Restriction in the structure of the for
loop so that the compiler can
determine the number of iterations –
e.g. no branching out of loop

◼ The assignment of iterations to
threads depends on the schedule
clause

◼ Implicit barrier at the end of for if not
nowait

schedule clause

1. schedule(static, chunk_size) –
iterations/chunk_size chunks distributed
in round-robin

2. Schedule(dynamic, chunk_size) – same
as above, but chunks distributed
dynamically.

3. schedule(runtime) – decision at runtime.
Implementation dependent

for - Example

include <omp.h>

#define CHUNKSIZE 100

#define N 1000

main () {

int i, chunk; float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

 a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i) {

 #pragma omp for schedule(dynamic,chunk) nowait

 for (i=0; i < N; i++)

 c[i] = a[i] + b[i];

 } /* end of parallel section */

}

Coarse level parallelism – sections and

tasks
◼ sections

◼ tasks – dynamic mechanism

◼ depend clause for task

Synchronization directives

Data Scope Attribute Clauses

Most variables are shared by default

Data scopes explicitly specified by data scope attribute clauses

Clauses:

1. private

2. firstprivate

3. lastprivate

4. shared

5. default

6. reduction

7. copyin

8. copyprivate

private, firstprivate & lastprivate

◼ private (variable-list)

◼ variable-list private to each thread

◼ A new object with automatic storage duration allocated for the
construct

◼ firstprivate (variable-list)

◼ The new object is initialized with the value of the old object that
existed prior to the construct

◼ lastprivate (variable-list)

◼ The value of the private object corresponding to the last iteration
or the last section is assigned to the original object

shared, default, reduction

◼ shared(variable-list)

◼ default(shared | none)

◼ Specifies the sharing behavior of all of the variables visible in the
construct

◼ Reduction(op: variable-list)

◼ Private copies of the variables are made for each thread

◼ The final object value at the end of the reduction will be
combination of all the private object values

Library Routines (API)

◼ Querying function (number of threads etc.)

◼ General purpose locking routines

◼ Setting execution environment (dynamic

threads, nested parallelism etc.)

API

◼ OMP_SET_NUM_THREADS(num_threads)

◼ OMP_GET_NUM_THREADS()

◼ OMP_GET_MAX_THREADS()

◼ OMP_GET_THREAD_NUM()

◼ OMP_GET_NUM_PROCS()

◼ OMP_IN_PARALLEL()

◼ OMP_SET_DYNAMIC(dynamic_threads)

◼ OMP_GET_DYNAMIC()

API(Contd..)

◼ omp_init_lock(omp_lock_t *lock)

◼ omp_init_nest_lock(omp_nest_lock_t *lock)

◼ omp_destroy_lock(omp_lock_t *lock)

◼ omp_destroy_nest_lock(omp_nest_lock_t *lock)

◼ omp_set_lock(omp_lock_t *lock)

◼ omp_set_nest_lock(omp_nest_lock_t *lock)

◼ omp_unset_lock(omp_lock_t *lock)

◼ omp_unset_nest__lock(omp_nest_lock_t *lock)

◼ omp_test_lock(omp_lock_t *lock)

◼ omp_test_nest_lock(omp_nest_lock_t *lock)

◼ omp_get_wtime()

◼ omp_get_wtick()

◼ omp_get_thread_num()

◼ omp_get_num_proc()

◼ omp_get_num_devices()

Example 1: Jacobi Solver

Example 2: BFS Version 1

(Nested Parallelism)

Example 3: BFS Version 2

(Using Task Construct)

◼ END

	Slide 1: Shared Memory Parallelism - OpenMP
	Slide 2: Introduction
	Slide 3: Fork-Join Model
	Slide 4: OpenMP consists of…
	Slide 5: Introduction
	Slide 6: parallel construct
	Slide 7: Parallel construct - Example
	Slide 8: Work sharing construct
	Slide 9: for construct
	Slide 10: for construct
	Slide 11: schedule clause
	Slide 12: for - Example
	Slide 13: Coarse level parallelism – sections and tasks
	Slide 14: Synchronization directives
	Slide 15: Data Scope Attribute Clauses
	Slide 16: private, firstprivate & lastprivate
	Slide 17: shared, default, reduction
	Slide 18: Library Routines (API)
	Slide 19: API
	Slide 20: API(Contd..)
	Slide 21: Example 1: Jacobi Solver
	Slide 22: Example 2: BFS Version 1 (Nested Parallelism)
	Slide 23: Example 3: BFS Version 2 (Using Task Construct)
	Slide 24

