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Motivations of Parallel Computing

 Faster execution times

 From days or months to hours or seconds

 E.g., climate modelling, bioinformatics

 Large amount of data dictate parallelism

 Parallelism more natural for certain kinds of 

problems, e.g., climate modelling

 Due to computer architecture trends

 CPU speeds have saturated

 Slow memory bandwidths
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Classification of Architectures – Flynn’s 

classification
In terms of parallelism in 

instruction and data stream

 Single Instruction Single 
Data (SISD): Serial 
Computers

 Single Instruction Multiple 
Data (SIMD)

- Vector processors and 
processor arrays

- Examples: CM-2, Cray-90, 
Cray YMP, Hitachi 3600

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/
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Classification of Architectures – Flynn’s 

classification
 Multiple Instruction Single 

Data (MISD): Not popular
 Multiple Instruction 

Multiple Data (MIMD)
- Most popular
- IBM SP and most other 
supercomputers, 

clusters, computational 
Grids etc.

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/
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Classification of Architectures – Based on 

Memory
 Shared memory

 2 types – UMA and 

NUMA

UMA

NUMA

Examples: HP-
Exemplar, SGI Origin, 
Sequent NUMA-Q

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/
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Classification 2:

Shared Memory vs Message Passing

 Shared memory machine: The n processors 
share physical address space
 Communication can be done through this shared 

memory

 The alternative is sometimes referred to 
as a message passing machine or a 
distributed memory machine
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Shared Memory Machines

The shared memory could itself be 
distributed among the processor nodes
 Each processor might have some portion of the 

shared physical address space that is physically 
close to it and therefore accessible in less time

 Terms: NUMA vs UMA architecture
 Non-Uniform Memory Access

 Uniform Memory Access



SHARED MEMORY AND 

CACHES
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Shared Memory Architecture: Caches
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Cache Coherence Problem

 If each processor in a shared memory 

multiple processor machine has a data cache

 Potential data consistency problem: the cache 

coherence problem

 Shared variable modification, private cache

 Objective: processes shouldn’t read `stale’ 

data

 Solutions

 Hardware: cache coherence mechanisms
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Cache Coherence Protocols

 Write update – propagate cache line to other 
processors on every write to a processor

 Write invalidate – each processor gets the 
updated cache line whenever it reads stale 
data

 Which is better?
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X: 0

Invalidation Based Cache Coherence
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Cache Coherence using invalidate protocols

 3 states associated with data items
 Shared – a variable shared by 2 

caches
 Invalid – another processor (say P0) 

has updated the data item
 Dirty – state of the data item in P0
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Implementations of cache coherence protocols

 Snoopy
 for bus based architectures
 shared bus interconnect where all cache 

controllers monitor all bus activity 
 There is only one operation through bus at a 

time; cache controllers can be built to take 
corrective action and enforce coherence in 
caches

 Memory operations are propagated over the bus 
and snooped
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Implementations of cache coherence protocols

 Directory-based
 Instead of broadcasting memory operations to 

all processors, propagate coherence operations 
to relevant processors

 A central directory maintains states of cache 
blocks, associated processors



Implementation of Directory Based 

Protocols

 Using presence bits for the owner processors

 Two schemes:

 Full bit vector scheme – O(MxP) storage for 

P processors and M cache lines

 But not necessary

 Modern day processors use sparse or tagged 

directory scheme

 Limited cache lines and limited presence bits
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False Sharing

 Cache coherence occurs at the granularity of 

cache lines – an entire cache line is 

invalidated

 Modern day cache lines are 64 bytes in size

 Consider a Fortran program dealing with a 

matrix

 Assume each thread or process accessing a 

row of a matrix

 Leads to false sharing
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False sharing: Solutions

 Reorganize the code so that each processor 

access a set of rows

 Can still lead to overlapping of cache lines if 

matrix size not divisible by processors

 In such cases, employ padding

 Padding: dummy elements added to make 

the matrix size divisible
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INTERCONNECTION 

NETWORKS
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Interconnects
 Used in both shared memory and 

distributed memory architectures
 In shared memory: Used to connect 

processors to memory
 In distributed memory: Used to connect 

different processors
 Components

 Interface (PCI or PCI-e): for connecting 
processor to network link

 Network link connected to a communication 
network (network of connections)



Communication network

 Consists of switching elements to which 

processors are connected through ports

 Switch: network of switching elements

 Switching elements connected with each 

other using a pattern of connections

 Pattern defines the network topology

 In shared memory systems, memory units 

are also connected to communication 

network
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Parallel Architecture: Interconnections

 Routing techniques: how the route taken by the message 

from source to destination is decided

 Network topologies
 Static – point-to-point communication links among processing 

nodes

 Dynamic – Communication links are formed dynamically by 
switches
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Network Topologies

 Static
 Bus
 Completely connected
 Star
 Linear array, Ring (1-D torus)
 Mesh
 k-d mesh: d dimensions with k nodes in each dimension
 Hypercubes – 2-logp mesh
 Trees – our campus network

 Dynamic – Communication links are formed dynamically by 
switches
 Crossbar
 Multistage

 For more details, and evaluation of topologies, refer to book by 
Grama et al.



Network Topologies

 Bus, ring – used in small-

scale shared memory 

systems

 Crossbar switch – used in 

some small-scale shared 

memory machines, small 

or medium-scale 

distributed memory 

machines
24



Crossbar Switch

 Consists of 2D grid of switching elements

 Each switching element consists of 2 input 

ports and 2 output ports

 An input port dynamically connected to an 

output port through a switching logic
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Multistage network – Omega network

 To reduce switching complexity

 Omega network – consisting of logP stages, 

each consisting of P/2 switching elements

 Contention

 In crossbar – nonblocking

 In Omega – can occur during multiple 

communications to disjoint pairs
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Mesh, Torus, Hypercubes, Fat-tree

 Commonly used network topologies in 

distributed memory architectures

 Hypercubes are networks with dimensions
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Mesh, Torus, Hypercubes

Mesh
2D

Torus

Hypercube(binary n-cube)

n=2 n=3



Fat Tree Networks

 Binary tree

 Processors arranged in leaves

 Other nodes correspond to switches

 Fundamental property:                                              

No. of links from a node to                               

a children = no. of links                                           

from the node to its parent

 Edges become fatter as we traverse up the 

tree

29



Fat Tree Networks

 Any pairs of processors can communicate 

without contention: non-blocking network

 Constant Bisection Bandwidth (CBB) 

networks

 Two level fat tree has a diameter of four
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Evaluating Interconnection topologies

 Diameter – maximum distance between any two processing 
nodes
 Full-connected –

 Star –

 Ring –

 Hypercube -

 Connectivity – multiplicity of paths between 2 nodes. Miniimum 
number of arcs to be removed from network to break it into two 
disconnected networks
 Linear-array –

 Ring –

 2-d mesh –

 2-d mesh with wraparound –

 D-dimension hypercubes –
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Evaluating Interconnection topologies

 bisection width – minimum number of links to 
be removed from network to partition it into 2 
equal halves

 Ring –

 P-node 2-D mesh -

 Tree –

 Star –

 Completely connected –

 Hypercubes -
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Evaluating Interconnection topologies

 channel width – number of bits that can be 
simultaneously communicated over a link, i.e. 
number of physical wires between 2 nodes

 channel rate – performance of a single physical 
wire

 channel bandwidth – channel rate times channel 
width

 bisection bandwidth – maximum volume of 
communication between two halves of network, 
i.e. bisection width times channel bandwidth


