
Parallel Architecture

Sathish Vadhiyar

Motivations of Parallel Computing

 Faster execution times

 From days or months to hours or seconds

 E.g., climate modelling, bioinformatics

 Large amount of data dictate parallelism

 Parallelism more natural for certain kinds of

problems, e.g., climate modelling

 Due to computer architecture trends

 CPU speeds have saturated

 Slow memory bandwidths

2

3

Classification of Architectures – Flynn’s

classification
In terms of parallelism in

instruction and data stream

 Single Instruction Single
Data (SISD): Serial
Computers

 Single Instruction Multiple
Data (SIMD)

- Vector processors and
processor arrays

- Examples: CM-2, Cray-90,
Cray YMP, Hitachi 3600

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

4

Classification of Architectures – Flynn’s

classification
 Multiple Instruction Single

Data (MISD): Not popular
 Multiple Instruction

Multiple Data (MIMD)
- Most popular
- IBM SP and most other
supercomputers,

clusters, computational
Grids etc.

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

5

Classification of Architectures – Based on

Memory
 Shared memory

 2 types – UMA and

NUMA

UMA

NUMA

Examples: HP-
Exemplar, SGI Origin,
Sequent NUMA-Q

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

6

Classification 2:

Shared Memory vs Message Passing

 Shared memory machine: The n processors
share physical address space
 Communication can be done through this shared

memory

 The alternative is sometimes referred to
as a message passing machine or a
distributed memory machine

PP P P PP P

Interconnect

Main Memory

PP P P PP P

Interconnect

M MMMMMM

7

Shared Memory Machines

The shared memory could itself be
distributed among the processor nodes
 Each processor might have some portion of the

shared physical address space that is physically
close to it and therefore accessible in less time

 Terms: NUMA vs UMA architecture
 Non-Uniform Memory Access

 Uniform Memory Access

SHARED MEMORY AND

CACHES

8

9

X: 0

Shared Memory Architecture: Caches

X: 0

Read X Read X

X: 0

Read X

Cache hit:

Wrong data!!

P1 P2

Write X=1

X: 1

X: 1

10

Cache Coherence Problem

 If each processor in a shared memory

multiple processor machine has a data cache

 Potential data consistency problem: the cache

coherence problem

 Shared variable modification, private cache

 Objective: processes shouldn’t read `stale’

data

 Solutions

 Hardware: cache coherence mechanisms

11

Cache Coherence Protocols

 Write update – propagate cache line to other
processors on every write to a processor

 Write invalidate – each processor gets the
updated cache line whenever it reads stale
data

 Which is better?

12

X: 0

Invalidation Based Cache Coherence

X: 0

Read X Read X

X: 0

Read X

Invalidate

P1 P2

Write X=1

X: 1
X: 1

X: 1

13

Cache Coherence using invalidate protocols

 3 states associated with data items
 Shared – a variable shared by 2

caches
 Invalid – another processor (say P0)

has updated the data item
 Dirty – state of the data item in P0

14

Implementations of cache coherence protocols

 Snoopy
 for bus based architectures
 shared bus interconnect where all cache

controllers monitor all bus activity
 There is only one operation through bus at a

time; cache controllers can be built to take
corrective action and enforce coherence in
caches

 Memory operations are propagated over the bus
and snooped

15

Implementations of cache coherence protocols

 Directory-based
 Instead of broadcasting memory operations to

all processors, propagate coherence operations
to relevant processors

 A central directory maintains states of cache
blocks, associated processors

Implementation of Directory Based

Protocols

 Using presence bits for the owner processors

 Two schemes:

 Full bit vector scheme – O(MxP) storage for

P processors and M cache lines

 But not necessary

 Modern day processors use sparse or tagged

directory scheme

 Limited cache lines and limited presence bits

16

False Sharing

 Cache coherence occurs at the granularity of

cache lines – an entire cache line is

invalidated

 Modern day cache lines are 64 bytes in size

 Consider a Fortran program dealing with a

matrix

 Assume each thread or process accessing a

row of a matrix

 Leads to false sharing

17

False sharing: Solutions

 Reorganize the code so that each processor

access a set of rows

 Can still lead to overlapping of cache lines if

matrix size not divisible by processors

 In such cases, employ padding

 Padding: dummy elements added to make

the matrix size divisible

18

INTERCONNECTION

NETWORKS

19

20

Interconnects
 Used in both shared memory and

distributed memory architectures
 In shared memory: Used to connect

processors to memory
 In distributed memory: Used to connect

different processors
 Components

 Interface (PCI or PCI-e): for connecting
processor to network link

 Network link connected to a communication
network (network of connections)

Communication network

 Consists of switching elements to which

processors are connected through ports

 Switch: network of switching elements

 Switching elements connected with each

other using a pattern of connections

 Pattern defines the network topology

 In shared memory systems, memory units

are also connected to communication

network
21

22

Parallel Architecture: Interconnections

 Routing techniques: how the route taken by the message

from source to destination is decided

 Network topologies
 Static – point-to-point communication links among processing

nodes

 Dynamic – Communication links are formed dynamically by
switches

23

Network Topologies

 Static
 Bus
 Completely connected
 Star
 Linear array, Ring (1-D torus)
 Mesh
 k-d mesh: d dimensions with k nodes in each dimension
 Hypercubes – 2-logp mesh
 Trees – our campus network

 Dynamic – Communication links are formed dynamically by
switches
 Crossbar
 Multistage

 For more details, and evaluation of topologies, refer to book by
Grama et al.

Network Topologies

 Bus, ring – used in small-

scale shared memory

systems

 Crossbar switch – used in

some small-scale shared

memory machines, small

or medium-scale

distributed memory

machines
24

Crossbar Switch

 Consists of 2D grid of switching elements

 Each switching element consists of 2 input

ports and 2 output ports

 An input port dynamically connected to an

output port through a switching logic

25

Multistage network – Omega network

 To reduce switching complexity

 Omega network – consisting of logP stages,

each consisting of P/2 switching elements

 Contention

 In crossbar – nonblocking

 In Omega – can occur during multiple

communications to disjoint pairs

26

Mesh, Torus, Hypercubes, Fat-tree

 Commonly used network topologies in

distributed memory architectures

 Hypercubes are networks with dimensions

27

28

Mesh, Torus, Hypercubes

Mesh
2D

Torus

Hypercube(binary n-cube)

n=2 n=3

Fat Tree Networks

 Binary tree

 Processors arranged in leaves

 Other nodes correspond to switches

 Fundamental property:

No. of links from a node to

a children = no. of links

from the node to its parent

 Edges become fatter as we traverse up the

tree

29

Fat Tree Networks

 Any pairs of processors can communicate

without contention: non-blocking network

 Constant Bisection Bandwidth (CBB)

networks

 Two level fat tree has a diameter of four

30

31

Evaluating Interconnection topologies

 Diameter – maximum distance between any two processing
nodes
 Full-connected –

 Star –

 Ring –

 Hypercube -

 Connectivity – multiplicity of paths between 2 nodes. Miniimum
number of arcs to be removed from network to break it into two
disconnected networks
 Linear-array –

 Ring –

 2-d mesh –

 2-d mesh with wraparound –

 D-dimension hypercubes –

1
2

p/2

logP

1
2

2

4

d

32

Evaluating Interconnection topologies

 bisection width – minimum number of links to
be removed from network to partition it into 2
equal halves

 Ring –

 P-node 2-D mesh -

 Tree –

 Star –

 Completely connected –

 Hypercubes -

2

Root(P)

1

1

P2/4

P/2

33

Evaluating Interconnection topologies

 channel width – number of bits that can be
simultaneously communicated over a link, i.e.
number of physical wires between 2 nodes

 channel rate – performance of a single physical
wire

 channel bandwidth – channel rate times channel
width

 bisection bandwidth – maximum volume of
communication between two halves of network,
i.e. bisection width times channel bandwidth

