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Introduction: Deep Neural Networks (DNNs)

• DNN composed of a sequence of tensors (generalized matrices 
with dynamical properties)

• The tensors are referred to as weights
• Input fed to DNN
• A series of tensor-matrix operations

• Could be matrix-matrix multiplication, matrix-vector multiplication, FFT, 
non-linear transform

• Output obtained
• To get correct classification, need to get a set of working weights



Introduction: DNN Training

Weights need to be trained
Training process consists of three steps:
1. Forward propagation: Input passed from first to last layer. Output is 

predicted
2. Backward propagation: Numerical prediction error passed from last to first 

layer and gradient of W, delta, obtained
3. Weight update: W = W-n.delta [n is the learning rate]
• Above three steps iterated until model is optimized
• Using stochastic gradient descent
• Randomly pick a batch of samples



Introduction: Distributed and Parallel Training

Distributed and parallel Deep Learning involves utilizing  high performance 
computing systems to train very large deep learning models 
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Parallel Algorithms

• Parameter server or asynchronous SGD
• All workers complete their iteration step (local updates, sending to master, and receiving 

W from master) asynchronously
• Master process uses lock to avoid weight update conflicts
• One worker at a time

• Hogwild (lock-free)
• Removes the above lock
• Multiple workers at a time

• EAGSD (round-robin)
Local updates by workers

Global updates by master



Multi-GPU Implementation



Popular Deep Learning 
Parallelization Strategies
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Parallelism

2D/3D Hybrid Parallelism 

CPU+GPU Parallelism



Data Parallelism

Splits data across compute nodes

Each machine maintains an identical copy of the model

During the backward step, after every batch, all the subgradients are collected from all the 
processors

Using the sum of all the subgradients, delta, the weights are updated

Using the same gradients to update the models results in identical model weights being 
maintained across the nodes

Pros:

- Reduces training time significantly compared to single node training

Cons:

- Unable to train large models in GPU memory



Example of Data Parallelism:
Traditional single machine DNN training
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Data Parallelism – Parameter Server

Worker 0 Worker 1 Worker 2 Worker 3 Worker 
N

Model Model Model Model Model

Worker 
N+1

Each worker holds the entire copy of the model and it trains its copy of the model on an 
assigned subset of the dataset. 

The model is then synchronized through a worker called as a Parameter Server.  



Data Parallelism – DDP (PyTorch Implementation)

Worker Worker Worker

• Parameter server approach is not feasible when it comes to 
scalability, where the worker hosting parameter server becomes 
bottleneck

 
• DDP (Distributed Data Parallel) overcomes this issue by using 

asynchronous ring all reduce strategy, in which each worker transmits 
and receives reduced gradients from his immediate neighbor. 



Model Parallelism 

Large DL Model 

• As the model size is increasing rapidly, entire model cannot fit in 
single worker (GPU). Therefore, Model parallelism is proposed 
through which model layers are divided among  workers and 
gradients/ activations are communicated among workers 

GPU 0 GPU 1 GPU 2



Model Parallelism: Pros and Cons
Pros:
- Able to train large models in GPU memory by partitioning

Cons:
- Requires large amount of communication of 

computations between layers
- High degree of model parallelism can create small 

matrix multiplications (GEMMs), potentially decreasing 
GPU utilization



Example of Model Parallelism: 
Megatron-LM

Used to parallelize LLMs
Figure on the left shows their approach for parallelizing Fully Connected 
Layers; Splitting weights along the columns
Figure on the right shows their approach for parallelizing Self-Attention 
Layers; Splitting Query, Key, Value matrices along the columns



Pipeline Parallelism

Pipeline different stages of training

Layers of a model are striped over multiple GPUs

A batch is split into smaller micro-batches, and execution is pipelined across these 
microbatches.

Layers can be assigned to workers in various ways, and various schedules for the forward and 
backward passes of inputs can be used. The later assignment and scheduling strategy results 
in different performance tradeoffs.

Pros:

- Utilizes the compute resource completely during the training

Cons:

- Large amount of communication and synchronization



Pipeline Parallelism 

Large DL Model 

• Model Parallelism fails to utilize computing resources efficiently 
where only one GPU is actively computing at a given instance of 
time. There fore, a mini batch is further divided into micro batches 
and these micro batches are pipelined through GPU stages of the 
model. 

GPU 0
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GPU 1
(Stage 2)

GPU 2
(Stage 3)



Different Pipeline Scheduling Strategies 

Figure – 1: (Gpipe)
Micro batches are 

pipelined and FWD + 
BWD pass is conducted. 

Later, parameters are 
updated in each stage Stage 1

Stage 2

Stage 3

Stage 4

Figure – 2: (PipeDream)
Micro batches are 

pipelined and FWD + 
BWD passes are 

scheduled through 
which FWD and BWD 

are pipelined. Stage 4

Stage 3

Stage 2

Stage 1



Hybrid Parallelization Strategies

Data Parallelism 

Pipeline Parallelism 

Model Parallelism 

Tensor Parallelism 

= Hybrid Parallelism 

As we see in the figure (to the 
left) model pipelined (from 
left to right) to implement 
pipeline parallelism . This 
setup is replicated to achieve 
data parallelism (top to 
bottom) and synchronization  



CPU + GPU Parallelization Strategies 

ZeRO optimization (DeepSpeed) 1) With rapid growth in model sizes, It 
was challenging to hold entire model on 
a stand alone GPU, to deal with this 
problem, DeepSpeed (Microsoft) 
proposed to hold all the parameters and 
optimizer states on the CPU’s Large RAM.

 2) The necessary parameters are sent to 
the GPU when required. GPU computes 
intensive operations like FWD and BWD 
passes involving Matrix Multiplications, 
and CPU handles communication and 
Parameter update of the parameters and 
optimizer states (CPU and GPU 
operations are parallelized).  
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