
Deep Learning
Sathish Vadhiyar

Introduction: Deep Neural Networks (DNNs)

• DNN composed of a sequence of tensors (generalized matrices
with dynamical properties)

• The tensors are referred to as weights
• Input fed to DNN
• A series of tensor-matrix operations

• Could be matrix-matrix multiplication, matrix-vector multiplication, FFT,
non-linear transform

• Output obtained
• To get correct classification, need to get a set of working weights

Introduction: DNN Training

Weights need to be trained
Training process consists of three steps:
1. Forward propagation: Input passed from first to last layer. Output is

predicted
2. Backward propagation: Numerical prediction error passed from last to first

layer and gradient of W, delta, obtained
3. Weight update: W = W-n.delta [n is the learning rate]
• Above three steps iterated until model is optimized
• Using stochastic gradient descent
• Randomly pick a batch of samples

Introduction: Distributed and Parallel Training

Distributed and parallel Deep Learning involves utilizing high performance
computing systems to train very large deep learning models

Large DL Model Worker 1

Worker 2

Worker N

*
*
*

Parallel Algorithms

• Parameter server or asynchronous SGD
• All workers complete their iteration step (local updates, sending to master, and receiving

W from master) asynchronously
• Master process uses lock to avoid weight update conflicts
• One worker at a time

• Hogwild (lock-free)
• Removes the above lock
• Multiple workers at a time

• EAGSD (round-robin)
Local updates by workers

Global updates by master

Multi-GPU Implementation

Popular Deep Learning
Parallelization Strategies

Data Parallelism Model Parallelism Pipeline
Parallelism

2D/3D Hybrid Parallelism

CPU+GPU Parallelism

Data Parallelism

Splits data across compute nodes

Each machine maintains an identical copy of the model

During the backward step, after every batch, all the subgradients are collected from all the
processors

Using the sum of all the subgradients, delta, the weights are updated

Using the same gradients to update the models results in identical model weights being
maintained across the nodes

Pros:

- Reduces training time significantly compared to single node training

Cons:

- Unable to train large models in GPU memory

Example of Data Parallelism:
Traditional single machine DNN training

Forward Pass
To compute loss

Backward Pass
To compute gradients

Optimizer Step
To update parameters

Forward Pass
To compute loss

Backward Pass
To compute gradients

Forward Pass
To compute loss

Backward Pass
To compute gradients

Device
1

Device
2

Optimizer Step
To update parameters with

identical set of gradients across
devices

Optimizer Step
To update parameters with

identical set of gradients across
devices

AllReduc
e to

synchroni
ze

gradients

Data Parallelism – Parameter Server

Worker 0 Worker 1 Worker 2 Worker 3 Worker
N

Model Model Model Model Model

Worker
N+1

Each worker holds the entire copy of the model and it trains its copy of the model on an
assigned subset of the dataset.

The model is then synchronized through a worker called as a Parameter Server.

Data Parallelism – DDP (PyTorch Implementation)

Worker Worker Worker

• Parameter server approach is not feasible when it comes to
scalability, where the worker hosting parameter server becomes
bottleneck

• DDP (Distributed Data Parallel) overcomes this issue by using

asynchronous ring all reduce strategy, in which each worker transmits
and receives reduced gradients from his immediate neighbor.

Model Parallelism

Large DL Model

• As the model size is increasing rapidly, entire model cannot fit in
single worker (GPU). Therefore, Model parallelism is proposed
through which model layers are divided among workers and
gradients/ activations are communicated among workers

GPU 0 GPU 1 GPU 2

Model Parallelism: Pros and Cons
Pros:
- Able to train large models in GPU memory by partitioning

Cons:
- Requires large amount of communication of

computations between layers
- High degree of model parallelism can create small

matrix multiplications (GEMMs), potentially decreasing
GPU utilization

Example of Model Parallelism:
Megatron-LM

Used to parallelize LLMs
Figure on the left shows their approach for parallelizing Fully Connected
Layers; Splitting weights along the columns
Figure on the right shows their approach for parallelizing Self-Attention
Layers; Splitting Query, Key, Value matrices along the columns

Pipeline Parallelism

Pipeline different stages of training

Layers of a model are striped over multiple GPUs

A batch is split into smaller micro-batches, and execution is pipelined across these
microbatches.

Layers can be assigned to workers in various ways, and various schedules for the forward and
backward passes of inputs can be used. The later assignment and scheduling strategy results
in different performance tradeoffs.

Pros:

- Utilizes the compute resource completely during the training

Cons:

- Large amount of communication and synchronization

Pipeline Parallelism

Large DL Model

• Model Parallelism fails to utilize computing resources efficiently
where only one GPU is actively computing at a given instance of
time. There fore, a mini batch is further divided into micro batches
and these micro batches are pipelined through GPU stages of the
model.

GPU 0
(Stage 1)

GPU 1
(Stage 2)

GPU 2
(Stage 3)

Different Pipeline Scheduling Strategies

Figure – 1: (Gpipe)
Micro batches are

pipelined and FWD +
BWD pass is conducted.

Later, parameters are
updated in each stage Stage 1

Stage 2

Stage 3

Stage 4

Figure – 2: (PipeDream)
Micro batches are

pipelined and FWD +
BWD passes are

scheduled through
which FWD and BWD

are pipelined. Stage 4

Stage 3

Stage 2

Stage 1

Hybrid Parallelization Strategies

Data Parallelism

Pipeline Parallelism

Model Parallelism

Tensor Parallelism

= Hybrid Parallelism

As we see in the figure (to the
left) model pipelined (from
left to right) to implement
pipeline parallelism . This
setup is replicated to achieve
data parallelism (top to
bottom) and synchronization

CPU + GPU Parallelization Strategies

ZeRO optimization (DeepSpeed) 1) With rapid growth in model sizes, It
was challenging to hold entire model on
a stand alone GPU, to deal with this
problem, DeepSpeed (Microsoft)
proposed to hold all the parameters and
optimizer states on the CPU’s Large RAM.

 2) The necessary parameters are sent to
the GPU when required. GPU computes
intensive operations like FWD and BWD
passes involving Matrix Multiplications,
and CPU handles communication and
Parameter update of the parameters and
optimizer states (CPU and GPU
operations are parallelized).

	Slide 1: Deep Learning
	Slide 2: Introduction: Deep Neural Networks (DNNs)
	Slide 3: Introduction: DNN Training
	Slide 4: Introduction: Distributed and Parallel Training
	Slide 5: Parallel Algorithms
	Slide 6: Multi-GPU Implementation
	Slide 7
	Slide 8: Data Parallelism
	Slide 9: Example of Data Parallelism:
	Slide 10: Data Parallelism – Parameter Server
	Slide 11: Data Parallelism – DDP (PyTorch Implementation)
	Slide 12: Model Parallelism
	Slide 13: Model Parallelism: Pros and Cons
	Slide 14: Example of Model Parallelism: Megatron-LM
	Slide 15: Pipeline Parallelism
	Slide 16
	Slide 17: Different Pipeline Scheduling Strategies
	Slide 18: Hybrid Parallelization Strategies
	Slide 19: CPU + GPU Parallelization Strategies

